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Abstract: One of the main tasks in the optimal control theory is to find a controller 
that provides the best possible performance with respect to some given measure of 
performance (optimality criterion). For linear plant dynamics and quadratic 
performance criteria it is possible to obtain the optimal control law by numerically 
integrating a Riccati type matrix differential equation. In general, for nonlinear plants 
the variational approach leads to a nonlinear two-point boundary value problem, which 
can be solved by iterative numerical methods, for example by the steepest descent 
(gradient) method.  

A model of the reactive sputtering process can be determined from the dynamic 
equilibrium between the quantity of reactive gas inside the chamber and the quantity of 
sputtered metal atoms which form the compound with the reactive gas atoms on the 
surface of the substrate. The analytically obtained dynamical model is a system with 
nonlinear differential equations which can result in a hysteresis-type input/output 
nonlinearity. The present paper proposes a theoretical study of the steepest descent 
gradient method to obtain the optimal control signal and trajectory for this nonlinear 
reactive magnetron sputtering process. 

 
Keywords: Optimal control, nonlinear systems, Hamilton-Iacobi equations, reactive 
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1. Introduction 

Mathematical models may be developed along two methods. One method is 
the analytical modeling, which does not necessarily involve any 
experimentation on the actual system. The other method is known as system 
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identification and this is directly based on experimentation. The analytically 
obtained dynamical model generally is a system with nonlinear differential 
equations. In general optimal control theory the objective is to find a controller 
that provides the best possible performance with respect to some given measure 
of an optimality criterion (cost function). If the plant dynamics is linear and the 
cost function is a quadratic performance criterion than it is possible to obtain the 
optimal control law by numerically integrating a Riccati type matrix differential 
equation. When faced with an engineering problem of a nonlinear system, the 
first approach usually is the linearization; in other words, trying to avoid the 
nonlinear aspects of the problem. After linearization we obtain a linearized 
model, which is valid just in a small region around the selected operating point. 
In general for nonlinear plants the variational approach leads to a nonlinear two-
point boundary value problem, which can be solved by iterative numerical 
methods, for example by the steepest descent (gradient) method.  

The reactive sputtering processes frequently exhibit stability problems. The 
analytically obtained dynamical model is a system with nonlinear differential 
equations. The present paper proposes a theoretical study of the steepest descent 
gradient method to obtain the optimal control signal and trajectory for this 
nonlinear reactive magnetron sputtering process.  

2.  Analytical modeling and numerical simulation of the reactive 
sputtering process  

A. Analytical modeling 

A very sensitive aspect of the reactive sputtering process is the dynamic 
equilibrium between the reactive gas inside the chamber and the sputtered metal 
atoms which form the compound with the reactive gas atoms on the surface of 
the substrate. The components of this rather complex balance are schematically 
shown in Fig. 1. The phenomena on both the surfaces of the target and of the 
substrate include sputtering of the metal and gettering of the reactive gas atoms. 
The larger the surface of elemental nonreacted metal, the stronger the flux of 
sputtered metal atoms which further reduces the reactive gas concentration by 
forming compound on the surface of the substrate. The reactive gas 
consumption increases when the fractional coverage with compound is smaller. 
It results that the reactive sputtering process is strongly nonlinear. The main 
type of nonlinearity is hysteresis, which can be observed both from theoretical 
results (obtained by simulation using the mathematical model), and from 
practical measurements. 
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Figure 1: Schematic representation of the reactive gas balance and of the main 

particle fluxes on the target and substrate surfaces. 

The mathematical model developed is based on the hypotheses and 
formulation used by S. Berg [1] [2] as follows: the partial pressure of the 
reactive gas has uniform distribution in the processing chamber; the secondary 
electron emission due to the ionic bombardment of the target surface is uniform 
and independent of the surface fraction covered by compound; the glow 
discharge takes place in a mixture of inert gas and reactive gas (ex. Ar and 
2…3% of N2); the contribution of the reactive gas ions to the bombarding ion 
flux is negligible due to the small concentration of the reactive gas; no reactive 
gas is consumed at the fraction of the target surface that is already covered by 
compound; homogenous sputtering rate is assumed on the whole surface of the 
target [3][4]. These hypotheses are based on widely accepted research results in 
the field of PVD by reactive magnetron sputtering; respectively provide a 
reasonably correct description of the process by a model which is simple 
enough to be considered for stability analysis and process controller design [5].  

