
Acta Univ. Sapientiae, Informatica, 1, 1 (2009) 89–108

Towers of Hanoi – where programming

techniques blend

Zoltán Kátai
Sapientia University

email: katai zoltan@ms.sapientia.ro

Lehel István Kovács
Sapientia University

email: klehel@ms.sapientia.ro

Abstract. According to the literature, the Towers of Hanoi puzzle is a
classical divide et conquer problem. This paper presents different ways
to solve this puzzle. We know that the time-complexity of the puzzle is
2n − 1. However, the question is how much time is needed to run each
implementation.

1 The legend

Once upon in time, in India, in the reign of Fo Hi, , monks in the Siva-temple
of Banares (which marks the center of the world) have to move a pile of 64
sacred golden disks from one diamond peg to another. The disks are fragile;
only one can be carried at a time. A disk may not be placed on top of a
smaller, less valuable disk. And, there is only one other diamond peg in the
temple (besides the source and destination pegs) sacred enough that a pile of
disks can be placed there. So, the monks start moving disks back and forth,
between the original pile, the pile at the new location, and the intermediate
location, always keeping the piles in order (largest on the bottom, smallest on
the top) [9]. The legend claims that once the monks are finished, the world
will end. So we need to figure out how long it is going to take the monks to
finish the puzzle. How many moves will it take to transfer n disks from the
source peg to the destination peg?

AMS 2000 subject classifications: 68W40
CR Categories and Descriptors: D.1 [Programming Techniques]
Key words and phrases: Towers of Hanoi, programming techniques, backtracking, greedy,
divide and conquer, dynamic programing, recursive, iterative

89



90 Z. Kátai, L. I. Kovács

The puzzle was introduced in 1883 by N. Claus (de Siam) Professor at Uni-
versity of Li-Sou-Stian, an anagram pseudonym for douard Lucas (D’Ameins)
Professor at Lyce Saint-Louis [1].

According to the literature – as we can see in the proof –, the Towers of
Hanoi puzzle is a classical divide et conquer problem. The puzzle can be solved
by reducing the problem to smaller, but similar sub-problems; the key-move
is the transfer of the largest disc.

In this train of thought we must to transfer n − 1 discs from the first peg
to the third, than we can move the largest disc to the second peg, finally we
must to transfer n − 1 discs from the third peg to the second. According to
this recursive move-sequence, it is easy to see, that we need 2n − 1 steps to
solve the n-discs puzzle.

So, the monks needs to make 264 − 1 (= 18 446 744 073 709 551 615) moves
to solve the puzzle. Assuming, that they are capable to move one disc per
second, the end of the world comes approximately in 590 000 000 000 years
(according to estimations the Universe is 13,7 billion years old!).

2 The min/max problem

The Tower of Hanoi problem has four parameters: H(n, s, d, h)

• n: the number of discs
• s: source peg
• d: destination peg
• d: h: “helping peg”
Move n discs from peg s to peg d using the peg h. Initially the source peg

is a, the destination peg is b, and the helping peg is c.
The problem, as optimization task, has two versions (Hmin(n, a, b, c) /

Hmax(n, a, b, c)): find the shortest/longest moves-sequence. (Target function:
minimize/maximize the number of the moves). In the case of the “maximum
version”, obviously, we are interested only in cycle free solutions.

We introduce the following notations:
‘→’: this symbol shows a direct move (one-step move) of a given disc be-

tween to pegs (a → b: move a given disc from peg a to peg b directly).
‘>>’: this symbol represents a move-sequence that transposes a disc-tower

between to pegs (a >> b: transpose a given disc-tower from peg a to peg b).
The key idea behind both solutions is to focus on the largest disc. In case

of the “minimum version” the largest disc is moved from peg a to peg b in
one (minimum) step (a → b). This action supposes that, previously, the other



Towers of Hanoi 91

(n−1) discs have already been transposed from peg a to peg c (a >> c). After
the largest disc has made the move (a → b), the other (n−1) discs have to be
transposed again, but at this time from peg c to peg b (c >> b). Naturally,
in order to achieve the optimal solution, the two moves of the (n − 1) discs
have to also be performed in minimum number of steps. Consequently, we get
the following recursive formula (fmin) for the minimum version of the problem
(the optimisation is present in the formula only implicitly):
• if n = 1, then Hmin(n, a, b, c) = a → b

• if n > 1, then Hmin(n, a, b, c) = Hmin(n − 1, a, c, b), a → b,Hmin(n −

1, c, b, a)

