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Abstract. In the paper, with the aid of weighted sharing we investigate
the uniqueness problems of meromorphic functions concerning differen-
tial polynomials that share one value and prove three uniqueness results
which rectify, improve and supplement some recent results of [3].

1 Introduction

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in the Nevan-
linna theory of meromorphic functions as explained in [7, 18, 21]. Let E denote
any set of positive real numbers of finite linear measure, not necessarily the
same at each occurrence. For a non-constant meromorphic function f, we de-
note by T(r, f) the Nevanlinna characteristic of f and by S(r, f) any quantity
satisfying S(r, f) = o{T(r, f)}(r → ∞, r 6∈ E).

Let f and g be two non-constant meromorphic functions. We say that f and
g share the value a CM (counting multiplicities), if f − a and g − a have the
same zeros with the same multiplicities. Similarly, we say that f and g share

2010 Mathematics Subject Classification: 30D35

Key words and phrases: meromorphic function, differential polynomial, weighted sharing

181



182 A. Banerjee, P. Sahoo

the value a IM, provided that f − a and g − a have the same zeros ignoring
multiplicities. Throughout this paper, we need the following definition.

Θ(a, f) = 1 − lim sup
r−→∞

N(r, a; f)

T(r, f)
,

where a is a value in the extended complex plane.
In the recent past a number of authors worked on the uniqueness problem

of meromorphic functions when differential polynomials generated by them
share certain values (cf. [1, 2, 4, 5, 8, 11]). In [8] following question was asked:
What can be said if two nonlinear differential polynomials generated by two
meromorphic functions share 1 CM ?

Since then the progress to investigate the uniqueness of meromorphic func-
tions which are the generating functions of different types of nonlinear differ-
ential polynomials is remarkable and continuous efforts are being put in to
relax the hypothesis of the results. (see [1], [4], [5], [14], [15]). In 1997, Yang
and Hua [17] proved the following result.

Theorem 1 Let f and g be two non-constant meromorphic functions, n(≥ 11)

an integer and a ∈ C− {0}. If fnf ′ and gng ′ share the value a CM, then either
f = tg for some (n+1)th root of unity 1 or f(z) = c1e

cz, g(z) = c2e
−cz, where

c, c1, c2 are constants satisfying (c1c2)
n+1c2 = −a2.

In 2004 Lin-Yi [15] proved the following results.

Theorem 2 Let f and g be two non-constant meromorphic functions satisfy-
ing Θ(∞, f) > 2/(n + 1), n ≥ 12 an integer. If fn(f − 1)f ′ and gn(g − 1)g ′

share the value 1 CM, then f ≡ g.

Theorem 3 Let f and g be two non-constant meromorphic functions, n ≥ 13

an integer. If fn(f − 1)2f ′ and gn(g − 1)2g ′ share the value 1 CM, then f ≡ g.

Also in [4] Fang-Fang proved the following theorem.

Theorem 4 Let f and g be two non-constant meromorphic functions and n(≥

28) be an integer. If fn(f − 1)2f ′ and gn(g − 1)2g ′ share the value 1 IM, then
f ≡ g.

Recently, in [3] Dyavanal proved the following results, which to the knowledge
of the authors probably are the first approach in which in order to consider
the value sharing of two differential polynomials the multiplicities of zeros and
poles of f and g are taken into account.
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Theorem 5 (Theorem 1.1, [3]) Let f and g be two non-constant meromor-
phic functions, whose zeros and poles are of multiplicities at least s, where s

is a positive integer. Let n ≥ 2 be an integer satisfying (n + 1)s ≥ 12. If fnf ′

and gng ′ share the value 1 CM, then either f = dg for some (n+ 1)-th root of
unity 1 or f(z) = c1e

cz, g(z) = c2e
−cz, where c, c1, c2 are constants satisfying

(c1c2)
n+1c2 = −1.

