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Abstract. Around 30% of documents on the web have duplicates.
Near-duplicate documents bear high similarity to each other, yet they
are not bitwise identical. They are identical in terms of content but dif-
fer in a small portion of the document. Thus, algorithms for detecting
these pages are needed. In the course of developing a near-duplicate de-
tection system in this article we present an approach based on frequent
closed sets of attributes for constructing clusters of duplicate documents,
documents being represented by both syntactic and lexical methods. We
provide a prototype of software environment for those who want to utilize
such methods for finding near-duplicate documents in large text collec-
tions. This software includes two syntactic methods of finding near dupli-
cate documents, a clustering technique based on frequent closed itemsets,
means of evaluation of results and a tool for generating test collections
of near-duplicate documents.
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1 Introduction

The Web makes it easy for words to be copied and spread from one page
to another, and the same content may be found at more than one web site,
regardless of whether its author intended it to be or not. Duplicate and near-
duplicate web pages are creating large problems for web search engines: they
increase the space needed to store the index, either slow down or increase the
cost of serving results, and annoy the users. This requires the creation of
efficient algorithms for computing clusters of duplicates [4, 6, 7, 10, 11, 16, 21,
22, 30, 29].

A naive solution is to compare all pairs to documents. The first algorithms
for detecting near-duplicate documents with a reduced number of comparisons
were proposed by Manber [25] and Heintze [17]. Both algorithms work on se-
quences of adjacent characters. Brin [3] started to use word sequences to detect
copyright violations. Shivakumar and Garcia-Molina [31] continued this re-
search and focused on scaling it up to multi-gigabyte databases. Broder [5] also
used word sequences to efficiently find near-duplicate web pages. Charikar [9]
developed an approach based on random projections of the words in a docu-
ment. Hoad and Zobel [19] developed and compared methods for identifying
versioned and plagiarised documents. Henzinger [18] tests and explores how
some different existing methods (Broder’s [5] and Charikar’s [9]) for detecting
near-duplicate content could be used together to try to identify near-duplicates
on the Web. A good overview of approaches to detect exact duplicates and
near-duplicates of web pages can be found in [15].

We define duplicates in terms of similarity. We say that two documents are
duplicates, if a numerical measure of their similarity exceeds a given thresh-
old [7]. This can be represented by a graph, where nodes correspond to docu-
ments and the edges of the graph represent the pairs of the similarity relation.
From this similarity graph we can compute the clusters of similar documents
by counting the number of connected components of the graph. The main
steps in finding clusters of duplicates are: representing documents by sets of
attributes, making solid document images and computing clusters of similar
documents. First of all, we have to remove the HTML markup and punctua-
tion marks of the web documents. After this, as the first step, we turn these
documents into strings of words, which are represented by sets of attributes.
We have two options of doing this: from a syntactical approach or from a
lexical approach.

In the syntactical approach we define binary attributes that correspond to
each fixed length substring of words (or characters). These substrings are
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called shingles. We can say that a shingle is a sequence of words. A shingle
has two parameters: the length and the offset. The length of the shingle is the
number of the words in a shingle and the offset is the distance between the
beginnings of the shingles. We assign a hash code to each shingle, so equal
shingles have the same hash code and it is improbable that different shingles
would have the same hash codes (this depends on the hashing algorithm we
use). After this we randomly choose a subset of shingles for a concise image
of the document [4, 6, 7]. An approach like this is used in AltaVista search
engine [29]. There are several methods for selecting the shingles for the image:
a fixed number of shingles, a logarithmic number of shingles, a linear number
of shingle (every nth shingle), etc. In lexical methods, representative words
are chosen according to their significance. Usually these values are based on
frequencies: those words whose frequencies are in an interval (except for stop-
words from a special list of about 30 stop-words with articles, prepositions
and pronouns) are taken: words with high frequency can be non informative
and words with low frequencies can be misprints or occasional words.