Denoting with mn the number of moves needed to solve the minimum ver-
sion of the n-size problem, we have:
mn = 2mn−1 + 1, m1 = 1

mn = 2(2mn−2 + 1) + 1 = 22mn−2 + 2 + 1

mn = 2(2(2mn−3 + 1) + 1) + 1 = 23mn−3 + 22 + 2 + 1

. . .
mn = 2n−1m1 + 2n−2 + ... + 22 + 2 + 1 = 2n−1 + 2n−2 + ... + 22 + 2 + 1

mn = 2n − 1

In case of the maximum version of the problem, the largest disc is moved
from peg a to peg b in two (maximum) steps (a → c, c → b). As we exposed
above, these moves entail that before, between and after them the other (n−1)

discs are transposed in optimal way from peg a to peg b (a >> b), from peg
b to peg a (b >> a), and again, from peg a to peg b (a >> b). The recursive
formula (fmax) that describes the optimal solution for the maximum version
of the problem is the following:
• if n = 1, then Hmax(n, a, b, c) = a → c, c → b

• if n > 1, then Hmax(n, a, b, c) = Hmax(n − 1, a, b, c), a → c,Hmax(n −

1, b, a, c), c → b,Hmax(n − 1, a, b, c)

Denoting with Mn the number of moves needed to solve the maximum
version of the n-size problem, we have:

Mn = 3Mn−1 + 2,M1 = 2

Mn = 3(3Mn−2 + 2) + 2 = 32Mn−2 + 2.3 + 2

Mn = 3(3(3Mn−3 + 2) + 2) + 2 = 33Mn−3 + 2.32 + 2.3 + 2

. . .
Mn = 3n−1M1 +2.3n−2 + ...+2.32 +2.3+2 = 2(3n−1 +3n−2 + ...+32 +3+1)

Mn = 2((3n − 1)/(3 − 1))

Mn = 3n − 1

Notice that there are only these two possibilities: the largest disc is moved
from the source peg to the destination peg in one or two steps. If we always



92 Z. Kátai, L. I. Kovács

3, a, b, c 

1

a

b

c

2, c, b, a 2, a, b, c 2, b, a, c 2, a, b, c 2, a, c, b 

1

b

c

a

1

a

b

c

1

a

b

c

1

a

b

c

1

c

a

b

1

a

b

c

1

c

b

a

1

b

c

a

1

c

b

a

1

a

c

b

1

c

b

a

1

a

b

c

1

b

a

c

1

a

b

c

1

b

c

a

1

c

a

b

1

b

a

c

1

a

b

c

1

b

a

c

1

a

c

b

1

c

b

a

1

a

b

c

1

b

a

c

1

a

b

c

Figure 1: The n=3 case.

choose the one-step solution, we get the minimum-solution. Choosing always
the second possibility we have the maximum-solution. If we combine the two
possibilities we receive the other solutions. All these can be represented by
a rooted tree (see Figure 1). The root-node represents the n-size problem
that can be reduced in two ways (“minimum-branch”/“maximum-branch”) to
two or three (n − 1)-size sub-problems, together to five sub-problems. This
means, that we have a complete n-level tree with 5k−1 node at each level k

(k = 1, 2, . . . , n). This tree has 5n − 1 nodes. On the one hand, the complete
n-level sub-tree that contains only “minimum-branches” (dotted-arcs) corre-
spond to the optimal solution of the minimum version of the problem. On
the other hand, the complete n-level sub-tree with only “maximum-branches”
(dashed-arcs) represents the maximum-solution of the problem. Notice that
the “minimum sub-tree” (bold-line rectangles) has 2n −1 nodes, and the max-
imum one (filled rectangles) 3n − 1 nodes. Furthermore, since each complete
n-level sub-tree represents a solution, the problem has as many solutions as
such sub-trees exist. For n = 3 there are one minimum, one maximum and
1870 other solutions.

The recursive formulas can be seen as the ones that describe the structure of
the optimal solutions. These structures can be represented with rooted trees,
which correspond to the “minimum sub-tree” and “maximum sub-tree” of the
tree shown in Figure 1. Figure 2 shows the tree attached to the minimum
version of the 3-size problem (Hmin(3, a, b, c)). The sub-trees represent the
optimal sub-solutions. The leaves correspond to the moves. The leaf-sequence
represented by dotted arcs corresponds to the optimal move-sequence. The
root-node (white-filled rectangles) of each sub-tree has its “own leaf“ (dashed-



Towers of Hanoi 93

P(3,a,b,c)

P(2,c,b,a) P(2,a,c,b) 

P(1,a,b,c) 
P(1,a,c,b) 

P(1,b,c,a) P(1,c,a,b) P(2,a,b,c)

P(1,a,b,c) 

P(1,c,b,a) 

Figure 2: The Hmin(3, a, b, c) problem.

line rectangles) that represent the move of the largest disc of the corresponding
“tower”. We consider that these leaves are at the same level with their par-
ent nodes (the “root-nodes” “assimilate” their “own leaves”). If we denote
the discs (from bottom to top) and the tree-levels (from root to leaves) with
1, 2, 3, . . . , n, respectively, then it can be observed that leaves from a given
level k correspond to the moves of disc k. Disc k makes 2k−1 moves. Since
every second leaf (bolded-line rectangles) of the leaf-sequence is placed on the
nth level, these moves are performed by the smallest disc.

