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Abstract. A subset Z ⊆ V(G) of initially colored black vertices of a
graph G is known as a zero forcing set if we can alter the color of all ver-
tices in G as black by iteratively applying the subsequent color change
condition. At each step, any black colored vertex has exactly one white
neighbor, then change the color of this white vertex as black. The zero
forcing number Z(G), is the minimum number of vertices in a zero forcing
set Z of G (see [11]). In this paper, we compute the zero forcing num-
ber of the degree splitting graph (DS-Graph) and the complete degree
splitting graph (CDS-Graph) of a graph. We prove that for any simple
graph, Z[DS(G)] ≤ k+ t, where Z(G) = k and t is the number of newly
introduced vertices in DS(G) to construct it.

1 Introduction

In this article, we consider only simple, finite and undirected graphs. In graph
theory, the notion of zero forcing was introduced by the AIM Minimum Rank-
Special Graph Work Group (see [11]). For a graph G the zero forcing number
Z(G) can be defined as follows:
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• Color change rule: Consider a colored graph G in which every vertex is
colored as either white or black. If u is a black vertex of G and exactly
one neighbor v of u is white, then change the color of v to black.

• For a given a coloring of G, the derived coloring is the result of applying
the color-change rule until no more changes are possible.

• A primarily colored black vertex set Z ⊆ V(G) is called a zero forcing
set if all vertices’s of G changes to black after limited applications of the
color-change rule. The zero forcing number Z(G), is the minimum |Z|
over all zero forcing sets in G (see [11]).

The zero forcing number Z(G) can be used to bound the minimum rank for
numerous families of graphs (see [11]), also it can be use as a tool for logic
circuits (see [2]).

We use the following definitions and notations from [3].

• Open neighborhood and closed neighborhood. The set of all vertices
adjacent to a vertex v excluding the vertex v is called the open neigh-
borhood of v and is denoted by N(v). The set of all vertices adjacent to
a vertex v including the vertex v is called the closed neighborhood of v
and is denoted by N[v], i.e, N[v] = {v ∪N(v)}.

• Cartesian product. The Cartesian product G�H of two graphs G and H
is the graph with vertex set equal to the Cartesian product V(G)×V(H)
and where two vertices (g1, h1) and (g2, h2) are adjacent in G�H if and
only if, either g1 is adjacent to g2 in G or h1 is adjacent to h2 in H, that
is, if g1 = g2 and h1 is adjacent to h2 or h1 = h2 and g1 is adjacent to
g2.

• Tensor product. Let G and H be two distinct graphs. The tensor product
G⊕H has vertex set V(G⊕H) = V(G)× V(H), edge set
E(G⊕H) = {(u, v)(w, x) | uw ∈ E(G) and vx ∈ E(H)}.

• Join of two graphs. Let G and H be two distinct graphs. The graph
obtained by joining every vertex of G to every vertex of H is called the
join of two graphs G and H and is denoted by G ∨H, i.e, G ∨H is the
graph union G ∪ H together with all the edges xy where x ∈ v(G) and
y ∈ V(H).
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• The circular ladder graph or the prism graphs are the graphs obtained
by taking Cartesian product of a cycle graph Cn with a single edge K2
i.e, CLn = Cn�K2.

• When the color change rule is applied to a vertex u to change the color
of v, we say u forces v and write u� v.

The Splitting graph S(G) of G was introduced by E. Sampathkumar and
H.B. Walikar [8] and is the graph S(G) obtained by taking a new vertex v

′

corresponding to each vertex v ∈ G and join v
′

to all vertices of G adjacent
to v. The graph thus obtained is the splitting graph (see [8]). It is immediate
that S(G) − E(G) = G⊕ K2.

In [5], Premodkumar et al. studied the concept of the zero forcing number of
the splitting graph of a graph G and gave the exact values of the zero forcing
number of several classes of splitting graphs.

The degree splitting graph was introduced by R. Ponraj and S. Somasun-
daram [4]. Let G be a graph with V(G) = D1 ∪D2 ∪ . . . ∪Dt ∪ B where each
Di is a set of vertices of the same degree with minimum two elements and
B = V(G) \ ∪ti=1Di. The degree splitting graph of G, denoted by DS(G), is
obtained from G by adding vertices d1, d2, ..., dt and joining the vertex di to
each vertex of Di for 1 ≤ i ≤ t.