Theorem 6 (Theorem 1.2, [3]) Let f and g be two non-constant meromor-
phic functions, whose zeros and poles are of multiplicities at least s, where s is
a positive integer and Θ(∞, f) > 2/(n + 1). Let n ≥ 4 be an integer satisfying
(n+1)s ≥ 12. If fn(f−1)f ′ and gn(g−1)g ′ share the value 1 CM, then f ≡ g.

Theorem 7 (Theorem 1.3, [3]) Let f and g be two non-constant meromor-
phic functions, whose zeros and poles are of multiplicities at least s, where s

is a positive integer. Let n ≥ 3 be an integer satisfying (n + 1)s ≥ 12. If
fn(f − 1)2f ′ and gn(g − 1)2g ′ share the value 1 CM, then f ≡ g.

The results are new and seems fine. However in page 7, in the proof of Theorem
1.2 [3] there is a serious lacuna when a counting function is being elaborated
and then restricted in terms of Nevanlinna’s characteristic function.

Actually in Page 7, line 8 onwards from bottom should be

N

(

r,
1

F

)

= N

[

r,
1

fn+1(f − n+2
n+1

)

]

≤
1

s(n + 1)
N

(

r,
1

fn+1

)

+N

(

r,
1

f − n+2
n+1

)

6≤
1

s(n + 1)
N

(

r,
1

F

)

,

since nowhere in the paper it has been assumed that the zeros of f−
n + 2

n + 1
are

of multiplicities s(n + 1). Since the counting function just mentioned above
plays a vital role in the proofs of Theorems 1.2, 1.3 and 1.5 in [3], the validity
of the three theorems namely Theorems 1.2, 1.3 and 1.5 in [3] cease to hold.

So it would be quite natural to investigate the accurate forms of the above
theorems and at the same time to combine all the theorems in [3] to a single
one. In this paper we are taking up these problems. In fact, we will not only
rectify the above three theorems but also improve and supplement all the
theorems of [3] by relaxing the nature of sharing the values with the aid of the
notion of weighted sharing of values defined as follows.
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Definition 1 Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity
m is counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z0 is
an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g

with multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k)

if and only if it is an a-point of g with multiplicity n(> k), where m is not
necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share
(a, 0) or (a, ∞) respectively.

We now state the main results of the paper.

Theorem 8 Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities at least s, where s is a positive integer.
Let fn(f − 1)mf ′ and gn(g − 1)mg ′ share (b, 2) where m ≥ 0, n > max{m +

1 + 2m/s, m + 1 + 9/s} are integers and b(6= 0) is a constant. Then each of
the following holds:
(i) If m = 0, then either f = tg for some (n + 1)-th root of unity 1 or f(z) =

c1e
cz, g(z) = c2e

−cz, where c, c1, c2 are constants satisfying (c1c2)
n+1c2 =

−b2.
(ii) If m = 1 and Θ(∞, f) + Θ(∞, g) > 4/(n + 1) or m = 2, then f ≡ g.
(iii) If m ≥ 3, then

fn+1

m∑

i=0

mCi

(−1)i

n + m − i + 1
fm−i ≡ gn+1

m∑

i=0

mCi

(−1)i

n + m − i + 1
gm−i.

Remark 1 Putting s = 1 in the above theorem we get the rectified, improved
as well as generalised form of all the theorems in [3].

Theorem 9 Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities at least s, where s is a positive integer.
Let fn(f − 1)mf ′ and gn(g − 1)mg ′ share (b, 1) where m ≥ 0, n > max{m +

1 + 2m/s, m + 2 + 21/2s} are integers and b(6= 0) is a constant. Then the
conclusions (i)-(iii) of Theorem 8 hold.

Theorem 10 Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities at least s, where s is a positive integer. Let
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fn(f − 1)mf ′ and gn(g − 1)mg ′ share (b, 0) where m ≥ 0, n > max{m + 1 +

2m/s, m+7+18/s} are integers and b(6= 0) is a constant. Then the conclusions
(i)-(iii) of Theorem 8 hold.