3 The recursive implementation

The below recursive procedures (P recursive min, P recursive max) are direct
transcriptions of the recursive formulas.

void P recursive min(int k, char s, char d, char h)
{

if(k==1)
printf(”%c –> %c\n”, s, d);

else
{

P recursive min(k-1, s, h, d);



94 Z. Kátai, L. I. Kovács

printf(”%c –> %c\n”, s, d);
P recursive min(k-1, h, d, s);

}
}

void P recursive max(int k, char s, char d, char h)
{

if(k==1)
printf(”%c –> %c\n%c –> %c\n”, s, h, h, d);

else
{

P recursive max(k-1, s, d, h);
printf(”%c –> %c\n”, s, h);
P recursive max(k-1, d, s, h);
printf(”%c –> %c\n”, h, d);
P recursive max(k-1, s, d, h);

}
}

What programming technique(s) applies these implementations?

4 Divide and conquer or greedy?

At the first sight the above implementations are pure divide and conquer algo-
rithms: the problem to be solved is divided in two/three simpler, similar sub-
problems. However, why is the problem divided in sub-problems even in these
specific ways? These are direct consequences of the decision we are made with
respect to the largest disc, decisions that are greedy choices. (The largest disc
is moved from the source peg to the destination peg in minimum/maximum
steps) Consequently, from this point of view, the recursive implementations are
such divide and conquer strategies that apply greedy decisions in the dividing
stage of the method.

On the other hand it can be stated that the “principle solving” of each sub-
problem starts with a greedy decision (relative to the largest disc) that reduces
the current sub-problem to two/three simpler, similar sub-sub-problems. Par-
ticularly in the case of this problem (Tower of Hanoi) the two (minimum
version) sub-sub-problems have to be solved before, and after (respectively)
the greedy decision is implemented. As a consequence, the order the greedy



Towers of Hanoi 95

decisions have to be implemented follows a kind of in-order traverse of the
tree representing the optimal solution (see figure 2). Accordingly, from this
point of view, the recursive implementations are greedy strategy that use di-
vide and conquer like methods (in-order DFS algorithm) in order to establish
the implementation order of the greedy decisions.

The standard greedy algorithm first implements the greedy decision and
after this it solves the “reduced sub-problem(s)”. The pre-order DFS and the
BFS traverses of the “solution-tree” allow of such a greedy strategy. In order
to establish the proper move-order, these implementations need to store the
moves. Unfortunately, there is a major concern relating this idea. The size
of the solution-code depends exponentially on the problem-size (n). Coding
the six possible moves a → b, a → c, b → c, c → b, c → a, b → a with
digits 0, 1, 2, 3, 4, 5 the code of the optimal solution of a 64-size problem has
264 − 1 digits. No computer capable to store that huge amount of data. As-
suming that n takes moderate-values the optimal move-sequence can be stored
in array moves[0..(2n-1)-1]. Bi-dimensional array code stores the move-codes.
Procedure P greedy min determines the elements of array moves according to
the BFS traverse of the tree. Array q[0..(2n-1)-1] implements the queue nec-
essary for the BFS. Variables first and last indicate the beginning and the end
of the queue. The items of the queue q store the source (s), destination (d)
and helping (h) pegs of the corresponding sub-problem, and the left (l) and
right (r) margins of the current segment in array moves. The array-segment
[0..(2n-1)-1] (the whole array moves) is attached to the original problem. At
each step procedure P greedy min stores the greedy-move (s→d) correspond-
ing to the sub-problem from the front of the queue in the middle element
(m = (q[first].l+q[first].r)>>1) of the corresponding array-segment ([q[first].l ..
q[first].r]). The array-sub-segments [q[first].l .. m-1] and [m+1 .. q[first].r] are
attached to the left and right son-sub-problems.

void P greedy min(int n, char a, char b, char c, int* moves, item* q,
int(*code)[3])
{

int min step nr =(1<<n)–1;
int first = 0;
q[0].s = a; q[0].d = b; q[0].h = c;
q[0].l = 0; q[0].r = min step nr – 1;
int last = 1;
int m;



96 Z. Kátai, L. I. Kovács

while (first < last)
{

m = (q[first].l + q[first].r) >> 1;
moves[m] = code[q[first].s–’a’][q[first].d–’a’];
if (q[first].l < q[first].r)
{

q[last].s = q[first].s; q[last].d = q[first].h; q[last].h = q[first].d;
q[last].l = q[first].l; q[last].r = m – 1;
++last;
q[last].s = q[first].h; q[last].d = q[first].d; q[last].h = q[first].s;
q[last].l = m + 1; q[last].r = q[first].r;
++last;

