
Acta Univ. Sapientiae, Informatica 12, 1 (2020) 51–69

DOI: 10.2478/ausi-2020-0004

Word pattern prediction using Big Data

frameworks

Bence SZABARI
Eötvös Loránd University

Budapest, Hungary
email: n0qsdc@inf.elte.hu

Attila KISS
J. Selye University
Komárno, Slovakia

email: kissae@ujs.sk

Abstract. Using software applications or services, which provide word or
even word pattern recommendation service has become part of our lives.
Those services appear in many form in our daily basis, just think of our
smartphones keyboard, or Google search suggestions and this list can be
continued. With the help of these tools, we can not only find the suitable
word that fits into our sentence, but we can also express ourselves in a
much more nuanced, diverse way. To achieve this kind of recommendation
service, we use an algorithm which is capable to recommend word by word
pattern queries. Word pattern queries, can be expressed as a combination
of words, part-of-speech (POS) tags and wild card words. Since there are
a lot of possible patterns and sentences, we use Big Data frameworks
to handle this large amount of data. In this paper, we compared two
popular framework Hadoop and Spark with the proposed algorithm and
recommend some enhancement to gain faster word pattern generation.

1 Introduction

Expressing ourselves in writing can be a challenging task, especially if we are
not a native speaker of the target language. Fortunately, nowadays a lot of

Computing Classification System 1998: H.2, C.2
Mathematics Subject Classification 2010: 68U15
Key words and phrases: word-pattern, word-prediction, big data, hadoop, spark, nlp,
map reduce, snappy, lz4, data compression

51

https://www.elte.hu/
https://www.elte.hu/en/
https://www.elte.hu/en/
mailto:n0qsdc@inf.elte.hu
https://people.inf.elte.hu/kiss/
https://www.ujs.sk/en
https://www.ujs.sk/en
mailto:kissae@ujs.sk

52 B. Szabari, A. Kiss

utilities can help us to express ourselves in a very diverse way, for example
smart phone keyboards with word recommendation, online synonym dictio-
naries, or even the Google Search engine has the functionality to recommend
the proper topic.

In this article, we will focus on word generation or to be more precise word
pattern generation, which means that users can express their thoughts and
ideas with the combination of word(s), part-of-speech (POS) tags [11] and
with any arbitrary word (wild card word). Those kind of queries are called
word pattern queries. For example:

VB ∗ love

is a word pattern query that needs to satisfy the following requirements: a
verb at the VB position, any arbitrary word at * position then word ’love’.
The proper answer to that query is consists of the matched word list to the
given pattern along with their relative frequencies of appearance in a large
corpora.

In general, construction of word patterns can take a considerable amount of
time, since there are a huge number of potential word patterns can be created
based on a text, that contains just a few or even millions of rows.

Based on Erin Gilheany’s comparison idea [1] and Kritwara Rattanaopas’
data compression improvement [2], we were also interested in the efficiency
of generating word patterns, therefore we made different experiments with
Apache Hadoop [9] and Apache Spark [10] since both of them allows dis-
tributed processing of large data sets. We also made suggestions, to make the
pattern generation faster in case of Hadoop. For this, we applied the Hadoop
Native Library that can use Snappy and LZ4 data compression algorithms to
compress the intermediate output of the mapper task. With the help of those
compression codecs, we were able to achieve faster pattern generation.

2 Big data frameworks and paradigms

As we mentioned above, we have to process large amount of text files with
thousand and millions of lines therefore we use Big Data frameworks like
Apache Hadoop and Apache Spark.

2.1 Hadoop

Apache Hadoop [9] is a bundle of open-source software utilities that can
solve problems involving large amounts of data and computation using a net-

Word pattern prediction 53

work of many computers which are built from commodity hardware. It pro-
vides a framework for distributed storage and processing of big data using the
MapReduce programming model.

