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Abstract: Majority of the optimal control techniques can only be applied successfully 

if the model of the controlled process is known and it is linear. If the system model is 

nonlinear, then this nonlinear model can be approximated with different simple, linear 

models. However, these models are valid only in the neighbourhood of the operating 

points. The success of the control algorithms is highly dependent on the used linearization 

methods. The aim of the paper is to compare different optimal control algorithms and 

linearization methods. The presented optimal control algorithms have been also tested in 

constrained and unconstrained versions. 
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1. Introduction 

The nonlinear optimal control, namely constrained optimal control of 

nonlinear dynamical systems, still remains nowadays a very interesting, useful 

and constantly evolving field of science. Its origin has been laid down in the 

1950’s with the introduction of dynamic programming, the Hamilton-Jacobi-

Bellman partial differential equations, and the Pontryagin maximum-minimum 

principle. From these beginnings, numerous design methodologies have been 

developed, from the direct solution through numerical computations, 

generalizations of the classical Lyapunov theory with the control Lyapunov 

function (CLF), and extending the linear optimal control theory with linearization 

and the state dependent Riccati equation (SDRE) based techniques. 
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This paper briefly discusses the possible applications of nonlinear optimal 

controllers. There are presented some control algorithms that require to know the 

state space mathematical model of the controlled process, and an adequate criteria 

function. The known optimal control theories can be applied successfully to 

control of processes characterized by linear system models. The question arises, 

how can these approaches be applied to processes characterized by nonlinear 

system models? There exists a well-known method of linearization around the 

operation point, which requires the definition of the Jacobian matrix, which in 

many cases is disadvantageous. In this paper two linearization methods are 

presented, one of which requires knowledge of the analytical model of the system, 

and the other does not. This second version considers a black box model of the 

process to be controlled. It is important that all state variables have to be 

accessible. In both cases, the result will be a so-called linearized mathematical 

model, where the specified model matrices are state dependent. Two types of 

controllers will be introduced, where the optimal criteria function is quadratic: 

Discrete Linear Quadratic Regulator (DLQR) and the advanced Model Predictive 

Control (MPC) algorithm, where some constraints can also be introduced [1]. 

The present paper has the following structure. Section 2 briefly discusses 

different linearization methods, and section 3 introduces two control algorithms. 

Section 4 demonstrates the applicability of the presented methods using the 

nonlinear dynamical model of the inverted pendulum. The short conclusions are 

outlined in section 5. 

2. Nonlinear optimal control theory  

In this section, we present the nonlinear discrete time control, and its 

corresponding implementation theory. Consider the following discrete nonlinear 

mathematical model [2], [3]  
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where xk is the n dimensional state vector, uk is the m dimensional input vector 

and yk is the p dimensional output vector. The functions F:Rn+m
Rn and G: 

Rn+m
Rp are continuous, nonlinear vector functions. Thereinafter the state 

feedback control theory will be presented. The investigation of a tracking control 

problem is similar, but in the tracking control case, there appear some extra terms. 

Since this paper is only about the state feedback control, in the following the 

output equation will not be considered. 

For linearization, this mathematical model (1) has to be transformed to the 

following mathematical form: 
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     kkkkk uxBxxAx 1  (2) 

where the state-space system matrices (A and B) are state-dependent.  

A. Linearization around the operating point 

The nonlinear optimal control methods usually involve Jacobian linearization 

of the system model around each operation point. This method assumes that, the 

discrete mathematical model and the parameters are known and the nonlinear 

functions (in the model description) are continuous. The linearized matrices can 

be computed by the following relations.  
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This linear approximation of the model may introduce errors, especially if the 

states are far from the equilibrium point. In addition, the numerical approach of 

the derivatives can also bring inaccuracies [2]. 

B. Discrete time SDRE method 

According to the SDRE theory, this can be easily accomplished if the F 

function in (1) can be written as [8], [13]. 

     kkkkkk uxgxfuxFx  ),(1  (4) 

by introducing the following formal notation: 
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This method can be used if the plant is characterized by a known nonlinear 

mathematical model with known parameters and this mathematical model can be 

transformed in a special difference equation form (4). 

C.  Linearized model with parameter estimation  

This solution does not require knowledge of the mathematical model of the 

system, but states must be measurable here as well. In this case we determine the 

linearized matrices based just on the measured values. For this method the model 

(2) will be transformed theoretically as follows: 
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The well-known parametric estimation algorithm can be applied to this 

mathematical model form, where θk contains the unknown parameters and φk is 

the measurement vector. The following steps characterize the Least Square 

Estimation (LSE) recursive algorithm [10]: 
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where k is the estimation error, K is the estimation gain vector, Fk the covariance 

matrix, λ the forgetting factor and θk is the estimated parameter vector. This is a 

recursive algorithm, so we have to make some initialization first. There have to 

be chosen the initial value of the parameter vector θ0 and the initial value of the 

covariance matrix F0. 