}
++first;
}
for(i = 0; i < min step nr; ++i)

printf(”%d, ”, moves[i]);
}

5 Dynamic programming

The recursive formulas can be interpreted as the ones that describe the way
the optimal solution is built by optimal sub-solutions (principal of the opti-
mality). The principle of the optimality was introduced by Richard Bellman
[10], who called the corresponding recursive formulas as the functional equa-
tions of the problem. Dynamic programming follows this strategy: it starts
from the optimal solutions of the trivial sub-problems and builds the optimal
solutions of the more and more complex sub-problems and eventually of the
original problem. In case of this problem the bottom-up way means that we
solve the problem for k=1, 2, 3, . . . , n. Although for a specific k there are
six different k-size sub-problems (P(k, a, b, c), P(k, a, c, b), P(k, b, c, a),
P(k, b, a, c), P(k, c, a, b), P(k, c, b, a)), their solutions can be obtained
from one another by simple letter-changing. For instance, the move-sequence
that solves optimally the Hmin(k, c, a, b) sub-problem can be obtained from
the optimal solution of the Hmin(k, a, b, c) sub-problem by changing letter a

with c, letter b with a and letter c with a. Accordingly, for each k=1, 2, 3,
. . . , n only one “variant” of the k-size sub-problems would be enough to be
solved.



Towers of Hanoi 97

The main difficulty of dynamic programming is that it is often nontrivial
to establish what sub-problems in what order have to be solved. In Figure
2 the imbricated ellipses illustrate the bottom-up strategy the dynamic pro-
gramming follows. Notice, that the optimal solution of the Hmin(3, a, b, c)

problem implies only two 2-size and five 1-size optimal sub-solutions. The
“dynamic programming order” the sub-problems (for n=3) have to be solved
is the following: 1. Hmin(1, a, b, c); 2. Hmin(2, a, c, b) (built up from the opti-
mal solutions of the Hmin(1, a, b, c) and Hmin(1, b, c, a) 1-size “variants”); 3.
Hmin(3, a, b, c) (built up from the optimal solutions of the Hmin(2, a, c, b) and
Hmin(2, c, b, a) 2-size “variants”). The growing sub-tree sequence included
in the imbricated ellipse-sequence represents the “increasing” sub-problem se-
quence that, according to the dynamic programming strategy, has to be solved.
In this sequence the current sub-problem succeeds its left-son-sub-problem,
and precedes its father-sub-problem. For n odd/even these sub-problem se-
quences are the followings (in case of the minimum version of the problem):

Hmin(1, a, b, c), Hmin(2, a, c, b), Hmin(3, a, b, c), Hmin(4, a, c, b), . . . ,
Hmin(n, a, b, c).
Hmin(1, a, c, b), Hmin(2, a, b, c), Hmin(3, a, c, b), Hmin(4, a, b, c), . . . ,
Hmin(n, a, b, c).
If it is difficult to build an iterative algorithm that determines this “dy-

namic programming order”, than, it is advisable to try to use the recursive
formula dictated order. Unfortunately the direct transcription of the recursive
formula into recursive procedure usually results in inefficient divide and con-
quer algorithm. Since dynamic programming problems are often characterized
by overlapping sub-problems, the standard divide and conquer approach com-
monly results in repeated evaluation of the identical sub-problems. To avoid
this ingredient the so-called “recursion with result caching” (memoization)
technique can be applied. According to this technique ones a sub-problem has
been solved its optimal solution (often the optimal value of the target func-
tion) is stored (memorized), and whenever later the recursive algorithm meets
again the same sub-problem its stored solution is simply retrieved.

As specificness, in case of Towers of Hanoi problem solving a sub-problem
means to solve its son-sub-problems effectively. Consequently, all sub-problems
have to be solved as many times as the algorithm meets them (as in case of
divide and conquer problems). Nevertheless we could do to store the code of
the optimal solutions of the solved sub-problems. (This method also works
only for moderate values of parameter n) Moreover, as we pointed out above,
it would be enough to store the code of the optimal solution of only one vari-
ant for each k=1, 2, 3, . . . , n. Unfortunately, managing (storing, retrieving,



98 Z. Kátai, L. I. Kovács

generating from one another, printing) these exponential-size move-sequences
has the same time-complexity as generating them again (The optimal solu-
tion of the k-size problem has the same number of moves as the number of
nodes of the corresponding k-level binary tree). Consequently, the memoiza-
tion technique, in this case, do not decrease (compared to the direct, divide
and conquer like implementations of the formulas fmin and fmax) the time
complexity of the algorithms.

Returning to the “recursion with result caching” technique, notice that
in the sub-problem sequence to be solved there are only to type of prob-
lems: Hmin(k, a, b, c) and Hmin(k, a, c, b). In case of first-type sub-problems
(Hmin(k, a, b, c)) the move of the largest disc is a → b (coded with 0). Fur-
thermore, after the optimal solution of the left-son-sub-problem (Hmin(k −

1, a, c, b)) has been stored, the optimal move-sequence for the right-son-sub-
problem (Hmin(k − 1, c, b, a)) is generated by the following letter-changes: a

is changed with c, b is changed with a and c is changed with b. According
to these letter-changes we have the following move-changes: change move 0
with move 4, move 1 with move 3, move 2 with move 0, move 3 with move
5, move 4 with move 2, move 5 with move 1. For the second type problems
(Hmin(k, a, c, b)) the largest-disc-move is a → c (coded with 1). The corre-
sponding move-changes are the followings: change move 0 with move 2, move
1 with move 5, move 2 with move 4, move 3 with move 1, move 4 with move
0, move 5 with move 3.