In lexical methods, like I-Match [11], a large text corpus is used for generat-
ing the lexicon. The words that appear in the lexicon represent the document.
When the lexicon is generated the words with the lowest and highest fre-
quencies are deleted. I-Match generates a signature and a hash code of the
document. If two documents get the same hash code it is likely that the sim-
ilarity measures of these documents are equal as well. I-Match is sometimes
instable to changes in texts [22]. In lexical method [21] the focus is towards the
construction of a lexicon, a set of descriptive words, which should be concise,
but cover well the collection. The occurrence of a word in a document image
is robust with respect to small changes in the document. When we define
document images, we define a similarity relation on documents starting from
a similarity measure, which takes to two documents to a number into the [0,1]
interval, depending on the amount of their common description units. Then
we choose a threshold. If this threshold is exceeded, it means that there is a
large similarity between the documents (the two documents are very close to
being duplicates). The metrics and the threshold define similarity relation on
document pairs. The similarity relation on document pairs determines clusters
of near-duplicates. There are several possible definitions for a cluster, but one
of them often used in practice is as follows: Consider a graph, in which nodes
represent the Internet documents and edges correspond to similarity relations.
Then a cluster of near-duplicates is a connected component of this graph. The
advantage of this definition is in the efficiency of computation: a connected
component of a graph can be computed in linear time in the number of edges.



218 D. Ignatov, K. Jánosi-Rancz, S. Kuznetsov

A drawback of the definition is also obvious: the relation to be near-duplicates
is not transitive, so absolutely different documents can occur in a cluster. The
strongest definition of a cluster is based on a graph clique, but it is much
harder computationally, because generation of maximal cliques is a classical
problem. We can use an intermediate formulation, which is between these two
extreme definitions, and this way make a trade-off between the precision and
the complexity of the cluster computation.

In this paper we consider similarity as an operation taking two documents
to the set of all common elements of their concise description. Description
elements can be syntactical units (shingles) or lexical units (representative
words). A cluster of similar documents is defined as a set of all documents
with a certain set of common description units. A cluster of duplicates is
defined as a set of documents, where the number of common description units
exceeds a given threshold. In this article we compare results of its application
with the list of duplicates obtained by applying other methods to the same
collection of documents. We examined the impact of the following parameters
on the result:

• The use of the syntactical or lexical methods for representing documents

• the use of method “n minimal elements in a permutation” or “minimal
elements in n permutations” [4, 6, 7] (the second method, having better
probability-theoretical properties, has worse computational complexity)

• shingling parameter

• threshold value of similarity of document images.

We used a definition based on formal concepts for a cluster: clusters of
documents are given by formal concepts of the context where objects corre-
spond to description units and attributes are document names. So a cluster
of very similar documents corresponds to a formal concept so that the size of
the extent exceeds the threshold given by a parameter. In this approach, the
problem of generating very similar documents is reduced to the problem of
data mining, known as generating frequent closed item sets.

There are many web services, such as web search engines, which use near-
duplicate detection techniques. These techniques are also useful for plagia-
rism detection in R&D reports and scientific articles [20]. To the best of our
knowledge, there is no freely available framework with implementation of basic
methods of near-duplicate detection. We made a first attempt to develop such
a system with taking into account researcher’s needs. Potthast and Stein [28]
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note that there are no public collections suited for the analysis and evalu-
ation of near-duplicate detection algorithms. Then they propose to use the
Wikipedia Revision Corpus for the task. Our solution of this problem is a tool
for generating near-duplicate collections based on one’s own corpus of texts.
We give a detailed description of our system in section 3.