The dynamic model of the reactive magnetron sputtering process is defined 
by the system of equations (1): 
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In this mathematical model the following notation has been used: 
 
pN- the partial pressure of reactive gas (nitrogen) in the sputtering chamber; 
θt ,θc - the surface fraction of the target and of the condensation area covered by 
compound molecules; 
FN- the flux of reactive gas molecules (N2) on the target or on the substrate; 
qin, qp- the input reactive gas flow and the gas flow evacuated by the vacuum 
pump; 
At, Ac- the target area and the condensation (substrate and chamber) area; 
mN, mTi - mass of the reactive gas molecule (mN=28 a.u.) and of the metal 
(mTi=47.9 a.u.); 
ηM, ηN - sputtering yield of the elemental metal (titanium) and of the compound 
(titanium nitride); 
αtM, αcM - sticking coefficients for the nitrogen molecule (to the titanium target 
or to the covered part); 
NTi- the superficial density of the Ti atoms on the surface of the metallic target; 
J- the particle density of argon ions on the surface of the target, which is 
proportional to the discharge current intensity (Id); 
k1- coefficient, calculated in function of temperature and chamber volume. 

  
This mathematical model in state space representation (1) has three state 

variables (pN, θt and θc), two input signals (qin and Id) and we can choose the 
surface fraction of the target covered by compound molecules (θt) or the 
sputtering rate (Rp) as the output signal. 

B. Numerical simulation 

The reactive sputtering process was simulated employing a Runge-Kutta 
algorithm, where the sampling time was set to 0.01 sec. The parameters used for 
simulation are: ηM=1.5, ηN=0.3, NTi =140e-12 m-2, At=0.0084 m2, Ac=0.22 m2 and 
αtM=αcM=1, k1=1.18e6 J/(kg.m3).The steady-state analysis of the process yields 
very nonlinear characteristics defining the steady-state relationship between the 
input reactive gas quantity and the state variables from equations (1). For 
simulation we considered the reactive gas flow as input. Different time 
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variations of the input signal used in simulations and experiments are presented 
in Fig. 2. a. The fractional coverage of the target (Өt) in function of the input 
quantity (qin) is shown in Fig. 2. b., where the particle density of argon ions (J) 
is calculated for a constant discharge current value (Id=1.125 A). These results 
obtained by simulation using the dynamic model (1) put in evidence the 
hysteresis loop described in the plane defined by Өt and qin for different 
variation speeds of the input reactive gas flow in accordance with Fig. 2.a. 

 
a)                                                                   b 

Figure 2: Variation in time of the reactive gas flow for different variation speeds 
(a), the steady-state and dynamic relationship between the fractional surface coverage 

of the target and the input reactive gas flow (b). 

3. Application of the gradient method to find the optimal control 

The nonlinear plant model in general state space representation is defined by 
the following equation: 

 )),(),(()(
dt
d ttutxftx =  (2) 

where x(t) is the state vector and u(t) is the input vector.  
The cost function is defined as: 

 ( ) ( )( ) ∫+=
tf

tof dtttutxLtxuJ )),(),((λ  (3) 

where t0 and tf are the initial and the final time, λ() and L() are scalar 
functions.  

For the system defined by the relation (2) we search the optimal control law 
that minimizes the cost function (3). To solve this problem we define the 
Hamilton function as:  

 ( ) ( ) ( ) ( )ttutxftpttutxLttptutxH T ),(),(),(),(),(),(),( ⋅+= , (4) 
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where p(t) is the costate vector. The required conditions for optimality are:  
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and the boundary conditions are: 
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The resulting nonlinear two-point boundary-value problem cannot be solved 
analytically, so we will use an iterative numerical technique, the steepest 
descent gradient method, to determine the optimal control. 

 The formal algorithm of this method is [6], [7]: 
0. Select a discrete approximation to the control signal u(t)<0>, t∈[ t0, tf], and 

fix the iteration index k  at 0. 
1. Using this control signal u(t)<k> integrate the state equation (5) from t0 to tf 

with initial conditions x(t0).  
2. Integrate the costate equation (6) from tf to t0 with „initial condition” p(tf). 
3. Evaluate the 

u
H
∂
∂ expression. We can calculate its norm as follows:  
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Terminate the iterative procedure (the outputs of the algorithm are the 
external state vector x(t)<k> and the control signal u(t)<k>), if  

 ε≤
∂
∂

u
H

 (10) 

where the ε is a preselected small positive constant. If the stopping criterion 
(10) is not satisfied we generate a new control function given by (11) and return 
to step 1 

 ( ) ( )
u
Htutu kk

∂
∂
⋅−= ><>+< γ1 .  (11) 

 In (11), γ is the constant step size for the gradient method. 
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4. Numerical simulation of the gradient algorithm for the optimal 
control of the reactive sputtering process  

A. Determination of the Hamilton-Iacobi equations 

 The nonlinear mathematical model (1) for the reactive sputtering process 
can be written in the general state space form (2), where the state vector is 

[ ]TctN
T tttptxtxtxtx )()()()]()()([)( 321 θθ== , and the control input vector is 

T
din

T tItqtututu )]()([)]()([)( 21 == . We select a linear quadratic cost function  
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where R, Q, F are positive defined diagonal matrices, xe(t)=x(t)-xp(t) and 
ue(t)=u(t)-up(t), where the xp(t) is the prescribed state vector and up(t) is the 
value of control input which is necessary to keep the states at their prescribed 
stationary values. The required conditions for optimality are characterized by 
the following differential equations for states: 
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and the following differential equations for costates: 
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The expressions of the derivate of the Hamilton function versus the control 
signals are: 
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For updating the control signal we can use the relationship: 
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Using these relations the algorithm has been implemented in Matlab 
environment in order to obtain the optimal control for the reactive sputtering 
process.  