Procedure P memoization min applies the memoization technique. Rows 0
and 1 of array move changing[0..1][0..5] store the two move-changing patterns
to be applied (alternatively). (Binary variable pattern indicates the largest-
disc-move and the move-changing-pattern to be applied)

void P memozation min(int k, char s, char d, char h, int n, int *moves)
{

int i, p, pattern;
pattern = ((n+k)&1);
if(k==1)

moves[0]=pattern;
else
{

P memozation min(k-1, s, h, d, n, moves);
p=(1<<(k-1))-1; //the number of moves in the son-sub-problems
moves[p]=pattern; //the move of the largest disc



Towers of Hanoi 99

for(i=0;i<p;++i) //generating the right-son-solution
moves[p+1+i] = move changing[pattern][moves[i]];

}
}

What can we say as a conclusion for this ? Since the recursive formulas im-
plemented by procedures P recursive min (P recursive max) and P memoization min
are direct materializations of the principle of the optimality, and what is more,
they accomplish (along the back-way of the recursion) the bottom-up building
process prescribed by this principle, the strategy these procedures implement
can be considered dynamic programming. More exactly: recursive dynamic
programming. Most exactly (especially in case of procedures P recursive min
and P recursive max): divide and conquer like recursive dynamic programming
algorithms.

Remark: If we analyse the recursive formulas in top-down direction, then
they describe the way the greedy decisions reduce the problem to similar,
simpler sub-problems. The bottom-up analysis of the same formulas shows
the way the optimal solution (of the problem) is built on the score of the
optimal sub-solutions (of the sub-problems). This is why the algorithm can
be seen both greedy and dynamic programming strategy.

6 Backtracking

According to the backtracking strategy, we try to find the optimal solution as
a move-sequence. At each stage of the problem-solving process there are three
possible moves. Considering the three pegs “large”, “medium” and “small” ac-
cording to the size of their top-disc, the three moves are: “small”→“medium”,
“small”→“large”, “medium”→“large”. The solution-space of the problem can
also be represented by a rooted-tree. The nodes correspond to the stages of
the problem. Each stage can be characterised by a set-triplet. The sets of a
give triplet contain the discs from the corresponding pegs. Since at each stage
there are three possible moves, all nodes (expecting the leaves) have three
son-nodes. The root-node represents the initial stage of the problem when
all discs are on peg a: {(1, 2, . . . , n);();()}. In the final stage, correspond-
ing to the solution-leaves, all discs are on peg b: {();(1, 2, . . . , n);()}. The
shortest/longest root – ,,solution-leaf” path, represents the optimal solution.

The backtracking algorithms apply depth-first search (usually implemented
recursively), and choose the optimal solution by the standard minimum-/maxi-
mum-search method. In case of the Towers of Hanoi problem the backtracking



100 Z. Kátai, L. I. Kovács

strategy, in its primitive form, avoids only the loops and it is very inefficient.
For example, the tree representing the structure of the optimal solution of
the minimum version of the problem (Figure 2) has 2n − 1 nodes (supposing
that “root-nodes” assimilate their “own leaves”), equal with the numbers of
the moves along the optimal move-sequence. In case of the solution-space-
tree, only its shortest root – “solution-leaf” path contains so many nodes.
Furthermore, since the backtracking algorithm also needs to store the code of
the current move-sequence, this algorithm also works only for moderate-values
of parameter n.

The elements of array pegs[0..2] store the number of discs on the corre-
sponding peg (pegs[i].nr), and the discs themselves (pegs[i].discs[0..(n-1)]). The
source and destination pegs corresponding to the six possible moves are mem-
orized in array move types[0..5]. Arrays moves and states store the current
moves- and state-sequence. (In a given stage of the solution building process
the state of the problem can be described by the peg-sequence corresponding
to the positions the discs occupy) Function valid verifies if move i is valide as
next step (k). Procedures move forward and move backward move and remove
the current disc.

void P backtrack min(int k, ITEM P*pegs, ITEM MT*move types,
int*moves, ITEM ST*states)
{

if (states[k]==ENDSTATE)
{if(k<kmin){kmin=k; copy(opt solution, moves, kmin);}}
else
{

for(i=0; i<6;++i)
{

if(valid(i, k, pegs, move types, states))
{

move forward(i, k, pegs, move types, states, moves);
P backtrack min(k+1, pegs, move types, moves, states);
move backward(i, k, pegs, move types, states);

}
}

}
}

To optimise a backtracking algorithm means to reduce the traversed part of



Towers of Hanoi 101

the solution-space-tree. An utterly optimised backtracking algorithm traverses
only the optimal root – “solution-leaf” path. This means that we are able to
establish at each stage the optimal move. However such an algorithm would be
rather greedy or dynamic programming than backtracking. (See “The iterative
implementation” section.)