The main parts of Hadoop are the distributed storage system called Hadoop
Distributed File System (HDFS in short), and the processing part which is
using MapReduce programming model, and YARN (Yet Another Resource
Negotiator). Hadoop splits files into large block and distributes them across
nodes in the cluster, then it sends the runnable code to the nodes to process
data in parallel.

HDFS [13] is a distributed file system designed to run on commodity hard-
ware. It has many similarities with existing distributed file systems, however it
has also some key differences to the others. HDFS is highly fault-tolerant and
is designed to be deployed on low-cost hardware which makes it economical.
It also provides high throughput access to application data and is suitable for
applications that have large data sets.

YARN (Yet Another Resource Negotiator) [12] is a cluster management
system. It has been part of Apache Hadoop since v2.0. With the help of YARN
arbitrary applications can be executed on a Hadoop cluster. Therefore, the
application has to consist of one application master and an arbitrary number of
containers. Latter are responsible for the execution of the application whereas
the application master requests container and monitors their progress and
status.

In order to execute these applications, YARN consists of two component
types:

1. The ResourceManager is unique for a complete cluster. Its main task
is granting the requested resources and balancing the load of the cluster.
Furthermore, it starts the application master initially and restarts it in
case of a failure.

2. On each computing node, one NodeManager is executed. It starts and
monitors the containers assigned to it as well as the usage of its resources,
i.e., CPU usage and memory consumption

2.2 MapReduce

MapReduce [8] is a programming model and an associated implementation for
processing and generating big data sets with a parallel, distributed algorithm
on a cluster.

A MapReduce program is composed of a map procedure (or method), which
performs filtering and sorting, and a reduce method, which performs a sum-

54 B. Szabari, A. Kiss

mary operation. The ”MapReduce System” (also called ”framework”) orches-
trates the processing by marshalling the distributed servers, running the vari-
ous tasks in parallel, managing all communications and data transfers between
the various parts of the system, and providing for redundancy and fault tol-
erance.

A MapReduce framework is usually composed of three operations:

1. Map each worker node applies the map function to the local data, and
writes the output to a temporary storage. A master node ensures that
only one copy of the redundant input data is processed.

2. Shuffle worker nodes redistribute data based on the output keys (pro-
duced by the map function), such that all data belonging to one key is
located on the same worker node.

3. Reduce worker nodes now process each group of output data, per key,
in parallel.

MapReduce allows for the distributed processing of the map and reduction
operations. Maps can be performed in parallel, provided that each mapping
operation is independent of the others; in practice, this is limited by the num-
ber of independent data sources and/or the number of CPUs near each source.

The Map and Reduce functions of MapReduce are both defined with respect
to data structured in (key, value) pairs. Map takes one pair of data with a type
in one data domain, and returns a list of pairs in a different domain:

map(k1, v1)→ list(k2, v2)

The Map function is applied in parallel to every pair (keyed by k1) in the
input dataset. This produces a list of pairs (keyed by k2) for each call. After
that, the MapReduce framework collects all pairs with the same key (k2) from
all lists and groups them together, creating one group for each key.

The Reduce function is then applied in parallel to each group, which in turn
produces a collection of values in the same domain:

reduce(k2, list(v2))→ list((k3, v3))

Thus the MapReduce framework transforms a list of (key, value) pairs into
another list of (key, value) pairs. This behavior is different from the typical
functional programming map and reduce combination, which accepts a list
of arbitrary values and returns one single value that combines all the values
returned by map.

Word pattern prediction 55

2.3 Spark

Apache Spark [10] is an open-source distributed general-purpose cluster-computing
framework that can do in-memory data processing, while providing the ability
to develop applications in Java, Scala, Python or even in R. Spark provides
four main submodules which are SQL, MLib for machine learning, GraphX
and Streaming.

In this paper, we focus on the SQL module, especially on the new data
structure called DataFrame [16] which has been added in Spark 1.6. Dataframe
was built on top of the previously used RDDs (Resilient Distributed Dataset)
therefore, it is combining the benefits of RDDs (strong typing, ability to use
lambda functions) and the benefits of Spark SQL’s optimized execution engine.