2 Computational model

2.1 Document image

We used standard syntactical and lexical approaches with different parameters,
for creating document images. Within syntactical approach we realized the
shingling scheme and computing document image (sketch) with the method
“n minimal elements in a permutation” and the method “minimal elements
in n permutations”, a detailed description of which can be found in [4, 6, 7].
For each text the program shingle with two parameters (length and offset)
generates contiguous subsequences of size length so that the distance between
the beginnings of two subsequent substrings is offset. The set of sequences
obtained in this way is hashed so that each sequence receives its own hash
code. From the set of hash codes that corresponds to the document a fixed
size (given by parameter) subset is chosen by means of random permutations
described in [4, 6, 7]. The probability of the fact that minimal elements in
permutations on hash code sets of shingles of documents A and B (these sets
are denoted by FA and FB, respectively) coincide, equals to the similarity
measure of these documents sim(A, B):

sim(A, B) = P[min{π(FA)} = min{π(FB)}] =
|FA ∩ FB|

|FA ∪ FB|

Permutations (that can be represented by renumbering of shingles) are re-
alized by multiplying binary vectors that represent document images (each
component of such a vector corresponds to the hash code of a particular shin-
gle from the image) on random binary matrices. For each hash code from the
set of hash codes of a document its number in each random permutation is
computed as a product of the hash code given in the form of binary vector on
the randomly generated binary matrix that corresponds to the permutation.
The number of permutations is also a parameter. For each permutation (given
by a binary matrix) the minimal element (i.e., hash code of a shingle that be-
came the first after the permutation) is chosen. The image of a document in
the method “n minimal elements in a permutation” is the set of n minimal
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(first) hash codes in a permutation. The image of a document in the method
“minimal elements in n permutations” is the set consisting of minimal (first)
hash codes in n independent permutations. In both methods the images of
all documents have fixed length n. The second approach has better random-
ization properties (see [4, 6, 7] for details), although it needs more time for
computations (n times more than in the first approach).

2.2 Definition of similarity and similarity clusters by means of

frequent concepts

First, we briefly recall the main definitions of Formal Concept Analysis (FCA)
[12]. Let G and M be sets, called the set of objects and the set of attributes,
respectively. Let I be a relation I ⊆ G × M between objects and attributes:
for g ∈ G, m ∈ M, gIm holds iff the object g has the attribute m. The triple
K = (G, M, I) is called a (formal) context. Formal contexts are naturally given
by cross tables, where a cross for a pair (g, m) means that this pair belongs
to the relation I. If A ⊆ G, B ⊆ M are arbitrary subsets, then derivation
operators are given as follows:

A ′ := {m ∈ M | gIm for all g ∈ A},

B ′ := {g ∈ G | gIm for all m ∈ B}.

The pair (A, B), where A ⊆ G, B ⊆ M, A ′ = B, and B ′ = A is called a
(formal) concept (of the context K) with extent A and intent B.

The operation (·) ′′ is a closure operator, i.e., it is idempotent (X ′′′ = X ′′),
extensive (X ⊆ X ′′), and monotone (X ⊆ Y ⇒ X ′′ ⊆ Y ′′). Sets A ⊆ G,
B ⊆ M are called closed if A ′′ = A and B ′′ = B. Obviously, extents and
intents are closed sets. Formal concepts of context are ordered as follows:
(A1, B1) ≤ (A2, B2) iff A1 ⊆ A2(⇔ B1 ⊇ B2). With respect to this order the
set of all formal concepts of the context K makes a lattice, called a concept
lattice B(K) [12].

Now we recall some definitions related to association rules in data mining.
For B ⊆ M the value |B ′| = |{g ∈ G | ∀m ∈ B(gIm)}| is called support of B and
denoted by sup(B). It is easily seen that set B is closed if and only if for any
D ⊃ B one has sup(D) < sup(B). This property is used for the definition of a
closed itemset in data mining. A set B ∈ M is called k-frequent if |B ′| ≤ k (i.e.,
the set of attributes B occurs in more than k objects), where k is parameter.
Computing frequent closed sets of attributes (or itemsets) became important
in data mining since these sets give the set of all association rules [27]. For our
implementation where contexts are given by set G of description units (e.g.,
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shingles), set M of documents and incidence (occurrence) relation I on them,
we define a cluster of k-similar documents as intent B of a concept (A, B)