7 The iterative implementation

In the literature [6], [7], [8] and others debates on non-recursive dynamic pro-
gramming algorithms, as solutions of the Towers of Hanoi puzzle. The ideas
analysed in previous sections raise the following question: Is it possible to gen-
erate the move-sequence that represents the optimal solution iteratively? It is
not hard to realize that procedure P memozation min can be easily transcribed
to an iterative dynamic programming algorithm.

According to the “dynamic programming order” presented above, the algo-
rithm advances from father to father. The optimal solution of any father-sub-
problem can be determined on the score of the optimal solution of its left-
son-sub-problem. If the current sub-problem in the bottom-up building pro-
cess is Hmin(k, x, y, z), then Hmin(k, y, z, x) is its right-brother-sub-problem,
Hmin(k + 1, x, z, y) is its father-sub-problem, and the move the largest disc
of the father-sub-problems has to perform is x → z. As we previously men-
tioned, the optimal solution of the right-brother-sub-problem can be found
from the solution of the left-brother-sub-problem by simply letter changing.
To solve the Hmin(k + 1, x, z, y) father-sub-problem means, that, after the
current left-son-sub-problem (Hmin(k, x, y, z)) has been solved, we move disc
(k + 1) from peg x to peg z, and than we generate the solution of the right-
son-sub-problem (Hmin(k, y, z, x)). The starting problem is Hmin(1, a, b, c) or
Hmin(1, a, c, b) depending if n is odd or even. Procedure P iterative DP min
follows this iterative dynamic programming strategy.

void P iterative DP min(int n, int *moves)
{

int i, k, pattern, p;
moves[0] = pattern = !(n&1); //the first move
for(k=2;k<=n;++k)
{

p=(1<<(k–1))–1;
pattern ^ = 1; //we change the pattern
moves[p]=pattern; //the move of the largest disc



102 Z. Kátai, L. I. Kovács

//corresponding to the father problem
for(i=0;i<p;++i) //generating the righ-brother-solution

moves[p+1+i] = move changing[pattern][moves[i]];
}

}

The main concern about procedure P iterative DP min is related (as we de-
scribed above) with the limited memory capacity of the computers. How can
we eliminate this ingredient? The solution is based on the following observa-
tions (We have considered the minimum version of the problem; We consider
the three pegs “large”, “medium” and “small” according to the size of their
top-disc):
• In any intermediate state of the problem solving process there are three

possible moves: “small”→“medium”, “small”→“large”, “medium”→“large”.
• The top-disc of the “small-peg” is always the smallest disc. It is not

allowed two consecutive moves with the smallest disc. (To avoid the loops,
and to maintain the minimal character of the move-sequence). So, the smallest
and the medium-size top-discs move alternatively.
• If the next to move is the medium-size top-disc, than it is clear that

the “medium”→“large” move has to be performed. The ,,own leaves” of the
root-nodes represent these moves. (Figure 2)
• The smallest disc (disc n) moves according to the patterns (a, b, c, a, b, c,

...) or (a, c, b, a, c, b, ...) depending on the odd or even character of param-
eter n. Consequently, the moves of the smallest-disc are also unambiguously.
(There is only one optimal-size solution)

What reasoning lies behind the last remark? These move-patterns can be
established by a careful analysis of the bottom-up building process, and the
correctness of them is proved by mathematical induction. We assume that the
problem to be solved is Hmin(n, a, b, c), and n is odd. We will prove that in
this case the smallest disc follows the (a, b, c, a, b, c, ..., c, a, b) 2n−1 long
move-sequence.

For n=1 we have only the smallest disc and its move is a → b. Assume
that for a given odd n > 1 the 2n−1 long move-sequence of the smallest disc
is: a, b, c, a, b, c, ..., c, a, b. The right-brother sub-problem of problem
Hmin(n, a, b, c) is Hmin(n, b, c, a). The corresponding move-sequence for the
smallest disc is: b, c, a, b, c, a, ..., a, b, c. Concating these patterns,
we get the 2n long move-sequence corresponding to the father-sub-problem
Hmin(n + 1, a, c, b): a, b, c, a, b, c, ..., a, b, c. Repeating this procedure we
get for the Hmin(n + 2, a, b, c) grandfather-sub-problem the 2n+1 long a, b,



Towers of Hanoi 103

c, a, b, c, ..., c, a, b move-sequence-pattern. We can use the same train of
thought for n even.

Hmin(1,a,b,c): (a b) 

Hmin(2,a,c,b): {(a b)}, [a c], {(b c)} 

Hmin(3,a,b,c): {(a b), [a c], (b c)}, [a b], {(c a), [c b], (a b)} 

a, b, c, a, b 

Figure 3: We used round brackets for the moves of the smallest disc and square
brackets for the moves of the largest disc of the corresponding sub-problem
(k > 1). The curly brackets-pairs represent the brother sub-problems.