It is also possible to use functional transformation such as map, flatMap,
filter, etc. to manipulate these kind of datasets. Using those mapper functions
are essentials during the word pattern generations.

2.4 Hadoop vs Spark

Spark is developed to run on top of Hadoop and this is an alternative to the
traditional MapReduce model. The key differences are the following:

• Spark stores, a process data in-memory while Hadoop using the disk

• Hadoop uses the MapReduce paradigm and Spark uses the distributed
data structure called datasets which are built on RDDs

• Hadoop merges and partitions shuffle spill files inte one big files, while
Spark doesn’t

• The MapReduce can be inefficient when the job has to reuse the same
dataset, while Spark can hold the data in memory for efficient reuse

3 Word recommendation

3.1 Word recommendation problem

The applied method can help to choose the proper words in a certain context,
by recommending a list of suitable words that can fit in the given words. A
word pattern query is an ordered sequence of specific word(s), POS tag(s),
and wild card word(s). For example:

VB ∗ love

56 B. Szabari, A. Kiss

For each word pattern query, we want to get a list of frequently used words
that match the POS tags. Furthermore, if we include the relative frequencies
of the matched words that can help you to decide the right phrase for you.

The conventional language models can suggest the most appropriate words
that can appear at a specific position of a sentence or phrase. However, those
models are usually inappropriate for a word pattern query service. The prob-
lem with those models:

• they are not built to estimate the probability distributions for more than
one words

• they are not able to understand the usage of POS tags

Therefore, they can not have any relationships between POS tags and words.
In this case, we would like to model the following probability distribution
p(Wt|Wc) for matching word list Wt given context words Wc:

p(Wt|Wc) =
C(Wt,Wc)

C(Wc)

where Wt denotes a list of words corresponding to POS tags in a word pat-
tern query, C(Wt,Wc) indicates the number of sentences that match the word
pattern query with the words of Wt in the positions of POS tags, and C(Wc)
indicates the total number of sentences that match with the word pattern
query. Wt part can be greater than 1, i.e., |Wt| > 1.

3.2 Used method for word recommendation

To create word pattern queries we used the presented algorithm in [3], which
generates word patterns along with their associated information earlier on.

Word patterns can contain words, POS tags and wild card words denoted
by a symbol (*). The wild card word can be any English word, so it can be
useful when we are only focus on the other words within the word pattern, as
they are just placeholders.

3.3 Workflow

As an overview, to construct word patterns the used method consists of the
following steps:

Word pattern prediction 57

Figure 1: Word pattern generation process

3.4 Preprocessing and tagging

To be able to create word patterns, first we have to transform the input sample
texts. It may occur the sample texts contain non-English words or characters
in this case they need to be removed. Numbers and punctuation marks can
remain in the text.

After the transform phase has been finished, we are finally able to create
POS Tagged sentences, using the Stanford POS Tagger [17]. This tool can
read text and assign parts-of-speech to each word or token, e.g. noun, verb,
preposition and so on. The possible POS Tags which is supported by tagger
are listed in Table 2.

For example, if we have the following sentence part, after the preprocessing:
”mathematical notation widely used in physics and other sciences avoids

many ambiguities compared to expression in natural language however for
various reasons several lexical syntactic and semantic ambiguities remain”

Stanford POS tagger will create the output as shown below:
”mathematical/JJ notation/NN widely/RB used/VBN in/IN physics/NN

and/CC other/JJ sciences/NNS avoids/VBZ many/JJ ambiguities/NNS com-
pared/VBN to/TO expression/NN in/IN natural/JJ language/NN however/RB
for/IN various/JJ reasons/NNS several/JJ lexical/JJ syntactic/NN and/CC
semantic/JJ ambiguities/NNS remain/VBP”

3.5 Generating word patterns

After we got the tagged sentences, the used method creates the word patterns
which consist of words, POS tags, and the wild card word symbol (*). It
generates all word patterns for each n-gram of the POS-tagged sentences, and
then aggregates them to get the information for word patterns.