Though we use the standard notations and definitions of the value distribution
theory available in [7], we explain the following definition and notation which
is used in the paper.

Definition 2 [13] Let p be a positive integer or infinity. We denote by Np(r, a; f)

the counting function of a-points of f, where an a-point of multiplicity m is
counted m times if m ≤ p and p times if m > p. Then

Np(r, a; f) = N(r, a; f) + N(r, a; f |≥ 2) + ... + N(r, a; f |≥ p).

2 Lemmas

In this section we present some lemmas which will be needed to prove the
theorem.

Lemma 1 [16] Let f be a non-constant meromorphic function and P(f) =

a0 + a1f + a2f
2 + ... + anfn, where a0, a1, a2, ... , an(6= 0) are constants.

Then

T(r, P(f)) = nT(r, f) + S(r, f).

Lemma 2 [19] Let f be a non-constant meromorphic function. Then

N
(

r, 0; f(k)
)

≤ kN(r, ∞; f) + N(r, 0; f) + S(r, f).

Lemma 3 [22] Let f be a non-constant meromorphic function and p, k be a
positive integers. Then

Np

(

r, 0; f(k)
)

≤ kN(r, ∞; f) + Np+k(r, 0; f) + S(r, f).

Lemma 4 [9] Let f and g be two non-constant meromorphic functions sharing
(1, 2). Then one of the following cases holds:
(i) T(r) ≤ N2(r, 0; f) + N2(r, 0; g) + N2(r, ∞; f) + N2(r, ∞; g) + S(r),

(ii) f ≡ g,

(iii) fg ≡ 1.
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Lemma 5 [1] Let f and g be two non-constant meromorphic functions sharing
(1, m) and

f ′′

f ′
−

2f ′

f − 1
6≡

g ′′

g ′
−

2g ′

g − 1
.

Now the following hold:
(i) if m = 1 then T(r, f) ≤ N2(r, 0; f)+N2(r, 0; g)+N2(r, ∞; f)+N2(r, ∞; g)+
1
2
N(r, 0; f) + 1

2
N(r, ∞; f) + S(r, f) + S(r, g);

(ii) if m = 0 then T(r, f) ≤ N2(r, 0; f)+N2(r, 0; g)+N2(r, ∞; f)+N2(r, ∞; g)+

2N(r, 0; f) + N(r, 0; g) + 2N(r, ∞; f) + N(r, ∞; g) + S(r, f) + S(r, g).

Lemma 6 [20] Let f and g be two non-constant meromorphic functions. If

f ′′

f ′
−

2f ′

f − 1
≡

g ′′

g ′
−

2g ′

g − 1

and

lim sup
r→∞,r6∈E

N(r, 0; f) + N(r, 0; g) + N(r, ∞; f) + N(r, ∞; g)

T(r)
< 1

then either f ≡ g or fg ≡ 1, where T(r) is the maximum of T(r, f) and T(r, g).

Lemma 7 Let f and g be two non-constant meromorphic functions whose
zeros and poles are of multiplicities at least s, where s is a positive integer. Let
n and m are positive integers such that n > m + 1 + 2m/s. Then

fn(f − 1)mf ′gn(g − 1)mg ′ 6≡ b2,

where b is a nonzero constant.

Proof. We suppose that

fn(f − 1)mf ′gn(g − 1)mg ′ ≡ b2. (1)

Let z0 be a zero of f with multiplicity p0(≥ s). Then z0 is a pole of g with
multiplicity q0(≥ s), say. From (1) we obtain

np0 + p0 − 1 = (n + m + 1)q0 + 1

and so

(n + 1)(p0 − q0) = mq0 + 2. (2)
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From (2) we get q0 ≥ n−1
m

and so again from (2) we obtain

p0 ≥ q0 + 1 ≥
n + m − 1

m
.