For a graph G = (V, E), let Ai denote the set of vertices in G having degree i,
0 ≤ i ≤ ∆(G), A1∪A2∪ . . .∪A∆(G) = V(G) and A1∩A2∩ . . .∩A∆(G) = ∅ . The
complete degree splitting graph of a graph G is the graph CDS(G) obtained
from the graph G by adding new vertices v

′
i corresponding to each set Ai in

G and joining v
′
i to all vertices of Ai.

Example 1 Consider the tree T depicted in the following figure. The degree
splitting graph and the complete degree splitting graph of the tree T are shown
in the Figure 1.

This paper aims to discuss the zero forcing number of the degree splitting
graph DS(G) and the complete degree splitting graph CDS(G) of a graph G.
For more definitions on graphs refer to [3]. For a detailed study of zero forcing
refer to [11, 6, 7].

Proposition 1 The zero forcing number can be easily determined for the fol-
lowing degree and complete degree splitting graphs:
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Tree T 

Degree Splitting tree  DS(T) 

Complete Degree Splitting tree  CDS(T) 

Figure 1:

• For Pn, a path on n ≥ 5 vertices, Z[DS(Pn)] = Z[CDS(Pn)] = 3.

• For Cn a cycle on n ≥ 3 vertices, Z[DS(Cn)] = Z[CDS(Cn)] = 3.

If G is a totally disconnected graph, then the degree splitting graph of G is
the star graph. By using this fact we have the following

Proposition 2 If G is a totally disconnected graph with at least two vertices,
then Z[DS(G)] = Z[CDS(G)] = n−1, where n is the number of vertices of the
graph G.

Theorem 3 Let G be any simple graph of order n ≥ 2 with Z(G) = k and
let t be the number of vertices introduced in G to construct DS(G). Then
Z[DS(G)] ≤ k+ t.

Proof. With out loss of generality assume that G is a simple graph of order
n ≥ 2 and let Z be an optimal zero forcing set of G with vertices {v1, v2, . . . , vk}.
The degree splitting graph DS(G) of G is obtained from G by taking new ver-
tices d1, d2, . . . , dt and joining it to each Di. Consider the degree splitting
graph DS(G) and color the vertices d1, d2, . . . , dt black. Since Z is a zero forc-
ing set of G and d1, d2, . . . , dt are black vertices, {v1, v2, . . . , vk}∪{d1, d2, . . . , dt}
forms a zero forcing of DS(G). Hence the result follows. �
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The above proof remains valid for the complete degree splitting graph
CDS(G). Therefore we have the following

Theorem 4 Let G be any simple graph of order n ≥ 2 with Z(G) = k and
let t be the number of vertices introduced in G to construct CDS(G). Then
Z[CDS(G)] ≤ k+ t.

Corollary 5 Let G be the degree splitting graph of the cartesian product of
Pn with Pm, n ≤ m. Then Z(DS(Pn�Pm)) ≤ n+ 3.

We recall the following result from [9] to prove the next result.

Theorem 6 [9] Let G1 and G2 be two connected graphs. Then Z(G1 ∨G2) =
min{|G2|+ Z(G1), |G1|+ Z(G2)}.

Theorem 7 Let G be a regular graph of order n > 1 and let Z(G) = k, k > 1
be a positive integer. Then Z(DS(G)) = k+ 1.

Proof. Assume that G is a regular graph. The graph DS(G) is obtained from
G by taking a new vertex v and joining v to all other vertices in G that is,
DS(G) = G ∨ H , where H is a graph with a single vertex v. Therefore,
Z(H) = 1. We have from theorem 6,

Z(G∨H) = min{|H|+ Z(G), |G|+ Z(H)} = min{1+ k, n+ 1} = 1+ k.

�

Now we give special attention to the zero forcing number of the regular
graphs considered in [11]. We recall the following results from [11].

Theorem 8 [11]

(i) For the hypercube Qn, Z(Qn) = 2n−1.

(ii) If G is the prism graph CLn, then Z(G) = 4.

(iii) If G is the Petersen graph, then Z(G) = 5.

(iv) If G is the Complete bipartite graph Km,n, then Z(G) = m+ n− 2.

The following results are the immediate consequence of the above two the-
orems

Corollary 9 (i) If G is the Petersen graph, then Z(DS(G)) = Z(G)+1 = 6.
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(ii) If G is the complete bipartite graph Kn,n , n ≥ 2, then Z(DS(G)) =
2n− 1.

(iii) If G is the degree splitting graph of the prism graph CLn, then Z(G) = 5.