58 B. Szabari, A. Kiss

The possible word patterns which can be generated from n-grams are listed
in Table 3. To create the possible word patterns, we have to define constraints
to reduce the amount of patterns to get a manageable amount of them. There-
fore, we apply the following rules: there is at least one word in a pattern, if
there is a wild card within the pattern it does not appear in the first or the
last position in a pattern. Also, we reduce the number of possible n-grams to
5 for the reasons mentioned above.

After all word patterns of k-grams

k ∈ [2, 5]

are created for the provided input text, the used method clusters them into
groups to have the same word pattern in each group. For each group the
sentence Ids which have the same word lists are grouped together and their
count is computed.

We are interested in the most frequent word list for each word patterns to be
able to create a word recommendation service, so the used method constructs
a word pattern database which maintains the frequent word lists along with
their corresponding sentence Ids and their frequency for each word pattern.

3.6 Map reduce solution

The method use two cycles of Map-Reduce tasks. In the first Map-Reduce
phase, the mapper receives sentences with their Ids and produces the key-
value pairs where the key is made of a word pattern and its corresponding
word list while the value is the sentence Id. Futhermore, the reducer of the
first cycle aggregates the sentence Ids of word patterns generated by mapper.
In the second cycle, the mapper computes the frequencies of the combination
of a word pattern and its word lists, and then the reducer aggregates the
results and also retains the top k-th word lists with the highest frequencies.

The following procedure is the algorithm for the first mapper in the first
phase. It creates the word patterns for 2-grams to 5 grams for each sentence.
The cands variable holds the possible word patterns, so cands[n][i][j] indicates
the j-th value for the i-th word list of the n-gram.

In the first mapper-phase, we process POS tagged lines (assuming that we
have the sentence Ids) and as an output the algorithm will create a pairs of

([word pattern,word list], sentence id)

where the word pattern is generated based on the possible word patterns de-
scribed in Table 3, while word-list contains the matched words corresponding
to the pattern and the value will be the sentence id.

Word pattern prediction 59

Algorithm 1: Mapper phase 1

Input : (sentence id, sentence with POS tags)
Output: ([word-pattern, word-list], sentence id)
value← sentenceId;
tokenize the POS tagged sentence, into a collection of tokens;
tokens← t1, t2, . . . t3;
m← tokens.size;
for n← 2 to 5 do

for s← 0 to m−n do
for i← 0 to cands[n].size− 1 do

pattern← [];
metWords← [];
for j← 0 to n− 1 do

word← word at (s+j) th position of tokens;
pos← POS Tag at (s+j) th position of tokens;
// j-th position is a word Tag in the pattern

if cands[n][i][j] = ’w’ then
pattern.add(word);

// j-th position is a POS Tag in the pattern

else if cands[n][i][j] = ’p’ then
pattern.add(pos);

// j-th position is a wildcard in the pattern

else
pattern.add(WC);

end
if cands[n][i][j] > ’0’ and pos is a legal tag then

metWords.add(word);

end
if metWords.isEmpty() then

metWords.add(NONE);
key←pattern + ”;” + metWords;
emit(key, value)

end

end

end

3.7 Example

Let’s take an example, in that case when we have the following short sentence:
lincoln/NN practiced/VBD law/NN. On the next page, we present some sample
output. For the sake of simplicity and transparency, we categorized the output
by n-grams and omitted the sentence ids.

60 B. Szabari, A. Kiss

lincoln/NN practiced/VBD law/NN

2-grams

VBD, law

NN, practiced

practiced, law

lincoln, VBD

practiced, NN

lincoln, practiced

3-grams

lincoln, VBD, law

lincoln, practiced, NN

NN, practiced, NN

lincoln, practiced, law

lincoln, * , NN

lincoln, practiced, law

lincoln, VBD, NN

NN, practiced, law

lincoln, *, law

NN, VBD, law

NN, *, law

Figure 2: Word patterns example

3.8 Reducer phase 1

The first reducer phase aggregates the sentence ids according to the values of
(pattern, word-list). It also removes the duplicated occurences of the same id
for the same key.