Consequently: the strategy applied by this iterative algorithm is mainly
dynamic programming due two the following reasons:
• The algorithm generates the move-sequence that implements the bottom-

up solution-building process of the dynamic programming strategy.
• The way the move-sequence is established is rooted in optimalisations

included in the principal of the optimality.
• The move-pattern the smallest disc follows can be determined by bottom-

up analyses of the recursive formulas.
Interestingly, the move-patters the smallest disc has to follows can also be

determined by a greedy approach of the problem. Solving the Hmin(n, a, b, c)

problem we have the following moving-patterns:
• all n discs get from peg a to peg b: a >> b; (between stages a and b may

also be other stages)
• disc 1 moves: a → b (disc 1 moves directly from peg a to peg b; greedy-

move)
• top (n-1) discs: a >> c >> b (top (n-1) discs pass through stages a, c,

b)
• disc 2 moves: a → c → b, greedy-moves
• top (n-2) discs: a >> b >> c >> a >> b;
• disc 3 moves: a → b → c → a → b, greedy-moves
• top (n-3) discs: a >> c >> b >> a >> c >> b >> a >> c >> b;
• disc 4 moves: a → c → b → a → c → b → a → c → b, greedy-moves
• . . .
Since for all k > 1 sub-problem Hmin(k, x, y, z) is reduced to sub-problems

Hmin(k − 1, x, z, y) and Hmin(k − 1, z, y, x) the next moving-pattern is gener-
ated from the current one by intercalating between all consecutive stages the



104 Z. Kátai, L. I. Kovács

“third stage”. Notice that there are only two patters, one for odd-discs (a, b,
c, a, b, c, ...) and one for even-discs (a, c, b, a, c, b, ...).

The fact that the p1 >> p2 >> . . . >> pm stage-sequence of the k-size tower
in case of its largest disc means p1 → p2 → . . . → pm direct move-sequence is
based on greedy decisions. Furthermore, the above-presented “pattern gener-
ating process” is hand-by-hand with the top-down greedy strategy described
previously. Accordingly, we can state, that (form this point of view) the move-
patterns the iterative algorithm follows, can also be established in greedy way.

Procedure P iterative min implements the above-presented iterative algo-
rithm. The current values in array state[1..n] represent the current state of
the problem. Element state[i] store the peg corresponding to the position of
disc i. Variable i represents the current disc that moves. During odd steps
(k is odd) disc n moves. At even steps (k is even) the smallest disc, that is
on different peg than disc n, moves. For odd i disc i follows the “increasing
circular pattern”: a, b, c, a, b, c,... In cases when i is even disc i has to move
according to the “decreasing circular pattern”: c, b, a, c, b, a, ...

void P iterative min(int n, char a, char b, char c)
{

char p = (char*)calloc(n+1, sizeof(char));
for(i=1;i<=n;++i) p[i] = a;
int nr=(1<<n)–1;
int k=1;
while(k<=nr)
{

if(k&1) i=n; //the smalest disc moves
else

for(i=n-1;p[i]==p[n];−−i);
//the smallest disc, that is on different peg than disc n, moves

printf(”%c − > ”,p[i]); //move from peg p[i]
p[i]+=1-((i&1)<<1);
// according to the odd/even character of i,
// the ,,increasing/decreasing” pattern is followed
if(p[i]==c+1) p[i]=a;
elseif(p[i]==a-1) p[i]=c; // circular pattern are followed
printf(” %c\n”,p[i]); //move to peg p[i]
++k;

}
}



Towers of Hanoi 105

8 Analysis of programs

The Towers of Hanoi puzzle was analyzed in the literature in many ways,
such [2], [3], [4], [5]. In this paper we solved the problem according to the
principles of the four major programming techniques. Including the iterative
solution we have got 5 programs (P recursive min – divide and conquer solution,
P greedy min – greedy solution, P memozation min – dynamic programming,
P backtrack min – backtracking solution, and P iterative min – the iterative
solution).

Greedy

Backtracking Divide and conquer 

Dynamic programming 

Figure 4: Towers of Hanoi – where programming techniques blend.

In the above mentioned programs, we used a time measuring sequence, as
follows:

#include <windows.h>

int64 freq, tStart, tStop;
unsigned long TimeDiff;
QueryPerformanceFrequency((LARGE INTEGER*)&freq);
QueryPerformanceCounter((LARGE INTEGER*)&tStart);
With this sequence we started the timer, then we called the program solving

sequence. At the end, we calculate the time difference:
QueryPerformanceCounter((LARGE INTEGER*)&tStop);
TimeDiff = (unsigned long)(((tStop − tStart) ∗ 1000000) / freq);
Using the 1 000 000 multiplier, we got the time in microsecond – a very

precise chronometer. Because of the time sharing algorithm of the operating
system, we did execute 20 times each program, and calculate an average of
time-need.