Let z1 be a zero of f − 1 with multiplicity p1. Then z1 is a pole of g with
multiplicity q1(≥ s), say. So from (1) we get

(m + 1)p1 − 1 = (n + m + 1)q1 + 1

which gives

p1 ≥
(n + m + 1)s + 2

m + 1
.

Since a pole of f is either a zero of gn(g − 1)m or a zero of g ′, we have

N(r, ∞; f) ≤ N(r, 0; g) + N(r, 1; g) + N0(r, 0; g ′)

≤
m

n + m − 1
N(r, 0; g) +

m + 1

(n + m + 1)s + 2
N(r, 1; g)

+N0(r, 0; g ′)

≤

(

m

n + m − 1
+

m + 1

(n + m + 1)s + 2

)

T(r, g) + N0(r, 0; g ′),

where N0(r, 0; g ′) denotes the reduced counting function of those zeros of g ′

which are not the zeros of g(g − 1).
Then by the second fundamental theorem of Nevanlinna we get

T(r, f) ≤ N(r, ∞; f) + N(r, 0; f) + N(r, 1; f) − N0(r, 0; f ′) + S(r, f)

≤

(

m

n + m − 1
+

m + 1

(n + m + 1)s + 2

)

{T(r, f) + T(r, g)}

+N0(r, 0; g ′) − N0(r, 0; f ′) + S(r, f). (3)

Similarly, we get

T(r, g) ≤

(

m

n + m − 1
+

m + 1

(n + m + 1)s + 2

)

{T(r, f) + T(r, g)}

+N0(r, 0; f ′) − N0(r, 0; g ′) + S(r, g). (4)

Adding (3) and (4) we obtain
(

1 −
2m

n + m − 1
−

2(m + 1)

(n + m + 1)s + 2

)

{T(r, f) + T(r, g)} ≤ S(r, f) + S(r, g),

which leads to a contradiction as n > m + 1 + 2m/s. This proves the
lemma. �
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Lemma 8 Let f and g be two non-constant entire functions and n be a positive
integer. If fnf ′gng ′ = b2, where b is a nonzero constant, then f(z) = c1e

cz,
g(z) = c2e

−cz, where c, c1, c2 are constants satisfying (c1c2)
n+1c2 = −b2.

Proof. We omit the proof since it can be proved in the line of the proof of
Theorem 3 in [17]. �

Lemma 9 Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities at least s, where s is a positive integer and

F = fn+1

(

m∑

i=0

mCi

(−1)i

n + m − i + 1
fm−i

)

;

G = gn+1

(

m∑

i=0

mCi

(−1)i

n + m − i + 1
gm−i

)

.

Further let F0 = F′

b
and G0 = G′

b
, where b(6= 0) is a constant. Then S(r, F0)

and S(r, G0) are replaceable by S(r, f) and S(r, g) respectively.

Proof. By Lemma 1 we get

T(r, F0) ≤ T(r, F ′) + S(r, f)

≤ 2T(r, F) + S(r, f)

= 2(n + m + 1)T(r, f) + S(r, f)

and similarly

T(r, G0) ≤ 2(n + m + 1)T(r, g) + S(r, g).

This proves the lemma. �

Lemma 10 Let F, G, F0 and G0 be defined as in Lemma 9. We define F =

fn+1F1 and G = gn+1G1 where

F1 =

m∑

i=0

mCi

(−1)i

n + m − i + 1
fm−i and G1 =

m∑

i=0

mCi

(−1)i

n + m − i + 1
gm−i.