3.9 Mapper phase 2

The second mapper calculates the relative frequencies of the different matched
word list and also extract the pattern from the old key to use as a new key.

Word pattern prediction 61

Algorithm 2: Reducer phase 1

Input : pairs of ((pattern, word list), sentence id)
Output: ([pattern, word-list]), sentence-id-list)
key← [pattern,word list];
value← sentence id list;
emit(key, value)

Therefore, we will get pairs like this:

word pattern→ (f1, w1, sid1), . . . , (fn, wn, sidn)

where fi denotes the ith relative frequency, wi the ith matched word list, and
sidi is the ith the sentence id.

Algorithm 3: Mapper phase 2

Input : ([pattern, word-list]), sentence-id-list)
Output: pattern, [frequency, word list, sentence id list])
if word-list.isEmpty() then

word list.add(NONE);
key←pattern;
value← [frequency,word list, sentence id list];
emit(key, value)

3.10 Reducer phase 2

In the last reducer phase we remain the top k-th (in our example 10) matched
word list with the highest relative frequency. The received result can be the
basis of a word pattern database.

4 Hadoop native library

Hadoop can support native libraries [14] out of the box, which includes com-
ponents like compression codecs (e.g.: bzip2, lz4, snappy and zlib), native io
utilities for Centralized Cache Management in HDFS or even CRC32 checksum
implementation.

From this library, we mainly focus on the compression codecs that we can use
to compress the Mapper job’s intermediate output in a Hadoop MapReduce.

62 B. Szabari, A. Kiss

Algorithm 4: Reducer phase 2

Input : pattern, [[frequency, word-list, sentence-id-list] . . .]
Output: pattern, [[frequency, word-list, sentence-id-list] . . .] (top

k-th)
key←pattern;
value← [];
list← [[frequency,word− list, sentence− id− list] . . .];
sort the list by frequency, in decreasing order;
put the first k-th element from list to value;
emit(key, value)

Figure 3: Computing Stages of the MapReduce model [4]

4.1 Compression codecs

4.2 Snappy

Snappy (previously known as Zippy) [7] is a fast data compression and de-
compression library written in C++ by Google based on ideas from LZ77 and
open-sourced in 2011. It does not aim for maximum compression, or compati-
bility with any other compression library; instead, it aims for very high speeds

Word pattern prediction 63

and reasonable compression. The compression ratio is 20–100% lower than
gzip.

4.3 Lz4

LZ4 [5] is a lossless data compression algorithm that is focused on compres-
sion and decompression speed. It belongs to the LZ77 family of byte-oriented
compression schemes.

The LZ4 algorithm represents the data as a series of sequences. Each se-
quence begins with a one-byte token that is broken into two 4-bit fields. The
first field represents the number of literal bytes that are to be copied to the
output. The second field represents the number of bytes to copy from the al-
ready decoded output buffer (with 0 representing the minimum match length
of 4 bytes). A value of 15 in either of the bitfields indicates that the length is
larger and there is an extra byte of data that is to be added to the length. A
value of 255 in these extra bytes indicates that yet another byte to be added.
Hence arbitrary lengths are represented by a series of extra bytes containing
the value 255. The string of literals comes after the token and any extra bytes
needed to indicate string length. This is followed by an offset that indicates
how far back in the output buffer to begin copying. The extra bytes (if any)
of the match-length come at the end of the sequence.