We tested the programs for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, and 20 discs.
During the tests we disabled any I/O operation (ex. printf).

Table 1 concludes the tests, and the time-needs.
Technical information: We measured the time in microsecond. The com-

puter: Intel Pentium 4; 2,40 GHz CPU; 1,50 GB RAM; the programs: Mi-



106 Z. Kátai, L. I. Kovács

n steps 2n−1 recursive greedy backtracking dynamic iterative
1 1 1 1 5 1 1
2 3 1 1 15 1 1
3 7 1 1 143 1 1
4 15 2 2 29 022 2 2
5 31 3 3 1 791 167 126 2 2
6 63 5 5 ,,∞” 2 2
7 127 8 8 ,,∞” 3 3
8 255 14 15 ,,∞” 4 4
9 511 27 30 ,,∞” 6 6
10 1023 51 63 ,,∞” 10 11
15 32 767 1599 2071 ,,∞” 250 320
20 1 048 575 52 080 70 112 ,,∞” 10 511 10 849

Table 1: Comparative analysis of programs.

crosoft Visual C++ 6.0, Win32 Console Application.
According to the comparative analysis, we can conclude that the dynamic

programming and the iterative solutions are the fastest (aprox. 5-times faster
than the recursive, divide and conquer solution), the classic backtracking is
the slowest. There is a very small difference between the iterative solution and
the recursive dynamic programming solution.

9 Conclusions

As we pointed out in this paper the principle solving process of Towers of
Hanoi problem mainly follows a greedy strategy. Then again, the way the op-
timal solution is built mostly follows the dynamic programming “way of think-
ing”. The greedy algorithms produce only one decision-sequence, a sequence
of greedy decisions. The dynamic programming strategies usually generate
several optimal sub-sequences. The fact, that both the recursive and iterative
algorithms generate only one decision-sequence is another reason why these
solutions can be considered as greedy strategies implemented in dynamic pro-
gramming way.

The recursive formulas are born in top-down greedy way, but they are im-
plemented in bottom-up way as dynamic programming strategies. Further-
more, considering them in top-down / bottom-up way, they are materializa-



Towers of Hanoi 107

tions of the principal of greedy-chooses / optimality. Although the current
sub-problem at each step is reduced to two/three sub-sub-problems (that is
characteristic to divide and conquer strategies) the problem solving processes
(both the principle and the implementation) are directed by greedy and dy-
namic programming optimalisations included in the recursive formulas. The
fact that the problem solving process pretends the repeated “evaluation” of the
overlapping sub-problems is also a divide and conquer feature of the problem.

With respect to the time complexity of the implementations, they are ex-
ponential, since the size of the optimal solutions depends exponentially on the
size of the input. All algorithms traverse the same optimal-solution-tree with
(2n−1) or (3n−1) nodes (expecting the backtracking algorithm that traverses
the whole solution-space-tree). The running time differences between the re-
cursive and iterative implementations can mainly be explained by the loss of
time that arises due to the recursive calls. Whereas procedure P recursive min
implements the bottom-up building process on the back-way of the recursion,
procedure P iterative min performs this directly. Since the optimal solution has
exponential size, even minor variances between implementations are reflected
in exponential way with respect to the running time of the algorithms.

References

[1] N. Claus (pseudonym for Édouard Lucas), La Tour d’Hanöı: V’eritable
Cassetête Annamite, Original instruction sheet printed by Paul Bousrez,
Tours, 1883.

[2] Z. Kátai, Algoritmusok felülnézetből, Stientia Kiadó, Kolozsvár, 2006.

[3] D.T. Barnard, The Towers of Hanoi: An Exercise in Non-Recursive Algo-
rithm Development, Tech. Report 80-103, Queen’s University, 1980.

[4] J.P. Bode, A.M. Hinz, Results and open problems on the Tower of Hanoi,
Congr. Numer., 139 (1999) 113–122.

[5] P. Cull, E.F. Ecklund, Jr., Towers of Hanoi and analysis of algorithms,
Amer. Math. Monthly, 92 (1985) 407–420.

[6] B. Eggers, The Towers of Hanoi: Yet another nonrecursive solution, SIG-
PLAN Notices, 20, 9 (1985) 32–42.



108 Z. Kátai, L. I. Kovács

[7] F.O. Ikpotokin, S.C. Chiemeke, E.O. Osaghae, Alternative approach to
the optimal solution of tower of Hanoi, J. Inst. Math. Comput. Sci., 15
(2004) 229–244.

[8] M. Sniedovich, OR/MS Games: 2. Towers of Hanoi Puzzle, INFORMS
Transactions on Education, 3, 1 (2002) 34–51.

[9] Hanoi tornyai, http://mattort.fvt.hu/, Abacus Matematikai Lapok, 2001-
2002. .

[10] R.E. Bellman, Dynamic Programming, Princeton, New Jersey, 1957.

Received: November 18, 2008.