(iv) If G is the degree splitting graph of the n-regular Hypercube graph Qn,
then Z(G) = 2n−1 + 1.

If G is a regular graph, then we have the following:

Corollary 10 Let G be a regular graph and let Z(G) = k. Then Z[DS(G)] =
Z[CDS(G)] = k+ 1.

We use the following observation from [11] to prove the next proposition.

Observation 11 [11] For any simple graph G, δ(G) ≤ Z(G), where δ(G)
denote the minimum degree of G.

The degree splitting graph of the cycle Ck, is known as the wheel graph Wn,
where n = k+ 1.

Proposition 12 If G is the wheel graph Wn on n vertices, then Z[DS(G)] =
Z[CDS(G)] = 4.

Proof. Let G be the wheel graph Wn on n vertices. Then δ[DS(G)] = 4, and
we have from Observation 11

4 ≤ Z(DS(G)). (1)

Since DS(G) is a graph obtained from G by taking a single vertex v and
joining v to all vertices of the cycle Ck. From Proposition 1 and Theorem 3
we conclude that

Z(DS(G)) ≤ Z(Wn) + 1 = 4. (2)

Hence from Equatins (1) and (2) the result follows. �

Proposition 13 If G is the star graph K1,n on n + 1 vertices, where n ≥ 2,
then Z[DS(G)] = Z[CDS(G)] = n.

Proof. The degree splitting graph of the star graph is the complete bipartite
graph K2,n, in [11], the AIM group observed that Z(K2,n) = 2 + n − 2 = n.
Therefore the result follows. �

In the next Proposition we consider complete graphs of order n. In [11] the
AIM group observed that for the complete graph Kn, Z(Kn) = n − 1. Using
this fact and considering that the degree splitting graph of Kn is Kn+1, we have
the following:
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Proposition 14 For a complete graph of order n, Z[DS(Kn)] = n.

We recall the following result from [11].

Proposition 15 [11] For the complete graph Kn of order n ≥ 2 and for the
path Pk of order k ≥ 2, Z(Kn�Pk) = n.

Now we consider the degree splitting graph of the ladder graph and find its
zero forcing number. The cartesian product graph Pn�K2 is known as the
ladder graph.

Proposition 16 Let G be the degree splitting graph of the ladder graph Pn�K2
with n ≥ 4 vertices. Then Z(G) = 4.

Proof. We have from Proposition 15, Z(K2�Pk) = 2. Assume that G be the
degree splitting graph of K2�Pk. The degree splitting graph of K2�Pk contains
two newly introduced vertices and hence t = 2. Therefore, from Theorem 4

Z(G) ≤ Z(K2�Pk) + 2 = 4. (3)

Consider the n-ladder graph as Ln = Pn�K2. Let v1, v2, . . . , vn be the ver-
tices of the path Pn in Ln and v ′1, v

′
2, . . . , v

′
n be the corresponding vertices of

v1, v2, . . . , vn in Ln. Let B1 = {v1, v
′
1, vn, v

′
n} be the set of vertices of degree 2

in Ln and let B2 = {v2, v3, . . . , vn−1, v
′
2, v

′
3, . . . , v

′
n−1} be the set of vertices of

degree 3 in Ln. Consider the graph G ≡ DS(Ln). Let A1 = {B1∪{a1}} be the set
of vertices in G with deg(a1) = 4 and A2 = {B2∪{a2}} with deg(a2) = 2(n−2).

To prove the reverse part assume that there exist a zero forcing set consist-
ing of three vertices u, v and w. Degree of each vertex in G is at least three,
therefore, to force at least one vertex it is necessary that uv and vw should
form edges in G.

Case 1 Assume that the vertices u, v and w are in A2. In A2 each vertices
have degree at least four, therefore u, v and w does not form a zero forcing
set, a contradiction.

Case 2 Assume that the vertices u and v are in A2 and the vertex w is
in A1. In this case u and v have degree at lest four and w has degree three
therefore, u, v and w does not form a zero forcing set, a contradiction.

Case 3 Assume that the vertices u and v are in A1 and the vertex w is in
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A2. u = v1, v = v2 and w = v ′1. Now v1 forces the vertex a1 and v ′1 forces the
vertex v ′2 after this forcing, no more color changing is possible, a contradiction.

Case 4 Assume that the vertices u, v and w are in A1. We have the fol-
lowing two sub cases.

Subcase 4.1 u = v1, v = v ′1 and w = a1. Now v1 forces v2 and v ′1 forces
v ′2 after this forcing, no more color changing is possible, a contradiction.