5 Experiments

As we introduced, we used Apache Hadoop and Apache Spark to measure
execution times generating word patterns. During these experiments we also
applied several data compression libraries to achieve faster pattern generation.
To measure those generation times and see how efficient can be a selected
profile we used Monte Carlo method. [6] In our experiments, the following sce-
narios were compared: standard Hadoop Mapreduce job without any compres-
sion codecs, Hadoop Mapreduce job with Snappy compression codec, Hadoop
Mapreduce job with LZ4 compression codec, and standard Spark job using
dataframes. Furthermore, we used Wikipedia dumps to provide a suitable in-
put for our measurements. [18]

5.1 Experiment settings

The experiments were run on a 21 node cluster with the following configura-
tion: master node has 32 Gb RAM, 12 vCPU while slaves have 15 Gb ram, 8

64 B. Szabari, A. Kiss

vCPU. In both cases, Yarn was used as a resource manager and its configura-
tion Node Managers were set to allocate 13 Gb for Containers. The Mapper
Container’s and the Reducer Container’s memory size size were set to 4 Gb.
Additional configuration and settings, and even more technical detail can be
found at the project git repository [15]

5.2 Results

In the first measurements we compared the standard Hadoop MapReduce jobs
against MapReduce jobs with compression codecs.

0

2
0
,0
0
0

4
0
,0
0
0

6
0
,0
0
0

8
0
,0
0
0

1
0
0
,0
0
0

0

2,000

4,000

6,000

8,000

No. of lines

E
x
ec

u
ti

on
ti

m
es

(s
)

Hadoop
Snappy

LZ4

Figure 4: Hadoop Word pattern generation

Either using LZ4 or Snappy, both gave us significantly better results, but
Snappy was the most spectacular codec for improvement. Therefore we con-
clude that, using those compression libraries can reduce the overhead during
the word pattern generation and we can get better execution times. In the
next phase, we used the Spark with Scala implementation of the word pattern
generation and compared against a standard Hadoop job.

As we can see there is a significant difference between the two run times. In
the last measurement, we compared all the previously used profile.

In summary, Snappy and the LZ4 compression codecs brought a convincing
improvement during the pattern generation. Also, using the Spark framework
was able to beat his rival, however it is still possible to have different SparkSQL
query optimization so we can reduce word pattern generation time.

Word pattern prediction 65

0

2
0
,0
0
0

4
0
,0
0
0

6
0
,0
0
0

8
0
,0
0
0

1
0
0
,0
0
0

0

2,000

4,000

6,000

8,000

No. of lines

E
x
ec

u
ti

on
ti

m
es

(s
)

Hadoop
Spark

Figure 5: Hadoop compared to Spark

No. of lines No. of words No. of unique words Hadoop Hadoop with Snappy Hadoop with LZ4 Spark

100 7045 2578 41 s 40 s 42 s 33 s
500 34 206 9351 58 s 53 s 59 s 44 s
1000 73 963 17 241 84 s 75 s 85 s 56 s
2000 143 092 28 502 124 s 108 s 119 s 44 s
4000 305 789 50 010 218 s 189 s 216 s 165 s
8000 588 912 79 933 389 s 326 s 386 s 169 s
10 000 738 533 93 828 487 s 407 s 473 s 133 s
20 000 1 497 350 151 253 1783 s 876 s 936 s 208 s
40 000 2 912 093 237 531 3450 s 2101 s 2347 s 372 s
80 000 5 858 805 374 986 7156 s 3902 s 4670 s 964 s
100 000 7 192 730 438 023 8903 s 4866 s 5741 s 962 s

Table 1: Experiment results

6 Conclusion

This paper introduced a word recommendation problem [3] where the user can
express themselves using word pattern queries that contain words, POS tags
and wild cards and as a result they get back matched word lists along with
their relative frequencies.

For this problem, we proposed several fine tuning to reduce the overhead
during the word pattern generation. To achieve this, we first introduced the
Hadoop Native Library which contains compression codecs like Snappy, LZ4,

66 B. Szabari, A. Kiss

0

2
0
,0
0
0

4
0
,0
0
0

6
0
,0
0
0

8
0
,0
0
0

1
0
0
,0
0
0

0

2,000

4,000

6,000

8,000

No. of lines

E
x
ec

u
ti

on
ti

m
es

(s
)

Hadoop
Snappy

LZ4
Spark

Figure 6: Word pattern generation summary

ZLib then we chose the first two of them, to see how they act during pattern
generation, and then we compared the Spark framework with Hadoop.