3. Control methods 

 This section briefly introduces two control approaches. The first method is the 

DLQR method, which is not a strictly constrained control algorithm, with this 

only the weak constraints can be specified. Here the idealized infinite horizon 

control and the finite horizon version can also be tested. The second method is 

the MPC algorithm, which takes into account also the strict constraints, when 

calculating the control signal.  

A. DLQR 

 Here only the state feedback control is discussed, where the goal is to control 

all states to zero. This type of problem is characterized with the following discrete 

criteria function [2], [3]: 
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where N is the horizon value and here it is considered, that the weight matrices R 

and Q are not state dependent. The variation of control is defined as 



72 K. György, and L. Dávid 

 

  

 
1


kkk

uuu . (9) 

In a similar way to the classical LQR design the variation of the state-feedback 

control is calculated as: 
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For simplicity the following notations have been introduced for the Riccati matrix 

and for the state dependent matrices: P(xk)=Pk , A(xk)=Ak and B(xk)=Bk.. The 

Riccati matrix is the unique solution of the following discrete time state 

dependent Riccati equation. 

  
kk

T

kkk

T

kkkk

T

kk
APBBPBRBPPAQP 






)(

1

1

111
 (11) 

The solution of SDRE (11) is only a sub-optimal solution, because there were 

neglected derivatives of the system matrices (A(xk) and B(xk)) [8]. If the value of 

the horizon (N) is infinite, the solution of the difference Riccati equation 

approaches the solution of the algebraic equation (Pk =Pk+1) [2]. 

B. MPC  

 The model predictive algorithm looks for the vector Uk that minimizes a cost 

function represented by the following relationship 
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where Xk is the vector with the predictions of the controlled state variables, Uk 

is a vector with future input changes, Q* is a diagonal matrix with weights for the 

states, R* is a diagonal matrix with weights for the control action changes [1], 

[7], [15]. If the prediction horizon is N and the control horizon is Nc, these vectors 

and matrices are: 
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The following representation is obtained for the predictions: 

 kkkkkkk UGuBxAX  
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where  
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The cost function can be written as 
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For the unconstrained problems, the model predictive control determines the 

vector Uk: 
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 To the quadratic cost function (17) there can be assigned different linear 

constraint inequalities  

 ckc BUA   (21) 

 These types of problems can be solved with different numerical quadratic 

programming algorithms (ex. interior point method, quadratic penalty method 

[4], [5], [6]). 

4. Example and numerical simulation 

For testing the presented control methods, the well-known cart on inverted 

pendulum dynamical system can be used as an example. The control of this 

system is quite difficult due to the characteristics of the system: instability, 

nonlinearity of the model, with single input and four state variables. The 

schematic representation of the inverted pendulum system is shown in Fig. 1. 
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Figure 1: Inverted pendulum on cart 

The Euler-Lagrange theory has been used to determine this mathematical 

model, where the inertia of the system has been neglected [9], [11], [12]. The 

nonlinear mathematical discrete time model is the following. 
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The four state variables in the model are: x1,k  displacement of the cart, x2,k  

speed of the car, x3,k  pendulum angle and x4,k  pendulum angular speed. The input 

signal uk is the force acting horizontally on the car. The model parameters and 

their numeric values are shown in Table 1.  

Table 1: Model parameters 

System parameters Value 

M (mass of cart) 0.6 kg 

m ( mass of pendulum) 0.45 kg 

l  (length of pendulum) 0.35 m 

g (acceleration of gravity) 9.81 m/s2 

Ts (time sampling) 0.01 s 
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In the following there will be listed some special values and relationships that 
will be used along with different linearization methods:  

 For the linearization around the operating point it is necessary to calculate 
certain derivatives. This can be solved using a simple approximation 
method, where the perturbation values is set to 0.0001.  

 For testing the SDRE method the following state dependent matrices can 
be used: 
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 For the parameter estimation algorithm, the choice of the initial parameter 
matrix and of the initial covariance matrix is important. For better results, 
the initial value of the parameter matrix is initialized with the initial values 
obtained by the SDRE method and the initial covariance matrix is a 
diagonal matrix 10∙I5. 