where |A| ≥ k. Although the set of all closed sets of attributes (intents) may
be exponential with respect to the number of attributes, in practice contexts
are sparse (i.e., the average number of attributes per object is fairly small).
For such cases there are efficient algorithms for constructing all most frequent
closed sets of attributes (see also survey [23] on algorithms for constructing all
concepts). Recently, competitions in time efficiency for such algorithms were
organized in a series of workshops on Frequent Itemset Mining Implementa-
tions (FIMI). By now, a leader in time efficiency is the algorithm FPmax* [14].
We used this algorithm in order to find similarities of documents and generate
clusters of very similar documents. As mentioned before, objects are descrip-
tion units (shingles or words) and attributes are documents. For representa-
tions of this type frequent closed itemsets are closed sets of documents, for
which the number of common description units in document images exceeds a
given threshold. Actually, FPmax* generates frequent itemsets (which are not
necessarily closed) and maximal frequent itemsets, i.e., frequent itemsets that
are maximal by set inclusion. Obviously, maximal frequent sets of attributes
are closed.

3 Program implementation

Software for experiments with syntactical representation comprise the units
that perform the following operations:

1. XML Parser (provided by Yandex): it parses XML packed collections of
web documents,

2. removing html-markup of the documents,

3. generating shingles with given parameters length-of-shingle, offset,

4. hashing shingles,

5. composition of document image by selecting subsets (of hash codes) of
shingles by means of n minimal elements in a permutation and minimal
elements in n permutations methods,

6. composition of the inverted table, the list of identifiers of documents
shingle, thus preparing data to the format of programs for computing
closed itemsets,
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7. computation of clusters of k-similar documents with FPmax* algorithm:
the output consists of strings, where the first elements are names (ids)
of documents and the last element is the number of common shingles for
these documents,

8. comparing results with the existing list of duplicates (in our experiments
with the ROMIP collection of web documents, we were supplied by a
precomputed list of duplicate pairs),

9. generation of test collections of near-duplicate documents.

Unit 8 (for evaluation of results) outputs five values: 1) the number of
duplicate pairs in the ROMIP collection, 2) the number of duplicate pairs
for our realization, 3) the number of unique duplicate pairs in the ROMIP
collection, 4) the number of unique duplicate pairs in our results, 5) the number
of common pairs for the ROMIP collection and our results. For the lexical
method, the description units are words (not occurring in the stop list) the
frequencies of which lie in a certain interval. The amount of words in the
dictionary is controlled by placing closer the extreme points of the interval.

3.1 GUI

The application has a Graphical User Interface similar to a setup application.

Figure 1: Input form for a duplicate search

In Fig. 1 the user specifies the shingling method and the following param-
eters: input path, output path, shingle length, offset, size of document image
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Figure 2: Input form for FIMI algorithm.

Figure 3: The output of the duplicates

and an option to strip the HTML or not. With the ‘Next’ button we can
advance to the next form (Fig. 2).

On the next form the user has to choose the FIMI algorithm to be used and
specify the parameters of the chosen algorithm: the input and output path of
the algorithm and the number of common shingles. The ‘Start’ button starts
the algorithm, the ‘View results’ button shows the results, see Fig. 3. With
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the ‘Previous’ and ‘Next’ buttons we can either return to the previous form
or advance to the next form. On the ’Clusters of duplicates’ form we can see
the results of the FIMI algorithm, shown in a grid view. On the last form
the user can compare the results. The user has to specify the path of the list
of duplicate pairs and the path of the log file. With the ‘Start’ button the
user can start the comparison. With the ‘Previous’ button the user can return
to the previous form. With the ‘Close’ button the application will exit. The
screenshots of the GUI can be seen in the Fig. 1, 2, 3.

3.2 Tool for construction of near-duplicate test collection

The technique of generating test collection for near-duplicates proposed below
uses the editing styles of near-duplicates: Block Edit (add or delete several
paragraphs), Key Block (contains one or more well-known paragraphs), Minor
Change (small editing changes), Block Reordering (reorder known paragraphs)
and their combinations. Short description of these methods with indication of
parameters is given in Table 1.