7 Future works

As we pointed out in case of Spark there is still options to get better execu-
tion times than Hadoop. For example, fine tuning the built-in Spark Catalyst
query optimizer. From the perspective of Hadoop, there are several compres-
sion codecs that we have not tested, and we used the default configuration,
therefore a more advanced configuration / profile can be a good starting point
for further examinations.

8 Acknowledgements

The project has been supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002)

This publication is the partial result of the Research & Development Oper-
ational Programme for the project ”Modernisation and Improvement of Tech-
nical Infrastructure for Research and Development of J. Selye University in
the Fields of Nanotechnology and Intelligent Space”, ITMS 26210120042, co-
funded by the European Regional Development Fund.

Word pattern prediction 67

References

[1] G. Erin. Processing time of TFIDF and Naive Bayes on Spark 2.0, Hadoop 2.6
and Hadoop 2.7: Which Tool Is More Efficient?, Msc Thesis, National College
of Ireland Dublin, 2016. ⇒52

[2] K. Rattanaopas, S. Kaewkeeree. Improving Hadoop MapReduce performance
with data compression: A study using wordcount job, 2017 14th International
Conference on Electrical Engineering/Electronics, Computer, Telecommunica-
tions and Information Technology (ECTICON). IEEE, 2017. p. 564-567 ⇒52

[3] KM. Lee, CS. Han, KI. Kim, SH. Lee, Word recommendation for English compo-
sition using big corpus data processing, Cluster Computing, (2019), 1911-1924.⇒56, 65

[4] M. Kontagora, H. Gonzalez-Velez, Benchmarking a MapReduce Environment on
a Full Virtualisation Platform, The 4th International Conference on Complex,
Intelligent and Software Intensive Systems, 433-438. 10.1109/CISIS.2010.45. ⇒
62

[5] M. Bart́ık, S. Ulbik, P. Kubalik Matěj. LZ4 compression algorithm on FPGA,
2015 IEEE International Conference on Electronics, Circuits, and Systems
(ICECS). IEEE, 2015 ⇒63

[6] RY Rubinstein, DP. Kroese, Simulation and the Monte Carlo method. Vol. 10.
John Wiley & Sons, 2016. ⇒63

[7] R Lenhardt,J Alakuijala, Gipfeli-high speed compression algorithm. 2012 Data
Compression Conference (pp. 109-118). IEEE ⇒62

[8] H. Karloff, S. Suri, S. Vassilvitskii, A model of computation for MapReduce.
Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Al-
gorithms. Society for Industrial and Applied Mathematics, 2010. ⇒53

[9] Apache Hadoop, Apache, https://hadoop.apache.org/ ⇒52
[10] Apache Spark, Apache, https://spark.apache.org/ ⇒52, 55
[11] E. Brill, A simple rule-based part of speech tagger, Proceedings of the third con-

ference on Applied natural language processing. Association for Computational
Linguistics, 1992. ⇒52

[12] Apache Yarn, Apache, https://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html ⇒53
[13] Apache HDFS docs, https://hadoop.apache.org/docs/r1.2.1/ ⇒53
[14] Hadoop Native Library, https://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-common/NativeLibraries.html ⇒61
[15] Project repository, https://gitlab.com/thelfter/word-prediction ⇒64
[16] Spark Sql, https://spark.apache.org/docs/latest/

sql-programming-guide.html ⇒55
[17] Stanford part-of-speecg tagger, https://nlp.stanford.edu/software/

tagger.html ⇒57
[18] Wikipedia dumps, https://dumps.wikimedia.org/ ⇒63

https://www.ncirl.ie/
https://www.ncirl.ie/
http://ecticon.org/
https://link.springer.com/article/10.1007/s10586-018-1916-6
https://link.springer.com/article/10.1007/s10586-018-1916-6
https://hadoop.apache.org/
https://spark.apache.org/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r1.2.1/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/NativeLibraries.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/NativeLibraries.html
https://gitlab.com/thelfter/word-prediction
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://nlp.stanford.edu/software/tagger.html
https://nlp.stanford.edu/software/tagger.html
https://dumps.wikimedia.org/

