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Abstract. This paper presents results for some vertex stress related
parameters in respect of specific subfamilies of Kneser graphs. Kneser
graphs for which diam(KG(n,k)) = 2 and k > 2 are considered. The
note establishes the foundation for researching similar results for Kneser
graphs for which diam(KG(n,k)) > 3. In addition some important ver-
tex stress related properties are stated. Finally some results for specific
bipartite Kneser graphs i.e. BK(n,1), n > 3 will be presented. In the
conclusion some worthy research avenues are proposed.

1 Introduction

It is assumed that the reader has good working knowledge of set theory. For
the general notation, notions and important introductory results in set theory,
see [3]. For the general notation, notions and important introductory results
in graph theory, see [2, 4].

Only non-trivial, finite, undirected and connected simple graphs are consid-
ered. Let Xi, 1 = 1,2,3,..., (E), k > 1 be the k-element subsets of the set,
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{1,2,3,...,n}. A Kneser graph denoted by KG(n, k), n,k € N is a graph with
vertex set,
V(KG(Tl, k)) = {Vi Vi — Xi}
and the edge set,
E(KG(TI, k)) = {Vivj . Xi N Xj = @}

Without any relation between n and k the following subfamilies of Kneser
graphs follow easily.
1. For k > n the Kneser graph has an empty vertex set implying that the edge
set is empty. Hence, for n € N the empty graph is obtained.
2. For k = 1 the Kneser graph KG(n, k) = K;, V n.
3. For k = n the Kneser graph is always a trivial graph (i.e. Ky).
4. For § <k <n the vertex set is non-empty. However, the edge set is empty
so for the permissible values of k and n the corresponding null graphs 9%,
t = (}) are obtained.
5. For n even and k = 7 a corresponding matching graph is obtained.
6. For n even and 2 <k < anz and; for n odd and 2 < k < [ 5] the subfamily
of non-trivial, connected and non-complete Kneser graphs is obtained.

Note that the author draws a distinction between an empty graph G, (both
V(G) = () and E(G) = () and a null graph H, (V(H) # 0 and E(H) = 0).
This distinction is not common in the literature. Conventionally, the 0-element
subset is not considered. However, from set theory it is known that the empty-
set is indeed a subset of any set. Therefore, it seems proper to state that
KG(n,0) is a trivial graph say, v — 0.

It follows directly from the structure of a Kneser graph that the order of a
Kneser graph is given by v(KG(n, k)) = (E) Furthermore, because vertex ad-
jacency as it relates to a k-element subset is defined without loss of generality,
a Kneser graph is inherently a degree regular graph. The number of neighbors

of any vertex v; is given by, deg(vi) = (“Ek). From the aforesaid it follows
n!

that the number of edges is given by, ¢(KG(n,k)) = % X R 2R

Example: KG(5,2): Let V(KG(5,2)) be define as: vi — {1,2}, vo» — {1, 3},
V3 = {])4}7 V4 = {])5}7 V5 = {2) 3}7 Vg {2)4}7 V7 = {2) 5}7 Vg {3’4}7 Vo =
{3,5}, vip — {4,5}. See figure 1 as illustration. It is known that, KG(5,2) =
Petersen graph.
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Figure 1: KG(5,2) of order 10.

2 Total induced vertex stress, total vertex stress
and vertex stress

The vertex stress of vertex v € V(G) is the number of times v is contained as
an internal vertex in all shortest paths between all pairs of distinct vertices

in V(G)\{v}. Formally stated, Sg(v) = Y o(v) with o(v) the number of
UAWHAVAU
shortest paths between vertices u, w which contain v as an internal vertex.

Such a shortest uw-path is also called a uw-distance path. See [8, 9]. The total

vertez stress of G is given by S(G) = Y Sg(v), [5]. From [10, 11] we recall
veV(G)
the definition of total induced vertex stress denoted by, sg(vi), vi € V(G).

Definition 1 [11] Let V(G) = {v; : 1 < i < n}. For the ordered vertex pair
(viyvj) let there be kg(i,j) distinct shortest paths of length 1g(i,j) from vi to

n
vj. Then, sg(vi) = ) ke(i,j)€c(i,j) —1).
j=1,j#t
The notion of vertex stress finds application in research related to centrality
in graphs. In dynamical graph theory the parameter assists to identify vertices



Vertex stress related parameters 327

which are more prone to system failure. The nodes within road networks are
a good example. A more subtle example is identifying the possibility of a
high number of step-through certain steps in an algorithm. Such high number
step-through may lead to excessive memory requirements. Highly congested
airports can be pre-empted by determining the vertex stress of airports serving
as the nodes of a flight route network.