Operation Parameter(s)
1 Reordering of existing paragraphs Percentage of reordering paragraphs
2 Deletion of existing paragraphs Percentage of deleting paragraphs
3 Addition of existing paragraphs Percentage of deleting paragraphs
4 Replacement of existing words Percentage of replacing words
5 Addition of repeated paragraphs Amount of paragraphs and

number of paragraph repeats
6 replacement of characters Set of character pairs:

(initial character, new character)

Table 1: Operations for generation of test near-duplicate collection

We note that any of these operations use random number generator to con-
struct the set of editable elements. For example, any reordering of paragraphs
is random. This gives us more precise results than the use of manual edition
of documents. By the way, stemming and finding synonyms of words require
significant computational resources. We use simple replacement of exciting
words chosen randomly from a dictionary; this makes no difference to find
near-duplicate by non semantic methods. The user can apply a sequence of
editing operations choosing an item from Table 1. During the loading process
each document splits into paragraphs, each paragraph splits into sentences,
and each sentence splits into words. As a result the user can see the statistics
for each document (number of paragraphs, sentences and words). The tool
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produces a log file in an output folder with names of input and generated files,
number of sentences and words of input file, and parameters of the changes
made. For example, for paragraph deletion the operation system saves the
number of deleted words and characters. This information will be used to
compare the results with those of the tested methods.

4 Experiments

As experimental data we used ROMIP collection of URLs (see www.romip.ru)
consisting of 52 files of 4.04 GB general size. For experiments the collection was
partitioned into several parts consisting of three to 24 files (from 5% to 50%
percent of the whole collection). Shingling parameters used in experiments
were as follows: the number of words in shingles was 10 and 20, the offset was
always taken to be 1 (which means that the initial set of shingles contained
all possible contiguous word sequences of a given length). Two methods of
composing document image described in Section 2.1 were studied: n minimal
elements in a permutation and minimal elements in n permutations.

The sizes of resulting document images were taken in the interval of 100 to
200 shingles. In case of the lexical representation described in Section 2.1, only
words from the resulting dictionary were taken in the document image (the
set of descriptive words). As thresholds defining frequent closed sets (i.e., the
numbers of common shingles in document images from one cluster) we experi-
mentally studied different values in intervals, where the maximal value is equal
to the number of shingles in the document image, e.g., [85, 100] for document
images with 100 shingles, the interval [135, 150] for document images of size
150, etc. Obviously, choosing the maximal value in the interval, we obtain
clusters where document images coincide completely. For parameters taking
values in these intervals we studied the relation between resulting clusters of
duplicates and ROMIP collection of duplicates (computed by other methods).
The ROMIP collection of duplicates consists of pairs of web documents that
are considered to be duplicates. For each such pair we sought an intent, which
contains both elements of the pair, and vice versa, for each cluster of very
similar documents (i.e., for each corresponding closed set of documents with
more than k common description units) we took each pair of documents in the
cluster and looked for the corresponding pair in the ROMIP collection. The
output of this unit is the table with the number of common number of dupli-
cate pairs found by our method (denoted by HSE) and those in the ROMIP
collection, and the number of unique pairs of HSE duplicates (document pairs
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occurring in a cluster of ”very similar documents” and not occurring in the
ROMIP collection). The results of our experiments showed that the ROMIP
collection of duplicates, considered to be a bench-mark, is far from being per-
fect. First, we detected that there is a large number of false duplicate pairs
in this list due to similar framing of documents. For example the pages with
the following information about historical personalities Garibald II, Duke of
Bavaria and Giovanni, Duke of Milan were declared to be duplicates.

However these pages, as well as many other analogous false duplicate pairs in
ROMIP collection do not belong to concept-based (maximal frequent) clusters
generated in our approach.

