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Towards optimal sorting of 16 elements
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Abstract. One of the fundamental problem in the theory of sorting is to
find the pessimistic number of comparisons sufficient to sort a given num-
ber of elements. Currently 16 is the lowest number of elements for which
we do not know the exact value. We know that 46 comparisons suffices
and that 44 do not. There is an open question if 45 comparisons are suf-
ficient. We present an attempt to resolve that problem by performing an
exhaustive computer search. We also present an algorithm for counting
linear extensions which substantially speeds up computations.

1 Introduction

We consider sorting by comparisons. One of the fundamental problem in that
area is to find the pessimistic number S(n) of comparisons sufficient to sort n

elements. Steinhaus posed this problem in [8]. Knuth considered it in [4]. From
the information-theoretic lower bound, further denoted by ITLB, we know
that S(n) ≥ dlog2 n!e = C(n). Ford and Johnson discovered [2] an algorithm,
further denoted by FJA, which nearly and sometimes even exactly matches
C(n). Let F(n) be the worst case number of comparisons in the FJA. It holds
S(n) = F(n) = C(n) for n ≤ 11 and n = 20, 21. The FJA does not achieve the
ITLB for 12 ≤ n ≤ 19 and infinitely many n ≥ 22. Carrying an exhaustive
computer search, Wells discovered in 1965 [9, 10] that the FJA is optimal for
12 elements and S(12) = F(12) = C(12) + 1 = 30. Kasai et al. [3] computed
S(13) = F(13) = C(13) + 1 = 34 in 1994, but that result was not widely
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known. It was discovered again a few years later [5], independently, extending
the Wells method. Further improvement of the method led to show in years
2003–2004 [6, 7] that it holds S(n) = F(n) = C(n) + 1 for n = 14, 15, 22,
similarly.

In this paper we consider the case n = 16. This is now the lowest number
of elements for which we do not know the exact value of S(n). The previous
results could suggest that S(16) = F(16) = C(16) + 1 = 46. However Knuth
conjectures that S(16) = C(16) = 45. He does not believe that the FJA is
optimal for 16 elements. He wrote [4]: “There must be a way to improve upon
this!” We present recently obtained results1 aiming to compute the value of
S(16). It is very unlikely that someone will find it by pure theoretical consider-
ation. It seems that the only promising way leads by performing an exhaustive
computer search supported by cleaver heuristics.

The paper is organized as follows. In Section 2 we introduce notation used
throughout the paper. In Section 3 we briefly describe the algorithm we use
to resolve if there exists a sorting algorithm for a given number of elements
and comparisons. We analyse why the ITLB is not achieved for 13, 14 and 15
elements in Section 4. We present the newest results for 16 elements in Section
5. In Section 6 we compare the computation complexity of the previous cases
and the case of 16 elements. Finally, in Section 7, we present the algorithm for
counting linear extensions which substantially improves the algorithm from
Section 3.

2 Notation

We denote by U = {u0, u1, . . . , un−1} an n-element set to be sorted. Sorting of
the set U is represented as a sequence of posets (Pc = (U,Rc))c=0,1,...,C, where
Rc is a partial order relation over a set U. Sorting starts from the total disorder
P0 = (U,R0), where R0 = {(u, u) : u ∈ U}. After performing c comparisons
we obtain a poset Pc = (U,Rc). Sorting should end with a linear order PC.

Assume that elements uj and uk are being compared in step c. Without loss
of generality we can assume that (uj, uk) 6∈ Rc−1 and (uk, uj) 6∈ Rc−1. Suppose
the answer to the comparison is that element uj is less than element uk. Then
we obtain the next poset Pc = (U,Rc), where the relation Rc is the transitive
closure of the relation Rc−1 ∪ {(uj, uk)}. We denote this by Pc = Pc−1 + ujuk.

By e(P) we denote the number of linear extensions of a poset P = (U,R).

1The results presented in this paper are obtained using computer resources of the In-
terdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of
Warsaw.
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We assume that e(P + ujuk) = e(P) and e(P + ukuj) = 0 if elements uj, uk

are in relation, i.e., if (uj, uk) ∈ R.

3 The algorithm

In this section we remember briefly the algorithm which answers if sorting of a
given poset P0 can be finished in C comparisons. The algorithm was invented
in [9, 10] and improved in [5] and later in [6]. We present the next improvement
to the algorithm in Section 7. The algorithm has two phases: forward steps
and backward steps.