Subcase 4.2 u = v1, v = a1 and w = vn. In this case deg(u) = 3, deg(v) = 4
and deg(w) = 3 and each of these vertices have two white neighbors, color
changing is not possible, a contradiction.
Hence

4 ≤ Z(G). (4)

Therefore, from (3) and (4) the result follows. �

2 Classes of graphs with Z[DS(G)] < k+ t
In this section, we study simple graphs with Z[DS(G)] < k+t, where Z(G) = k
and t be the newly introduced vertices in DS(G). Let G be the path P4 and
DS(P4) be the degree splitting graph of P4 as shown in Figure 2. Then the
black vertices depicted in Figure 2 will act as a zero forcing set for DS(P4)
and hence, ZDS(P4) = 2 < 1+ 2.

Figure 2:

Example 2 Let G ≡ DS(C5 ◦ K1) be the graph depicted in Figure 3. One can
easily verify that the set {v7, v4, v8, v9} forms a zero forcing set since there is no
smaller zero forcing set exist for the graph G, therefore, Z(G) = 4. Here v1 and
v10 are the newly introduced vertices in C5 ◦ K1 to form DS(C5 ◦ K1) , therefore
t = 2. We have from [11], Z(C5◦K1) = k = 3. Therefore, Z(G) = 4 < k+t = 5.

Proposition 17 If G is the complete bipartite graph Km,n, where m,n ≥ 2
and m 6= n, then Z(DS(G)) = m+ n− 1.
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Figure 3:

Proof. Without loss of generality assume G is the complete bipartite graph
Km,n and H = DS(G). Assume that we have a zero forcing set Z of H con-
sisting of m + n − 2 vertices. Then the number of white vertices in H is
m+n+ 2− (m+n− 2) = 4. Now we divide the vertex set of H into four sets
A,B,C and D as depicted in Figure 4. Where A = {u}, B = {u1, u2, . . . , um},
C = {v1, v2, . . . , vn} and D = {v}. Assume that the four white vertices are dis-
tributed among the sets A,B,C and D.

Claim 1. If H has a zero forcing set, then the total number of white vertices
in the set B will never exceed one. On the contrary assume that there exist
two white vertices ui and uj in the set B. Then for all vertices vi, 1 ≤ i ≤ n in
the set C, the open neighborhood of N(vi) contains two white neighbors in the
set B also the vertex u will never force the vertices ui and uj. Therefore, color
changing rule is not applicable in this case, a contradiction to our assumption
that there exist two white vertices ui and uj in the set B.

Claim 2. If H has a zero forcing set, then the total number of white vertices
in the set C will never exceed one. On the contrary assume that there exist
two white vertices vi and vj in the set C. Then for all vertices ui, 1 ≤ i ≤ n in
the set B, the open neighborhood of N(ui) contains two white neighbors in the
set C also the vertex v will never force the vertices vi and vj. Therefore, color
changing rule is not applicable in this case, a contradiction to our assumption
that there exist two white vertices vi and vj in the set C.

Now assume that we have distributed the white vertices one each in all sets
A,B,C and D. Immediately, we can see that any black vertices in the set B
and the set C have two white neighbors also the vertices u and v are white,
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color changing rule is not applicable, a contradiction to our assumption that
there exist a zero forcing set in H consisting of m+ n− 2 vertices. Therefore,

Z(DS(G)) ≥ m+ n− 1. (5)

Figure 4:

To prove the reverse part consider the set E = {u2, u3, . . . , um, v2, v3, . . . , vn, v}

of vertices from the Figure 4. Color the vertices in the set E as black. Clearly
the vertex v� v1, v1 � u1, and u1 � u. Now the set E forms a zero forcing
set and |E| = m− 1+ n− 1+ 1 = m+ n− 1. Therefore,

Z(DS(G)) ≤ m+ n− 1. (6)

Hence from (5) and (6) the result follows. �

The following Lemma can be found in [7].

Lemma 1 [7] Let G = (V, E) be a connected graph with a cut-vertex v ∈ V(G).
Let C1, . . . , Ck be the vertex sets for the connected components of G − v, and

for 1 ≤ i ≤ k, let Gi = G[Ci ∪ {v}]. Then Z(G) ≥
k∑
i=1

Z(Gi) − k+ 1.

Definition 1 The Pineapple graph Knm is obtained by coalescing any vertex of
the complete graph Km with the star K1,n at the vertex of degree n. The number
of vertices in Knm is m+ n, number of edges in Knm is m2−m+2n

2 . These graphs
were defined and studied in [12] and [10].
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The authors in [12] and [10] studied about the spectral properties of Pineapple
Graphs.