In our study we also looked for false duplicate clusters in the ROMIP collec-
tion, caused by transitive closure of the binary relation ”X is a duplicate of Y”
(as in the typical definition of a document cluster in [7]). Since the similarity
relation is generally not transitive, the clusters formed by transitive closure
of the relation may contain absolutely nonsimilar documents. Note that if
clusters are defined via maximal frequent itemsets there cannot be effects like
this, because documents in these clusters share necessarily large itemsets.

4.1 Performance of algorithms and their comparison

We measured the elapsed time on the shingling stage, composing document
images and generating clusters of similar documents (by algorithms for com-
puting frequent closed itemsets). In the last stage we used and compared
various algorithms: several well-known algorithms from data mining [13] and
AddIntent, an algorithm which proved to be one of the most efficient algo-
rithms for constructing the set of all formal concept and concept lattices [26]

Experiments were carried out on a PC P-IV HT with 3.0 MHz frequency,
1024 MB RAM under Windows XP Professional. Experimental results and
the elapsed time are partially represented in Tables 2, 3, and 4.

In our experiments the best performance is attained by Fpmax* algorithm,
followed by the AFOPT algorithm [24]. These two algorithms proved to be the
fastest in FIMI competitions [13]. AddIntent* (AddIntent modified for maxi-
mal frequent itemsets) lags behind these two, although it performs much better
than MAFIA [8]. Optimized implenations of APRIORI and ECLAT [2] failed
to compute the output even in the case of small subcollections of documents
(about 10% of the whole collection). This relative behavior of algorithms is
similar to that observed in [13] in experiments with low support. In the fol-
lowing table we present running times in a typical experiment with different
algorithms on a subcollection of about 10% of the whole collection.
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FPmax All Pairs of
Duplicates

Unique pairs
of duplicates

Common
pairs

Input Threshold ROMIP HSE ROMIP HSE

b 1 20 s 100 n1-12.txt 100 105570 15072 97055 6557 8515
b 1 20 s 100 n1-12.txt 95 105570 20434 93982 8846 11588
b 1 20 s 100 n1-12.txt 90 105570 30858 87863 13151 17707
b 1 20 s 100 n1-12.txt 85 105570 41158 83150 18738 22420

b 1 20 s 100 n1-24.txt 100 191834 41938 175876 25980 15958
b 1 20 s 100 n1-24.txt 95 191834 55643 169024 32833 22810
b 1 20 s 100 n1-24.txt 90 191834 84012 155138 47316 36696
b 1 20 s 100 n1-24.txt 85 191834 113100 136534 57800 55300

b 1 10 s 150 n1-6.txt 150 33267 6905 28813 2451 4454
b 1 10 s 150 n1-6.txt 145 33267 9543 27153 3429 6114
b 1 10 s 150 n1-6.txt 140 33267 13827 24579 5139 8688
b 1 10 s 150 n1-6.txt 135 33267 17958 21744 6435 11523
b 1 10 s 150 n1-6.txt 130 33267 21384 19927 8044 13340
b 1 10 s 150 n1-6.txt 125 33267 24490 19236 10459 14031

Table 2: Results of the method n minimal elements in a permutation.

FPmax All Pairs of Du-
plicates

Unique pairs of
duplicates

Common
pairs

Input Threshold ROMIP HSE ROMIP HSE

m 1 20 s 100 n1-3.txt 100 16666 4409 14616 2359 2050
m 1 20 s 100 n1-3.txt 95 16666 5764 13887 2985 2779
m 1 20 s 100 n1-3.txt 90 16666 7601 12790 3725 3876
m 1 20 s 100 n1-3.txt 85 16666 9802 11763 4899 4903

m 1 20 s 100 n1-6.txt 100 33267 13266 28089 8088 5178
m 1 20 s 100 n1-6.txt 95 33267 15439 26802 8974 6465
m 1 20 s 100 n1-6.txt 90 33267 19393 24216 10342 9051

m 1 20 s 100 n1-12.txt 100 105570 21866 95223 11519 10347
m 1 20 s 100 n1-12.txt 95 105570 25457 93000 12887 12570

Table 3: Results for the methodminimal elements in n permutations.
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Algorithm Dataset Threshold Time elapsed
sec