The families no. 1 to 5 have the vertex stress related parameters equal
to 0. The only interesting family of Kneser graphs to consider with regards
to vertex stress and related parameters is family no. 6. Thus only Kneser
graphs within the range 2 < k < 5 will be studied. From [12] we have that
diam(KG(n,k)) =1+ (%] Hence, for 2 < k < nTH a corresponding Kneser
graph has diam(KG(n,k)) = 2. This section seeks to find results for k > 2
subject to, n > 3k — 1.

Case 1: Let k = 2, then n > 5. For ease of reasoning the following con-
vention for 2-subsets of the set {1,2,3,...,n} will be used. The vertices are
defined as: vi — {1,2}, v — {1,3}...,vin1 — {1,n}, vy — {2,3}, v —
{2,4},...,von 3= {2,n}, ..., V(n) = n—1,n}L
Remark. As stated before, since vertex adjacency is defined without loss of
generality (for brevity, the wlg-principle) all results in respect of vertex v; are
(immediately) valid for all vi € V(KG(n,k)). Hence, for ease of reasoning the
results for vi will be determined and then generalized. Such generalization is
axiomatically valid and requires no further proof.

Recall that the set of vertices adjacent to vertex vj is called the open neigh-
borhood of v; and it is denoted by N(v;) (or Ng(vi) if reference to G is impor-
tant). The closed neighborhood of vertex v; is defined as, N[vi] = N(vi) U{vi}
(or Ng[vi] if reference to G is important).

Proposition 2 For a Kneser graph KG(n,2), n > 5 the total induced vertex
stress of v1 s given by

skama ) = [(3) = () +1)] < ().

Proof. Clearly, N(vi) = {vi : 1,2 & vi}. It is known that |[N(v;)| = (“52).
Because diam(KG(n,k)) = 2 there does not exist any shortest 3-path in
KG(n,2). Hence, there only exist shortest 2-paths from vy to the remaining
(Tzl) — ( (nEZ) —H) vertices of KG(n, 2). Without loss of generality consider vertex

vz +— {1,3}. Since N(vz) = {vj : 1,3 ¢ v;} it follows easily that [N(v1) "N(v;)| =

(“53). The aforesaid is true because the elements 1,2, 3 are (must be) excluded
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as elements of the 2-element subsets in N(v{) N N(v;). Thus, the partial total
verter stress induced by vertex v; along all shortest viv,-paths is settled. By
the wlg-principle the principle of immediate induction is valid. Therefore,

scamav) = |(3) = () +1)] < (), =

The generalized corollaries follow immediately.

Corollary 3 For a Kneser graph KG(n,2), n > 5 the total induced vertex
stress of vi € V(KG(n,2)) is given by,

soma ) = [(3) = (27 +1) ] % (7).

Corollary 4 For a Kneser graph KG(n,2), n > 5 the total vertex stress is
given by

S(KGn,2) = () |() — (") +1)] = (7).

Proof. The result follows from Definition 1 read together with the proof of
Proposition 2 and Corollary 3. g

Corollary 5 For a Kneser graph KG(n,2), n > 5 the vertex stress is given by

Swatnaon = [0~ (€5 7)) 05

Proof. It is known that the Kneser graphs KG(n,2) are distance regular, see
[1]. By Theorem 3.6 in [9] the Kneser graphs KG(n,2) are stress regular as
well. Thus, the result of Corollary 4 must simply be divided by (TZL) 0
Note that since 2 < k < “TH it follows that n > 3k; — 1 for a k; € N\{1}
to ensure that diam(KG(n,k;)) = 2. This observation enables immediate
generalizations. The vertices which may be used for reasoning of proof are:

V1 H{])z)g)"'akJ —1,k]}, V2 P—){],Z,g,...,k] _]akJ +1}
and v; € N(v;) N N(va).

Because the reasoning of proof is similar to that found in Proposition 2 and
Corollaries 3 to 5 and the fact that the wlg-principle applies throughout in
all Kneser graph embodiments, no further proofs are presented.

Theorem 6 For a Kneser graph KG(n, k1), k1 € N\{1,2}, n > 3ky — 1 the
total induced vertex stress of vi € V(KG(n, k1)) is given by

SKG(nky) (Vi) = [(ﬁ) — ((“;lkl) + 1)] % (n—(]lz:m)'
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Corollary 7 For a Kneser graph KG(n, k1), k1 € N\{1,2}, n > 3k; — 1 the
total vertex stress is given by

S(KGn ki) = 1) [(2) = (55 +1)] < (n).

Corollary 8 For a Kneser graph KG(n, ki), ki € N\{1,2}, n > 3k; — 1 the
vertex stress is given by,

Skamen () = 2[ () = () +1)] x ().