In the forward steps we consider a sequence of sets (Sc)c=0,1,...,C. The set S0
contains only the poset P0. In step c we construct the set Sc from the set Sc−1.
Every poset P ∈ Sc−1 is examined for every unrelated pair (uj, uk) in order
to verify whether it can be sorted in the remaining C − c + 1 comparisons.
As the result of the comparison of uj and uk one can get one of two posets
P1 = P + ujuk or P2 = P + ukuj. If the number of linear extensions of P1 or
P2 exceeds 2C−c then by the ITLB it cannot be sorted in the remaining C− c

comparisons. It follows that in this case, in order to finish sorting in C− c+ 1

comparisons, elements uj and uk should not be compared in step c. If the
number of linear extensions of both P1 and P2 do not exceed 2C−c then we
store one of them in the set Sc, namely that with greater number of linear
extensions. If both have the same number of linear extensions we choose P1
arbitrarily. We do not store isomorphic posets or a poset which dual poset is
isomorphic to some already stored poset.

If some set Sc in the sequence appears to be empty then we conclude that
the poset P0 cannot be sorted in C comparisons. Such results are received for
12 and 22 elements and C = C(n) [6], where the set S23 and S40 is empty,
respectively. Wells reported [10] that for n = 12 only the set S24 is empty.
Those results mean that S(n) > C(n) for n = 12, 22. If the set SC is not
empty after performing forwards steps, we cannot conclude about sorting of
the poset P0. In that case we continue with backward steps.

In the backward steps we consider the sequence of sets (S∗c )c=0,1,...,C. We
start with the set S∗C = SC which contains only a linear order of the set U.
In step c, where c = C − 1, C − 2, . . . , 0, we construct the set S∗c from the
set S∗c+1. The set S∗c is a subset of the set Sc and contains only posets which
can be sorted in the remaining C − c comparisons. Poset P ∈ Sc is stored in
S∗c iff there exists in P a pair of unrelated elements (uj, uk) such that poset
P1 = P+ujuk or poset P2 = P+ukuj belongs to the set S∗c+1 (as previously we
identify isomorphic and dual posets) and both posets are sortable in C− c− 1
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comparisons. Therefore we store the poset P in the set S∗c iff both P1, P2 ∈ S∗c+1

or P1 ∈ S∗c+1 and P2 is sortable in C− c− 1 comparisons or P2 ∈ S∗c+1 and P1
is sortable in C − c − 1 comparisons. Sortability of P1 or P2 can be checked
recursively using the same algorithm.

If some set S∗c in the sequence appears to be empty then we conclude that
the poset P0 cannot be sorted in C comparisons. On the other hand, if the set
S∗0 is not empty, it contains the poset P0 and we conclude that the poset P0 can
be sorted in C comparisons. For n = 13, 14, 15 and C = C(n) we received that
the set S∗15 is empty [5, 6, 7], which means that S(n) > C(n) for n = 13, 14, 15.

We analyze those results in detail in the next section.
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Figure 1: The poset P16, e(P16) = 113400

4 The previous cases

The computer experiment for n = 13 and C = C(n) returns that the set
S∗15 is empty, which means that S(13) = F(13) = C(13) + 1 = 34 [5]. In that
experiment the set S∗16 contains only one poset P16, whose Hasse diagram is
shown in Figure 1. The poset P16 can be obtained from a poset contained in
the file S15 in two ways:

• we compare elements u0 and u10 in the poset P ′15 ∈ S15 shown in Figure
2(a); if u0 > u10 we obtain the poset P16; if u0 < u10 we obtain the poset
Q ′16 shown in Figure 3(a);

• we compare elements u0 and u6 in the poset P ′′15 ∈ S15 shown in Figure
2(b); if u0 < u6 we obtain the poset P16; if u0 > u6 we obtain the poset
Q ′′16 shown in Figure 3(b).
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(a) e(P ′15) = 222750
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(b) e(P ′′15) = 238140

Figure 2: The posets P ′15 and P ′′15

Neither the poset P ′15 nor the poset P ′′15 can be stored in the file S∗15, because
neither the poset Q ′16 nor the poset Q ′′16 can be sorted in the remaining C−16 =
17 comparisons. It is quite surprising that the posets Q ′16, Q ′′16 cannot be
sorted. The poset Q ′16 has less linear extensions than the poset P16, which
intuitively should make it easier to sort. Indeed, the poset Q ′′16 has more linear
extensions than the poset P16, which intuitively makes it harder to sort. On the
other hand, there are known the two largest elements of the poset Q ′′16, which
intuitively makes it easier to sort. The poset P16 is sortable in 17 comparisons
because of its symmetry.