For the DLQR and the MPC control methods, the following parameters and 

limits have been used: the weighting matrix (value) of the controls R=0.1 I1, the 

weighting matrix of the states Q=100 I4, the prediction horizon N=50, the control 

horizon Nc=5, and the limits of the control signals umin=-50 and umax=50.  Here can 

be set also some limits for the variation of the control umin=-10 and umax=10. In 

accordance with (21) these limits can be given by the following matrices: 
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For numerical simulation the following abbreviations were used to refer to the 
presented linearization methods:  

L_op – method of linearization around an operating point;  
L_sdre - linearization using the SDRE approach;  
L_est - linear parameter estimation of the discrete time linear model.  
The following notations will be assigned to the type of control algorithm: 

DLQR1 - optimal quadratic control algorithm with infinite horizon, DLQR2 - 
optimal quadratic control algorithm with finite horizon and MPC- model 
predictive control.  

The graphical results of the unrestricted control version (for the presented 
control methods and linearization methods) are presented in the following 
figures. Fig. 2 shows the control result (variation of the states x1(t) and x3(t)) 
achieved by the linearization method around the operation point. These figures 
show the control effects of the initial states and of the modified states during the 
simulation (at about 40 sec). In this linearization method (L_op) the weakest 
control result was obtained for the case of finite horizon method. The best result 
was obtained for the infinite horizon DLQR control, but this method can be used 
just for theoretical simulations. The MPC algorithm is also a good solution, but 
here is already used the control horizon value (Nc). All this is observed mainly in 
the controlling of the initial state. The perturbation of states (during the 
simulation) leads to similar results in all three variants. 

 

Figure 2: States controlled by different unconstrained control methods using 

linearization around operation points (L_op) 
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Figure 3: States controlled by different unconstrained control methods using 

linearization based on SDRE approach (L_sdre) 

 

 Figure 4: States controlled by the different unconstrained control methods using the 

linearization method with parameter estimation (L_est) 

 

Fig. 3 and Fig. 4 in principle the same process is shown, but here the 
linearization is made with SDRE approach and with parameter estimation 
algorithms. These plots show also the effect on the control process both of the 
initial state and of the perturbation at about 30 sec. Here the perturbation of states 
leads to similar results in all three variants. These simulation results have been 
obtained for unconstrained control signals. The variation of the control signals (for 
the first 30 sec) in case of using the third linearization method (L_est) is shown in 
Fig. 5. 
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 Figure 5: Variation of the unconstrained control signals using the linearization method 

with parameter estimation (L_est) 

In the following we test the effect of the constrained control on these 

algorithms. Taking into account the limits of the control signal (and their 

variations), the results are shown in Fig. 6 and Fig. 7. For the MPC algorithm, 

these constraints are already taken into account in the calculation of the control 

signal. In the other methods (LQR), the signal values are simply limited when the 

thresholds are exceeded. The constrained control results for the LQR1 algorithm 

are shown in Fig. 6 and for MPC algorithm in Fig. 7. In both cases, the linearized 

model is determined by an on-line parametric estimation method. It can be seen 

from these figures that the MPC algorithm handles much better the constrained 

control problems. 

 

Figure 6: States controlled by constrained LQR method, where the linearized 

parameter estimation (L_est) was used 
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Figure 7: The evolution in time of the states controlled with constrained MPC 

method, with the linearized parameter estimation (L_est) method  

The presented algorithms have been tested also for small changes of the system 

parameters. The first two linearization methods (L_op and L_sdre) do not have a 

good behavior in case of the parametric change. This is because these two methods 

require the knowledge of the analytical model of the process. However, the third 

linearization method (L_est) has a proper effect in eliminating the unpleasant 

effect of such a modification (adaptive control behavior). This is shown in Fig. 8 

where during the simulation (after about 50 sec) some of the system parameters 

have been modified. Here it is shown the variation of the controlled states, and the 

change of the estimated during the estimation algorithm can also be observed.  

 

Figure 8: Controlled states and estimated parameters 

(MPC method with linearized parameter estimation) 
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5. Conclusion 

 In the paper a theoretical study has been presented regarding the implementation off 

different state feedback optimal control approaches in case of a nonlinear system model. 

Two types of optimal controller have been presented: the LQR controller and the modern 

MPC controller. Because the goal is to apply these controllers to a nonlinear system, there 

is need for linearization. To accomplish this, there have been presented three possible 

linearization methods: linearization around the operation point, linearization based on the 

SDRE approach, and finally a method using parameter estimation algorithm. These 

control algorithms and linearization methods have been tested on a nonlinear system, 

namely inverse pendulum. Applying these methods, it can be observed that the 

linearization around the operation point is very sensitive, and the convergence of the 

parametric algorithm depends on the correct choice of the initial values. The control 

algorithms are highly dependent on the control parameters, the value of the horizon and 

the predetermined limits. For the constrained control tasks, the MPC controller provides 

very good results (and it is valid, independently of the used linearization methods). 
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