2.1 Vertex stress related properties of KG(n,2)

Recall some results from [9]. A graph G for which Sg(vi) = Sg(v;) for all
distinct pairs vi,v; € V(G) is said to be stress regular.

Theorem 9 [9] Every distance regular graph is stress regular.
Corollary 10 [9] Every strongly regular graph is stress regular.
Corollary 11 [9] Every distance transitive graph is stress regqular.

Since it is known that the family of Kneser graphs KG(n,2) are distance
regular graphs it follows from Theorem 9 that the Kneser graphs KG(n,2) are
stress regular. Furthermore, it is known from [1] that every distance regular
graph G with diam(G) = 2, is strongly regular. The aforesaid read together
with Corollary 10 permit the next corollary without further proof.

Corollary 12 Kneser graphs KG(n, ki), k1 € N\{1,2}, n > 3k; —1 are stress
regular.

In fact, a general result (without further proof) is permitted from the knowl-
edge that all Kneser graphs KG(n, k), n > k are vertex transitive.

Theorem 13 All Kneser graphs KG(n,k), n > k are stress regular.

2.2 Stress balanced graphs
Definition 14 A graph G is said to be stress-balanced if and only if

> Sclvi)= > Scv)

v EN[v;] V[GN[VJ'}

for all pairs of distinct vertices vi,vj € V(G).
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The value y(vi) = > Sg(vi) is called the vertex stress index of the vertex
vt ENvi]

vi. A star graph (for brevity, a star) is a tree which has a central vertex vy

with m > 0 pendent vertices (or leafs) attached to vo. The star is denoted

by Sim and the leafs are labeled, vi, i = 1,2,3,...,m. It is straightforward

to verify that the respective vertex stress are, Ss;  (vi) =0, 1 <1< m and

Ssy o (vo) = M0 Since, Y Ss,, (v) = MO 4 ox 0 = MO
Vi€Ns, . ol
and > Ssy (Vi) =0+ m(n21—1) = m(n;—U’ 1 <i< m a star is stress-

Vi€ENsg, - i
balanced.]A star shows that, despite not being degree regular or stress regular,
a star is stress-balanced. Figure 2 depicts another example. The graph G =
C4 + v1v3 is not degree regular and has Sg(vi) = Sg(v3) = 1 and Sg(v2) =
Sg(v4) = 0. So G is not stress regular but it is stress-balanced.

Figure 2: G = C4 + vyvs.

Lemma 15 A graph G which is degree regular (or regular for brevity) and
stress reqular is stress-balanced.

Proof. The result is a direct consequence of Definition 14. O
We present the main result of this subsection.
Theorem 16 All Kneser graphs KG(n, k), n > k are stress-balanced.

Proof. Since all Kneser graphs KG(n, k), n > k are degree regular and stress
regular (see Theorem 13), read together with Definition 14 and Lemma 15,
settles the result. O
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3 On bipartite Kneser graphs, BK(n, k)

Without loss of generality let n > 3 and let 1 < k < [§] —1. Let X;, 1 =
1,2,3,..., (L‘) be the k-element subsets of the set, {1,2,3,...,n}. Let Y;, i =
1,2,3,..., (E) be the (n — k)-element subsets of the set, {1,2,3,...,n}. Let
Vi ={vi:vi— Xi}and Vo = {u; : ui — Yi}. A connected bipartite Kneser
graph denoted by BK(n,k) is a graph with vertex set,

™)

V(BG(n,k)) =ViUV,
and the edge set,
E(BG(TI, k)) = {viuj 1 X; C Yj}.

From the definition it is axiomatically true (or from applying the wlg-principle)
that BK(n,k) is degree regular with deg(vi) = deg(w;) = (n;k). Equally
straightforward is that BK(n, k) is of order 2 x (E) In fact, |Vi| = |V;| = (E)

Theorem 17 A bipartite Kneser graph BK(n, k) has diam(BK(n,k)) > 3.

Proof. Since (nik) < (E) it follows that N(vi) C V; and similarly, N(u;) C V.
Hence, there exists at least one shortest viuj-path (or shortest ujvi-path) of
distance greater or equal to 3. O
Similar to the notion of stress regularity it is said that a graph G is induced
vertex stress reqular (for brevity, IVS-regular) if and only if sg(vi) = sg(vj)
for all distinct pairs vi,v; € V(G).

Theorem 18 An IVS-regular graph G is stress reqular.

Proof. The result follovs(fs )from the fact that for any vertex v; the vertex stress
5G Vi

is given by, Sg(vi) = =55+ O

Corollary 19 An IVS-regular graph G with a singular adjacency regime for
all vertices is stress-balanced.