68 B. Szabari, A. Kiss

9 Appendix

Table 2: Part-of-speech (POS Tags)

CC coordinating conjunction POS possessive ending
CD cardinal number PRP personal pronoun
DT determiner PRP$ possessive pronoun
EX existential there RB adverb
FW foreign word RBR adverb, comparative
IN preposition or subordinating conjunction RBS adverb, superlative
JJ adjective RP particle
JJR adjective, comparative SYM symbol
JJS adjective, superlative TO to
LS list item marker UH interjection
MD modal VB verb, base form
NN noun, singular or mass VBD verb, past tense
NNS noun, plural VBG verb, gerund or present participle
NNP proper noun, singular VBN verb, past participle
NNPS proper noun, plural VBP verb, non-3rd person singular present
PDT predeterminer VBZ verb, 3rd person singular present
WDT Wh-determiner WP$ possessive wh-pronoun
WP Wh-pronoun WRB Wh-adverb

Table 3: Possible word pattern: w word, p POS tag, * wild card

2-gram (3 cases) w w w p p w

3-gram (10 cases) w w w w p p
p w w p * w w w p
w * w p w p w p w
w * p p p w

4-gram (32 cases) w w w w w w w p w w p w
w w p p w w * w w w * p
w p w w w p w p w p p w
w p p p w p * w w p * p
w * w w w * w p w * p w
w * p p w * * w w * * p
p w w w p w w p p w p w
p w p p p w * w p w * p
p p w w p p w p p p p w
p p * w p * w w p * w p
p * p w p * * w

Word pattern prediction 69

5-gram (100 cases) w w w w w w w w w p w w w p w
w w w p p w w w * w w w w * p
w w p w w w w p w p w w p p w
w w p p p w w p * w w w p * p
w w * w w w w * w p w w * p w
w w * p p w w * * w w w * * p
w p w w w w p w w p w p w p w
w p w p p w p w * w w p w * p
w p p w w w p p w p w p p p w
w p p p p w p p * w w p p * p
w p * w w w p * w p w p * p w
w p * p p w p * * w w p * * p
w * w w w w * w w p w * w p w
w * w p p w * w * w w * w * p
w * p w w w * p w p w * p p w
w * p p p w * p * w w * p * p
w * * w w w * * w p w * * p w
w * * p p w * * * w w * * * p
p w w w w p w w w p p w w p w
p w w p p p w w * w p w w * p
p w p w w p w p w p p w p p w
p w p p p p w p * w p w p * p
p w * w w p w * w p p w * p w
p w * p p p w * * w p w * * p
p p w w w p p w w p p p w p w
p p w p p p p w * w p p w * p
p p p w w p p p w p p p p p w
p p p * w p p * w w p p * w p
p p * p w p p * * w p * w w w
p * w w p p * w p w p * w p p
p * w * w p * w * p p * p w w
p * p w p p * p p w p * p * w
p * * w w p * * w p p * * p w
p * * * w

Received: January 31, 2020 • Revised: February 28, 2020

	1 Introduction
	2 Big data frameworks and paradigms
	2.1 Hadoop
	2.2 MapReduce
	2.3 Spark
	2.4 Hadoop vs Spark

	3 Word recommendation
	3.1 Word recommendation problem
	3.2 Used method for word recommendation
	3.3 Workflow
	3.4 Preprocessing and tagging
	3.5 Generating word patterns
	3.6 Map reduce solution
	3.7 Example
	3.8 Reducer phase 1
	3.9 Mapper phase 2
	3.10 Reducer phase 2

	4 Hadoop native library
	4.1 Compression codecs
	4.2 Snappy
	4.3 Lz4

	5 Experiments
	5.1 Experiment settings
	5.2 Results

	6 Conclusion
	7 Future works
	8 Acknowledgements
	9 Appendix