Then
(i) T(r, F) ≤ T(r, F0)+N(r, 0; f)+N(r, 0; F1)−mN(r, 1; f)−N(r, 0; f ′)+S(r, f),

(ii) T(r, G) ≤ T(r, G0) + N(r, 0; g) + N(r, 0; G1) − mN(r, 1; g) − N(r, 0; g ′) +

S(r, g).
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Proof. We prove (i) only as the proof of (ii) is similar. By Nevanlinna’s first
fundamental theorem and Lemma 1 we get

T(r, F) = T

(

r,
1

F

)

+ O(1)

= N(r, 0; F) + m

(

r,
1

F

)

+ O(1)

≤ N(r, 0; F) + m

(

r,
F0

F

)

+ m(r, 0; F0) + O(1)

= N(r, 0; F) + T(r, F0) − N(r, 0; F0) + S(r, F)

= T(r, F0) + N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f)

−N(r, 0; f ′) + S(r, f).

This proves the lemma. �

Lemma 11 Let F and G be defined as in Lemma 9, where m(≥ 0) and n(≥

m + 3/s) are positive integers. Then F ′ ≡ G ′ implies F ≡ G.

Proof. Let F ′ ≡ G ′. Then F ≡ G + C, where C is a constant. If possible, we
suppose that C 6= 0. Then by the second fundamental theorem of Nevanlinna
we get

T(r, F) ≤ N(r, 0; F) + N(r, ∞; F) + N(r, C; F) + S(r, F)

≤ N(r, 0; f) + N(r, 0; F1) + N(r, ∞; f) + N(r, 0; g)

+N(r, 0; G1) + S(r, f)

≤
1

s
N(r, 0; f) + N(r, 0; F1) +

1

s
N(r, ∞; f) +

1

s
N(r, 0; g)

+N(r, 0; G1) + S(r, f)

≤ (m + 2/s)T(r, f) + (m + 1/s)T(r, g) + S(r, f),

where F1 and G1 are defined as in Lemma 9. So by Lemma 1 we have

(n + 1 − 2/s)T(r, f) ≤ (m + 1/s)T(r, g) + S(r, f). (5)

Similarly, it can be shown that

(n + 1 − 2/s)T(r, g) ≤ (m + 1/s)T(r, f) + S(r, g). (6)

Adding (5) and (6) we obtain

(n − m + 1 − 3/s){T(r, f) + T(r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction. Therefore C = 0 and the lemma follows. �
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Lemma 12 Let f and g be two non-constant meromorphic functions such that

Θ(∞, f) + Θ(∞, g) >
4

n + 1
,

where n(≥ 2) is an integer. Then

fn+1(af + b) ≡ gn+1(ag + b)

implies f ≡ g, where a, b are two nonzero constants.

Proof. We omit the proof since it can be carried out in the line of Lemma 6
[12]. �

Lemma 13 [6] Let

Q(w) = (n − 1)2(wn − 1)(wn−2 − 1) − n(n − 2)(wn−1 − 1)2,

then

Q(w) = (w − 1)4(w − ν1)(w − ν2)......(w − ν2n−6),

where νj ∈ C \ {0, 1} (j = 1, 2, ..., 2n − 6), which are distinct respectively.

3 Proof of the Theorem

Proof of Theorem 8. Let F, G, F0 and G0 be defined as in Lemma 9. Since
F0 and G0 share (1, 2), one of the possibilities of Lemma 4 holds. We suppose
that

T0(r) ≤ N2(r, 0; F0) + N2(r, 0; G0) + N2(r, ∞; F0) + N2(r, ∞; G0)

+S(r, F0) + S(r, G0), (7)
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where T0(r) = max{T(r, F0), T(r, G0)}. Now by Lemma 2, Lemma 9 and Lemma
10 we get from (7)

T(r, F) ≤ T(r, F0) + N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f)

−N(r, 0; f ′) + S(r, f)

≤ N2(r, 0; F0) + N2(r, 0; G0) + N2(r, ∞; F0) + N2(r, ∞; G0)

+N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f) − N(r, 0; f ′)

+S(r, f) + S(r, g)

≤ 2N(r, 0; f) + mN(r, 1; f) + N(r, 0; f ′) + 2N(r, ∞; f)

+2N(r, 0; g) + mN(r, 1; g) + N(r, 0; g ′) + 2N(r, ∞; g)