B. Results of the numerical simulation 

For numerical integration of the differential equations (13) and (14) there 
was used a Runge-Kutta method [8], [9]. The initial points and the prescribed 
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points were selected from the steady state simulation of the reactive sputtering 
process. There were simulated the following control versions:  

 V1: control with input reactive gas flow (qin);  
 V2: control by means of the discharge current intensity (Id); 
 V3: control with both input signals (qin and Id).  
The results of simulation are influenced by the step sizes (γ1 and γ2) of the 

gradient methods, the selected initial control trajectory (u1(t)<0> and u2(t)<0>), 
the maximum number of iterations (Nmax), the values of weighting matrices (R1, 
R2 respectively Q1, Q2 and Q3) and the position of prescribed state vector in 
comparison with the initial state vector. The simulation time interval and the 
sampling time are fixed for each version: t ∈ [0, 1] sec and Ts=0.01 sec. The 
other simulation parameters are presented in Table 1. 

Table 1: Simulation parameters for the three types of control 

Control 
type γ1 γ2 R1 R2 Q Nmax 

V1 10-16 0 10-4 0 10 I3 100 
V2 0 0.1 0 10-5 10 I3 100 
V3 10-17 0.01 10-3 10-3 10 I3 800 

 
 Diagrams from Fig.3 to Fig.8 are presented for the visualization of some 
simulation results of this control algorithm. At first we considered that the 
system is controlled just by the input reactive gas flow (qin). In Fig. 3.a there is 
presented the cumulative error (corresponding to relation (9)), and in Fig. 3.b 
there is presented the evolution in time of the control signal. The controlled 
quantities are presented in Fig.4, along with the prescribed constant state values. 
Similarly, when we considered as control input signal the discharge current (Id), 
the corresponding simulation results are presented in Fig.5 and Fig. 6. 
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Figure 3: Variation of the cumulative error (a) and variation in time of the 
 control signal input (b) – version V1. 
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Figure 4: Variation in time of the controlled states obtained for the initial  

and the final control signals – version V1. 
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Figure 5: Variation of the cumulative error (a) and variation in time  
of the control signal input (b) – version V2. 

 Finally we realize simulation for the case when the plant is controlled 
simultaneously by both inputs (qin and Id). The results are shown in Fig. 6 and 
Fig. 7. We present the evolution in time of the control signals: the input reactive 
gas flow (Fig. 6.a) and the discharge current variation (Fig. 6.b). On the other 
hand there are presented in Fig. 7 the controlled quantities (the partial pressure 
of the reactive gas (pN), the fractional surface coverage of the target (θt) and the 
fractional surface coverage of condensation area (θc)) versus the input reactive 
gas flow (qin). The dashed curves represent the characteristics obtained using the 
steady state model. These put in evidence the initial values and the prescribed 
final values of the states. 

The prescribed final operating point is situated on the negative slope of the 
steady state characteristic. This is an unstable operating point for the plant. 
From the simulation it results that first the control by means of the reactive gas 
flow has a bigger emphasis than the control by means of the discharge current. 
When the reactive gas flow is close to its value corresponding to the prescribed 
states (up1) than the second control quantity (Id) is gaining more importance. The 
efficiency of the algorithm is determined by the initial conditions and the 
maximum number of iterations because the determination of the control signals 
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needs time. In this algorithm the restrictions of the control signals can be 
realized just by the proper choice of the weight matrices (R and Q). 

 

a)                                                             b) 

Figure 6: Evolution in time of the control signals: input reactive gas flow 
 (a) and discharge current intensity (b )–version V3.. 

 

Figure 7: Variation of the three controlled quantities (pN , θt and θt) versus  
the input reactive gas flow (qin) - version V3.. 

3. Conclusion 

The present investigation shows that the dynamical modeling of the reactive 
sputtering process is characterized by nonlinear differential equations and the 
optimal control of this plant is a very complex problem. In case of most of the 
modern control theories it is needed to know the linear model of the controlled 
process. In this paper there was presented a theoretical study about the 
application of the optimal control algorithm, where the results are obtained by 
numerical iterative techniques. The nonlinear optimal control problem is solved 
using the gradient method applied directly to the highly nonlinear model and 
was simulated for the nonlinear reactive sputtering process. Both the input 
reactive gas flow and the discharge current have been considered as control 
variables and the results of simulation have shown that this method is can be 
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used only if we have some proper preliminary information for the algorithm: 
initial input sequences of the control inputs, values of weight matrices, etc.  
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