Similar results were received in the computer experiments for n = 14, 15 and
C = C(n), i.e., S(14) = F(14) = C(14) + 1 = 38 and S(15) = F(15) = C(15) +
1 = 42. In both cases the file S∗16 contains only one poset, namely the poset
P16 extended by one isolated element u13 (for n = 14) or two isolated elements
u13, u14 (for n = 15), respectively. In both cases the file S∗15 is empty and the
reason is the same. The posets P ′15, Q

′′
15, Q

′
16, Q

′′
16 extended by u13 or u13, u14

are observed, respectively, and neither Q ′16 nor Q ′′16 is sortable in the remaining
C − 16 comparisons. Note that for n = 14 we have C − 16 = C(n) − 16 = 21

and for n = 15 we have C− 16 = C(n) − 16 = 25.

5 The case of 16 elements

In this section we describe an attempt to find for n = 16 a sorting algo-
rithm better than the FJA or to exclude the existence of such algorithm.
Before starting a long time computation it was checked if the scenario from
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(a) e(Q ′16) = 109350
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(b) e(Q ′′16) = 124740

Figure 3: The posets Q ′16 and Q ′′16

the previous section repeats for n = 16. The posets Q ′16, Q
′′
16 were extended by

three isolated elements u13, u14, u15. As previously, the experiment returned
that neither the poset Q ′16 nor the poset Q ′′16 can be sorted in the remaining
C− 16 = C(n) − 16 = 29 comparisons. Of course, this result does not exclude
the existence of the desired algorithm.

To find the exact value of S(16) the algorithm from Section 3 with improve-
ment from Section 7 is applied. Because the search space is very reach, the
problem is divided into smaller subproblems. Let T(k) be the number of el-
ements which were compared (touched) by a sorting algorithm in the first k

comparisons. Observe that T(k1) ≤ T(k2) for k1 < k2. A sorting algorithm for
16 elements, using at most C(16) = F(16) − 1 = 45 comparisons, is examined
for possible values of T(k).

The first experiment returned that if S(16) = 45 then it holds T(15) < 16.

Note that for the FJA we have T(k) = 16 for k ≥ 8. Hence a hypothetical
algorithm, using for 16 elements pessimistically less comparisons than the
FJA, must be complete different from the FJA. It must differ from the FJA
already before the 9th comparison. This is quite surprising, when we look at
regular structure of the first 15 comparisons in the FJA. The next experiment
showed that if S(16) = 45 then T(15) > 11, which is already not surprising.
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n Pentium II Pentium III Opteron 246 Core 2 Duo
233 MHz 650 MHz 2 GHz 2.13 GHz
2002 2003 2004 2007

13 10 hr. 30 min. 41 min. 10 min. 44 sec. 46 sec.
14 391 hr. 37 min. 44 hr. 10 min. 4 hr. 31 min.
15 17554 hr.

Table 1: Computation times

6 Computation complexity

Computation complexity of the method groves exponentially. The case S(13)
needed in year 2002 [5] more than 10 hours of CPU time. The value of S(14)
was computed one year later (published in 2004 [5]) and took about 392 hours
on faster computer and using improved algorithm, which could solve S(13)
in about 40 minutes. Further progress in hardware allowed to compute the
value of S(15) in year 2004 (published only in 2007 [7]) using about 17500
hours of CPU time. Each next case required significant improvements in the
algorithm or hardware. The progress is presented in Table 1. One can argue
that the comparison is not fair, because the machines used in the experiments
are different. The purpose of this table is to show an overall improvement
in software and hardware, and to give a filling, how difficult the case of 16
elements could be. The about 10 times improvement observed between the
second last and the last column is due mainly to the algorithm described in
the next section. Note that for Core 2 Due processor both cores were used
in parallel. A few years of CPU time was used up to now to search for an
algorithm achieving the ITLB for n = 16. The computation that T(15) < 16

and T(15) > 11 took about 20000 and 7000 hours, respectively. Computation
for the next case T(15) = 12 is currently in progress. It used up to now more
than 25000 hours.