Proof. The result follows from Theorem 18 and the fact that degg(vi) =
degg(v;) for all distinct pairs vi,v; € V(G). O

Theorem 18 and Corollary 19 read together with the definition of BK(n,k)
imply that bipartite Kneser graphs are stress-balanced.
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3.1 Specific results for BK(n,1), n >3

Theorem 20 Bipartite Kneser graphs, BK(n,1), n > 3 are stress regular.

Proof. Proposition 3.4 in [7] convinces that a graph BK(n,1) is distance-
transitive. Also, distance-transitive = distance reqular. Therefore, the latter
read together with Theorem 9 (Theorem 3.6 in [9]) settles the fact that bipar-
tite Kneser graphs BK(n, 1), n > 3 are stress regular. O

Theorem 21 A bipartite Kneser graph, BK(n,1), n > 3 has,
diam(BK(n, 1)) = 3.

Proof. Let V;(BK(3,1)) ={vi = {i}: 1 = 1,2,3 and V2(BK(n, 1)) = {u; —
{1,2},up — {1,3}, u3 — {2,3}}. From the definition of BK(n, 1) it follows im-
mediately that BK(3,1) = Cg4. Hence, diam(BK(3,1)) = 3. For B(4,1) each
vertex w; € V2(B(3,1)) becomes u; U {4} and exactly two vertices are added.
Therefore, Vi(BK(4,1)) = V;(BK(3,1)) U {4} and V5(BK(4,1)) = {u; U {4} :
u; € V2(BK(3,1))}U{1,2,3}. After adding the edges in accordance with the
adjacency definition it follows easily that, diam(BK(4,1)) = 3. Obviously the
vertex changes and the addition of exactly two new vertices remain consistent
as n progresses consecutively through 5,6,7....

Assume the result holds for BK(n,1), 5 < n < k. By similar reasoning
to show the result for the progression from n = 3 to n = 4, it follows by
immediate induction that the results holds for the progression from n = k to
n =k+ 1. Thus,

BK(n, 1), n > 3 has diam(BK(n, 1)) = 3. O

Proposition 22 A vertex vi € V1(BK(n, 1)) (or u; € V2(BK(n,1))) has:

spK(n,1) (Vi) = 3 X degpkm,1)(vi)(degpkm,1)(vi) — 1).

Proof. It follows from Theorem 21 that a vertex vi € V7(BK(n, 1)) (or u; €
V;(BK(n, 1))) has exactly,

degpk(n,1)(vi)(degpk(n,1)(vi) — 1) shortest 2-paths
and exactly,
degpk(n,1)(vi)(degpk(n,1)(vi) — 1) shortest 3-paths.

Obviously v has deggkm,1)(Vvi) shortests 1-paths (or edges). Applying Defini-
tion 1 settles the result. O
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Corollary 23 (a) A vertex vi € V1(BK(n, 1)) (or uj € V2(BK(n,1))) has:

Sei(ny(vi) = 2002,
(b) BK(n, 1), n > 3 has, S(BK(n, 1)) =3n(n—1)(n—2).
(¢) BK(n,1), n > 3 has, s(BK(n, 1)) =6n(n—1)(n —2).

Proof. Trivial from the appropriate definitions. O

4 Conclusion

Author is of the view that an extension of this paper through a study of
Kneser graphs with diameter greater than 2 is a worthy endeavor. To ensure
that say, dlam(KG(n,k)) = 3 it follows that for k > 3, n > -1, The num-

ber of vertices (k-subsets) of (ZSET]) becomes large very rapidly. More so for
diam(KG(n,k)) = ¢, £ > 4. It is suggested that shortest path algorithms (ex-
isting or newly developed) or experimental mathematics through simulation
programs be utilized in support of further research.

The new notion of stress-balanced graphs has only been briefly introduced. It
is suggested to be an interesting concept with a wide scope for further research.
A graph G which is not stress-balanced will have at least one vertex say, v;

such that y(vi) = max{y(v;) : v(vj) = 2 Sc(vi)}. A closed neighborhood
VtEN[Vj}
N[v;i] which yields such maximum is called a stress district of G. Similarly a

closed neighborhood N[v;] which yields min{y(vi) :v(vi) = > Sg(v)}is
viENfvi]
called a stress suburb of G. Studying stress districts and stress suburbs remains

open.

Various studies of other families of graphs which are constructed from the
subsets of a set together with a well-defined adjacency regime have been pub-
lished. We refer to this as the study of graphs from sets. A specific and perhaps
less known family called set-graphs can be read in [6]. Hence, various research
projects under the theme Vertex stress related parameters for graphs from sets
remain open.
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