+N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f) − N(r, 0; f ′)

+S(r, f) + S(r, g)

=
2

s
N(r, 0; f) +

2

s
N(r, ∞; f) + N(r, 0; f) + N(r, 0; F1)

+
2

s
N(r, 0; g) + mN(r, 1; g) + N(r, 0; g ′) +

2

s
N(r, ∞; g)

+S(r, f) + S(r, g)

≤ {m + 1 + 4/s}T(r, f) + {m + 1 + 5/s}T(r, g)

+S(r, f) + S(r, g)

≤ {2m + 2 + 9/s}T(r) + S(r),

where T(r) is defined as in Lemma 6. So by Lemma 1 we obtain

(n + m + 1)T(r, f) ≤ {2m + 2 + 9/s}T(r) + S(r). (8)

Similarly we get

(n + m + 1)T(r, g) ≤ {2m + 2 + 9/s}T(r) + S(r). (9)

From (8) and (9) we see that

[n − m − 1 − 9/s]T(r) ≤ S(r),

which is a contradiction. Hence (7) does not hold. So by Lemma 4 either
F0G0 ≡ 1 or F0 ≡ G0. Suppose that F0G0 ≡ 1. Then

fn(f − 1)mf ′gn(g − 1)mg ′ ≡ b2. (10)

If m ≥ 1, by Lemma 7 we arrive at a contradiction. If m = 0, by (10) we get

fnf ′gng ′ ≡ b2. (11)
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Let z0 be a zero of f with multiplicity p(≥ s). Then z0 is a pole of g with
multiplicity q(≥ s), say. From (11) we obtain

np + p − 1 = nq + q + 1

and so (n + 1)(p − q) = 2, which is impossible as n ≥ 2 and p, q are positive
integers. Therefore, we conclude that f and g are entire functions. Hence using
Lemma 8, we get f(z) = c1e

cz, g(z) = c2e
−cz, where c, c1, c2 are constants

satisfying (c1c2)
n+1c2 = −b2.

Now we assume that F0 ≡ G0. And so by Lemma 11 we get F ≡ G, that is

fn+1

(

m∑

i=0

mCi

(−1)i

n + m − i + 1
fm−i

)

≡ gn+1

(

m∑

i=0

mCi

(−1)i

n + m − i + 1
gm−i

)

. (12)

We now consider following three cases.

Case 1 Let m = 0. Then from (12) we obtain fn+1 = gn+1, which gives f = tg

for some (n + 1) -th root of unity 1.

Case 2 Let m = 1. From (12) we obtain

fn+1

(

1

n + 2
f −

1

n + 1

)

= gn+1

(

1

n + 2
g −

1

n + 1

)

,

which together with

Θ(∞, f) + Θ(∞, g) > 4/(n + 1)

and Lemma 12 gives f ≡ g.

Case 3 Let m = 2. Suppose that h = f
g
. By (12) we get

(n + 2)(n + 1)g2(hn+3 − 1) − 2(n + 3)(n + 1)g(hn+2 − 1)

+(n + 2)(n + 3)(hn+1 − 1) = 0. (13)

By (13) and by Lemma 13, we can conclude that

{(n + 1)(n + 2)(hn+3 − 1)g − (n + 3)(n + 1)(hn+2 − 1)}2

= −(n + 3)(n + 1)Q(h),
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where Q(h) = (h − 1)4(h − ν1)(h − ν2)......(h − ν2n), where νj ∈ C \ {0, 1}

(j = 1, 2, ..., 2n), which are pairwise distinct.

If h is not a constant, this implies that every zero of h−νj (j = 1, 2, ..., 2n),
has a multiplicity of at least 2. By the second fundamental theorem of Nevan-
linna we obtain that n ≤ 2, which is again a contradiction. Therefore, h is a
constant. We have from (13) that hn+1−1 = 0 and hn+2−1 = 0, which imply
h = 1, and hence f ≡ g.