7 Counting linear extensions

The most time consuming part of the algorithm presented in Section 3 is count-
ing linear extensions of a given poset. In this section we describe the algorithm
for counting linear extensions which is inspired by [1] and which substantially
improves computations. For a given poset P = (U,≺) the algorithm computes
e(P) and the table t[j, k] = e(P + ujuk) for j 6= k.
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u0 u1

u2 u3

∅

{u1} {u0}

{u1, u3} {u0, u1}

{u0, u1, u3} {u0, u1, u2}

{u0, u1, u2, u3}

Figure 4: A poset and the graph of its downsets

Let P = (U,≺) be a poset. A subset D ⊆ U is called a down set of the poset
P if for each x ∈ D all elements y ∈ U preceding x (i.e., y ≺ x) also belong to
D. We consider a directed acyclic graph G whose nodes are all downsets of P.
For two nodes D1 and D2 there is an edge (D1, D2) if there exists x ∈ U \D1

such that D2 = D1 ∪ {x}. An example of a poset and its graph of downsets is
shown in Figure 4, where U = {u0, u1, u2, u3}.

Let d(D) denote the number of linear extensions of the poset (D,≺) which
is the poset P reduced to the down set D. Let u(D) denote the number of
linear extensions of the poset (U \D,≺) which is the poset P reduced to the
complementary set of the down set D. We have [1]

d(D) =
∑
(X,D)

d(X), (1)

where the sum is taken over all edges (X,D) in the graph G incoming to the
node D. We assume d(∅) = 1. Observe that d(U) = e(P). All values of d(D)
are computed using the DFS in the graph G, starting at the node U and going
down, i.e., in the opposite direction to the edges. Similarly, it holds [1]

u(D) =
∑
(D,X)

u(X), (2)

where the sum is taken over all edges (D,X) in the graph G outgoing from the
node D. We assume u(U) = 1. Observe that u(∅) = e(P). All values of u(D)
are computed using the second DFS in the graph G, starting at the node ∅
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d(∅) = 1, u(∅) = 5

d(u1) = 1, u(u1) = 3 d(u0) = 1, u(u0) = 2

d(u1, u3) = 1, u(u1, u3) = 1 d(u0, u1) = 2, u(u0, u1) = 2

d(u0, u1, u3) = 3,

u(u0, u1, u3) = 1

d(u0, u1, u2) = 2,

u(u0, u1, u2) = 1

d(U) = 5, u(U) = 1

Figure 5: The numbers of linear extensions of the downsets and they comple-
mentary sets

k

0 1 2 3

j

0 – 2 5 4
1 3 – 5 5
2 0 0 – 2
3 1 0 3 –

Table 2: The values of t[j, k]

and going up. Values of d(D) and u(D) for the graph in Figure 4 are shown
in Figure 5. The curly braces are omitted for clarity, e.g., instead of d({u0})
we write d(u0). The table t can be computed from the equation

t[j, k] =
∑
(V,W)

d(V)u(W), (3)

where the sum is taken over all edges (V,W) in the graph G such that W =
V∪{uj} and uk ∈ U\W. For a proof see [1]. This computation is done altogether
with the second DFS. For the graph in Figure 4 the values t[j, k] are included
in Table 2.

For a given poset on an n-element set its graph of downsets can have up
to 2n nodes. We implemented the graph as a table of the size 2n. The table
is indexed by downsets. The index is the characteristic function of the set D,
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i.e., the index is the n-bit number, where bit j is set iff uj ∈ D. Graph G
is not constructed explicitly. When we proceed a node D all incoming and
outgoing edges are easily computable from a poset representation. We hold at
position D in the table only two numbers d(D), u(D) and visited time stamp
v(D) needed to implement the DFS. We initialize the table only once at the
beginning of the program by setting all v(D) = 0. We also hold the global
visited time stamp vt initialized to 0. Starting a new DFS we increment the
time stamp vt. If we proceed a node D and vt > v(D) then it means that the
node D was not yet visited in the current DFS run. If vt = v(D) then the
node was already visited. We do not need to reinitialize the table before the
next DFS. This is very important and decreases running time. The algorithm
is very efficient for small n, because with a high probability the whole graph
resides in a processor cache memory.
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