Fpmax* b 1 20 s 100 n1-6.txt 95 2,0
b 1 20 s 100 n1-6.txt 90 3,1
b 1 20 s 100 n1-6.txt 85 5,3
b 1 20 s 100 n1-12.txt 100 3,0
b 1 20 s 100 n1-12.txt 95 9,0
b 1 20 s 100 n1-12.txt 90 14,2
b 1 20 s 100 n1-12.txt 85 25,7
b 1 20 s 100 n1-24.txt 100 16,1
b 1 20 s 100 n1-24.txt 95 120,0
b 1 20 s 100 n1-24.txt 90 590,4
b 1 20 s 100 n1-24.txt 85 1710,6

Afopt b 1 20 s 100 n1-6.txt 100 1,39
b 1 20 s 100 n1-6.txt 95 1,984
b 1 20 s 100 n1-6.txt 90 2,359
b 1 20 s 100 n1-6.txt 80 3,078

Mafia b 1 20 s 100 n1-6.txt 100 123
b 1 20 s 100 n1-6.txt 95 584
b 1 20 s 100 n1-6.txt 90 1160
b 1 20 s 100 n1-6.txt 80 2186
b 1 20 s 100 n1-12.txt 100 1157

apriori borgelt b 1 20 s 100 n1-6.txt 100 - 85 failed
eclat apriori b 1 20 s 100 n1-6.txt 100 - 85 failed
AddIntent* b 1 20 s 100 n1-6.txt 100 177,64

b 1 20 s 100 n1-6.txt 95 186,765
b 1 20 s 100 n1-6.txt 90 192,765
b 1 20 s 100 n1-6.txt 85 204,031

Table 4: Performance of FIMI algorithms

In the contexts corresponding to these subcollections, the number of ob-
jects is relatively large compared to the threshold minsup value defined by
parameters in the definition of duplicates. Thus, these are typical problems of
generating frequent itemsets in low-support data and relative performance of
data mining algorithms in our experiments is similar to that in survey [13].

5 Conclusions and further work

We propose a framework to detect near-duplicate documents in large text
collections. Analyzing the results of our experiments with concept-based def-
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inition of clusters of similar documents with ROMIP data collection we can
draw the following conclusions:

• ROMIP collection of URLs is a good testbed for comparing performance
of FCA and data mining algorithms in generating (maximal frequent)
closed sets of attributes.

• The list of ROMIP duplicates contains many false duplicates, which are
not detected as such by the methods based on closed itemsets.

• Approaches based on closed sets of attributes propose adequate and ef-
ficient techniques for both determining similarity of document images
and generating clusters of very similar documents. They can be effi-
ciently used on the stage of outputting documents relevant to a query,
when the number of all found relevant documents does not exceed sev-
eral thousands (around 10,000 documents). However, this algorithm
may encounter major difficulties in treating larger collections of docu-
ments due to intrinsic exponential worst-case complexity of the problem
of computing maximal frequent itemsets.

• For our datasets (which are very “column-sparse”), the best data mining
algorithms for computing frequent closed itemsets, FPmax* and Afopt,
outperform AddIntent, one of the best algorithm for constructing con-
cept lattice, adapted for computing maximal frequent itemset.

• The results of syntactical methods essentially depend on the shingle
length parameter. Thus, in our experiments, for the shingle length 10
the results (pairs of duplicates) were much closer to those in the ROMIP
list as for the lengths of shingles equal to 20, 15, and 5.

• In our experiments the results obtained by different methods of docu-
ment representation – n minimal elements in a permutation and minimal
elements in n permutations – did not differ much, which testifies in favor
of the first, faster method.

We would also like to create a site of our project on SourceForge.net with freely
available sources of the framework. In further developments, we are going to
release implementation of other methods for near-duplicate detection (NDD)
like I-match, super shingling, and so on. Development of complex techniques
for testing NDD methods and creation of testing collections seems to be quite
of interest for computer scientists in this field.
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