This completes the proof of theorem 8. �

Proof of Theorem 9. We put

H =

(

F ′′
0

F ′
0

−
2F ′

0

F0 − 1

)

−

(

G ′′
0

G ′
0

−
2G ′

0

G0 − 1

)

.

We suppose that H 6≡ 0. Since F0 and G0 share (1, 1), by Lemma 2, Lemma
5(i), Lemma 9 and Lemma 10 we get

T(r, F) ≤ T(r, F0) + N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f)

−N(r, 0; f ′) + S(r, f)

≤ N2(r, 0; F0) + N2(r, 0; G0) + N2(r, ∞; F0) + N2(r, ∞; G0)

+
1

2
N(r, 0; F0) +

1

2
N(r, ∞; F0) + N(r, 0; f) + N(r, 0; F1)

−mN(r, 1; f) − N(r, 0; f ′) + S(r, f) + S(r, g)

≤ 2N(r, 0; f) + mN(r, 1; f) + N(r, 0; f ′) + 2N(r, ∞; f)

+2N(r, 0; g) + mN(r, 1; g) + N(r, 0; g ′) + 2N(r, ∞; g)

+
1

2
N(r, 0; f) +

1

2
N(r, 1; f) +

1

2
N(r, 0; f ′) +

1

2
N(r, ∞; f)

+N(r, 0; f) + N(r, 0; F1) − mN(r, 1; f) − N(r, 0; f ′)

+S(r, f) + S(r, g)

≤ (m + 2 + 11/2s)T(r, f) + (m + 1 + 5/s)T(r, g)

+S(r, f) + S(r, g)

≤ (2m + 3 + 21/2s)T(r) + S(r).

So by Lemma 1 we get

(n + m + 1)T(r, f) ≤ (2m + 3 + 21/2s)T(r) + S(r).

Similarly we get

(n + m + 1)T(r, g) ≤ (2m + 3 + 21/2s)T(r) + S(r).
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Combining the above two inequalities we obtain

(n − m − 2 − 21/2s)T(r) ≤ S(r),

which is a contradiction. Hence H ≡ 0.
Now by Lemma 1 we get

(n + m)T(r, f) = T (r, fn(f − 1)m) + S(r, f)

≤ T(r, F ′) + T(r, f ′) + S(r, f)

≤ T(r, F0) + 2T(r, f) + S(r, f)

and so

T(r, F0) ≥ (n + m − 2)T(r, f) + S(r, f).

Similarly we get

T(r, G0) ≥ (n + m − 2)T(r, g) + S(r, g).

Also from Lemma 2 we have

N(r, 0; F0) + N(r, ∞; F0) + N(r, 0; G0) + N(r, ∞; G0)

≤ N(r, 0; f) + N(r, 1; f) + N(r, 0; f ′) + N(r, ∞; f) + N(r, 0; g)

+N(r, 1; g) + N(r, 0; g ′) + N(r, ∞; g) + S(r, f) + S(r, g)

≤ (2 + 3/s)T(r, f) + (2 + 3/s)T(r, g) + S(r, f) + S(r, g)

≤
4 + 6/s

n + m − 2
T0(r) + S(r),

where S0(r) = o{T0(r)} as r → ∞ possibly outside a set of finite linear measure
and ǫ(> 0) is sufficiently small.
In view of the hypothesis we get from above

lim sup
r→∞,r6∈E

N(r, 0; F0) + N(r, ∞; F0) + N(r, 0; G0) + N(r, ∞; G0)

T0(r)
< 1.

So by Lemma 6 we obtain either F0G0 ≡ 1 or F0 ≡ G0. Now by using Lemma 7,
Lemma 8, Lemma 11 and proceeding in the same way as the proof of Theorem
8, we easily obtain the results of Theorem 9. �

Proof of Theorem 10. Using Lemma 5(ii) the theorem can be proved as the
proof of Theorem 9. �
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