We recall the following results from [13].

Proposition 18 [13] If G is the Pineapple graph Knm with n ≥ 2,m ≥ 3, then
Z(G) = m+ n− 3.

Proposition 19 If G is the Pineapple graph K1m with m ≥ 3, then Z(G) =
m− 1.

Proposition 20 If G is the Pineapple graph Knm with m ≥ 3 and n ≥ 1, then
Z(DS(Knm)) = m+ n− 2.

Proof. Case 1 Without of loss of generality assume that n = 1. Let DS(K1m)
be the degree splitting graph of K1m and let v be the newly introduced vertex in
DS(K1m) to construct it. Let u

′
be the coalesced vertex of the complete graph

Km with the star K1,n in K1m and let u be the corresponding vertex of u
′

in
DS(K1m). Let w be the pendant vertex in DS(K1m) and let x be an arbitrary
vertex of DS(K1m) other than u, v and w. Color all vertices except u, x and w
in DS(K1m) as black. Clearly the vertex v� x, x� u and u� w and hence

Z(DS(K1m)) ≤ m− 1. (7)

To prove the reverse part we use the following
Z(Km+1 − e) = m− 1 (A)
Z(K2) = 1. (B)

Now Lemma 1, (A) and (B) yields,

Z(DS(K1m)) ≥
2∑
i=1

Z(Gi) − 2+ 1 = Z(Km+1 − e) + Z(K2) − 1 = m− 1. (8)

Thus the result follows from (7) and (8).

Case 2 Assume that n = 2. Let DS(K2m) be the degree splitting graph of K2m.
Let u

′
be the coalesced vertex of the complete graph Km with the star K1,n in

K1m and let u be the corresponding vertex of u
′

in DS(K2m). Let w1, w2 and w3
be the vertices of degree two in DS(K2m). The subgraph induced by the vertices
w1, w2, w3 and u forms a cycles C4 in DS(K2m). Let x be an arbitrary vertex of
DS(K2m) other than w1, w2, w3 and u. Color all vertices except w2, w3, x and
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u in DS(K2m) black. Let y be an arbitrary black colored vertex other than w1
in DS(K2m). Clearly y� x, x� u , u� w3 and w3 � w2, hence

Z(DS(K2m)) ≤ m. (9)

To prove the reverse inequality use the the following
Z(K2,2) = 2. (C)

Now Lemma 1, (A) and (C) yields the following,

Z(DS(K2m)) ≥
2∑
i=1

Z(Gi)−2+1 = Z(Km+1−e)+Z(K2,2)−1 = m−1+2−1 = m.

(10)
Therefore, from (9) and (10) the result follows.

Case 3 Assume n ≥ 3. Let DS(Knm) be the degree splitting graph of Knm.
Let u

′
be the coalesced vertex of the complete graph Km with the star K1,n in

Knm and let u be the corresponding vertex of u
′

in DS(Knm). Similarly let t be
the newly introduced vertex in DS(Knm) obtained by joining the pendant ver-
tices in Knm. Let w1, w2, . . . , wn be the vertices of degree two in DS(Knm). The
subgraph induced by the vertices {w1, w2, . . . , wn} ∪ {t, u} forms the complete
bipartite graph K2,n in DS(Knm).

Let x be the newly introduced vertex in DS(Knm) other than the vertex t
in DS(Knm). Let y be a vertex in DS(Knm) other than w1, w2, . . . , wn, u, x and
t. Color all vertices except the vertices wn, t, y and u in DS(Knm) as black.
Clearly x� y, y� u, u� wn , wn � t hence

Z(DS(Knm)) ≤ m+ n− 2. (11)

To prove the reverse inequality use the the following result from [13]
Z(Km,n) = m+ n− 2. (D)

Now Lemma 1, (A) and (D) yields the following,

Z(DS(Knm)) ≥
2∑
i=1

Z(Gi) − 2+ 1 = Z(Km+1 − e) + Z(Km,n) − 1

= (m− 1) + (2+ n− 2) − 1 = m+ n− 1.

(12)

Therefore, from (11) and (12) the result follows. �
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3 Conclusion and open problems

This paper deals with the problem of determination of the zero forcing number
of graphs and their degree splitting graphs. Characterization of classes graphs
for which Z[DS(G)] = k+ t is an open problem.
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