
Acta Univ. Sapientiae, Informatica, 1, 1 (2009) 45–52

The use of development models for

improvement of software maintenance

Ján Kunštár
Dept. of computer and informatics

Technical university of Košice,
Letná 9, 042 00 Košice, Slovakia
email: jan.kunstar@tuke.sk

Iveta Adamušč́ınová
Dept. of computer and informatics

Technical university of Košice,
Letná 9, 042 00 Košice, Slovakia

email: iveta.adamuscinova@tuke.sk

Zdeněk Havlice
Dept. of computer and informatics

Technical university of Košice,
Letná 9, 042 00 Košice, Slovakia

email: zdenek.havlice@tuke.sk

Abstract. Nowadays, the cost of software system is one of the most im-
portant factors for choice of certain system by customer. Recent trends
in software and system development have revealed the asset of usage of
the abstract models through the software life cycle’s phases. Abstract
models streamline and speed up not only development but suitable mod-
els can also improve maintenance process to be more effective and safe.
Presented paper briefly analyses SysML, which supports development
process of complex systems. Main part is oriented to new approach
to model driven system development supporting SysML concept named
System Development Unified Process (SDUP) extended by concept of
Model-Driven Maintenance.

1 Introduction

These days, models present one of the most important considerations of system
and software development. Model-based design supports exploratory design

AMS 2000 subject classifications: 68N99
CR Categories and Descriptors: K.6.3 [Software Management]: Software maintenance
Key words and phrases: software maintenance, software system life cycle, system mod-
eling language (SysML)

45



46 J. Kunštár, I. Adamušč́ınová, Z.Havlice

and analysis by allowing designers to effectively represent and investigate their
knowledge about the system during the decomposition and definition process.
Additionally, experiments can be performed on models to eliminate poor de-
sign alternatives and to ensure that a preferred alternative meets stakeholder
objectives. This modeling concept stays at the core of Model Driven Archi-
tecture (MDA). However, one of the most important factors of modeling, in
order to support the MDA development process, is the choice of modeling
language. To support model-based design and to overcome some limitations
related to Unified Modeling Language (UML) strict software focus, the Object
Management Group (OMG) has developed the Systems Modeling Language
(SysML) [1].
In this paper, a methodology for model-based system development using the
SysML is presented with emphasis on Model-Driven Maintenance (MDM)
which utilizes development models for improving software maintenance.

2 Model-driven system development and modeling

languages

Model-driven architecture [2], defined and supported by the OMG, defines an
approach to IT system specifications that separates the system functionalities
from the implementation details on a particular technological platform. The
MDA [1] is a framework for model driven software development defined by the
OMG which has elevated the software development to the next step. Using
MDA, it is possible to have an architecture that will be language, vendor and
middleware neutral.
One of the key standards that make up the MDA is the UML [1]. UML has
proved immensely popular with software engineers, but its software focus has
discouraged many system engineers from adopting it earnest. The OMG cus-
tomization of UML for systems engineering in form of new modeling language
called SysML is intended to support modeling of a broad range of systems,
which may include hardware, software, data, personnel, procedures, and facil-
ities.

2.1 SysML

OMG SysML is a visual modeling language for systems engineering that ex-
tends UML 2 in order to analyze, specify, design and verify complex systems,
intended to enhance systems quality, improve the ability to exchange systems



The use of develop. models for improvement of SW maintenance 47

engineering information amongst tools and help bridge the semantic gap be-
tween systems, software and other engineering disciplines [1]. OMG SysML
reuses a subset of UML 2 concepts and diagrams and augments them with
some new diagrams and constructs appropriate for systems modeling. The
benefits of using SysML in system development process are following [1], [3]:

- SysML semantics are better suited for systems engineering. SysML re-
duces UML software-centric restrictions and adds two new diagram types
for requirements engineering and performance analysis.

- SysML allocation tables support various kinds of allocations. These
tables support requirement, functional and structural allocation, thereby
facilitating automated verification and validation and gap analysis.

- SysML’s requirement modeling support provides the ability to assess the
impact of changing requirements to a system’s architecture.

- SysML is a precise language, including support for constraints and para-
metric analysis which allows models to be analyzed and simulated.

- SysML is an open standard and supports XMI and ISO 10303-303 (AP233)
allowing for information interchange to other systems engineering tools.

OMG SysML includes diagrams that can be used to specify system require-
ments, behavior, structure and parametric relationships. These are known as
the four pillars of OMG SysML [1]:
I. Structure. The block is the basic unit of structure in SysML and can be
used to represent hardware, software, facilities, personnel, or any other system
element. The system structure is represented by block definition and internal
block diagrams.
II. Behavior. The behavior diagrams include the use case diagram, activity
diagram, sequence diagram, and state machine diagram. The extensions made
to standard UML activity diagrams support the compatibility with widely
used EFFBD notation that will facilitate and improve interaction between
SysML and traditional software engineering tools and facilitate the migration
to SysML [3].
III. Requirements. The requirement diagram is a new SysML diagram type
that captures requirements hierarchies and the derivation, satisfaction, verifi-
cation and refinement relationships. This diagram provides a bridge between
typical requirements management tools and the system models [3]. Hence re-
quirements become an integral part of the product architecture [1].



48 J. Kunštár, I. Adamušč́ınová, Z.Havlice

IV. Parametrics. The parametric diagram is a new SysML diagram type
that describes the constraints among the system’s properties associated with
blocks. This diagram is used to integrate behavior and structure models with
engineering analysis models such as performance, reliability, and mass prop-
erty models.

3 System development unified process

Presented model of system development life cycle includes all phases typical
for the most of common life cycle models. However, within this model, the
modifications regarding the MDA development approach using SysML were
required. The model emphasizes the maintenance phase and its impact on the
whole system development process (Section 4).

Figure 1: System development unified process

In general, the presented model (Figure 1) may be considered as having five
distinct phases, described below:
1. Integrated phase that includes phases of requirements specification and
design of the system. By means of using SysML as modeling language, it is
possible to integrate these two previously distinct phases into one using the
parametric, requirement and design models [1], [3]. This step involves gather-
ing and defining the system’s requirements that are directly related to design
models with a high level of abstraction that is independent of any implemen-
tation technology (platform independent models).
2. Model testing. This phase consists of using the models created in pre-



The use of develop. models for improvement of SW maintenance 49

vious step to be methodically verified to ensure that they are error-free and
fully meet the specified requirements. This testing can be processed in form
of simulation using the properties of SysML parametrics.
3. Implementation. In this step, the platform independent models are
transformed into system’s platform specific models that are linked to spe-
cific technological platforms (e.g. programming language, operating system or
database) [2], [4]. These models are afterwards transformed into implementa-
tion artifacts as executable code and database schemas.
4. Integration and system testing. In this stage, both individual system
components and the integrated whole are methodically tested and evaluated
regarding to technological platforms and quality and reliability of system’s
performance.
5. Installation and Maintenance. This step involves preparing the system
for installation and use at the customer site. A maintenance part involves mak-
ing modifications to the system or individual component to alter attributes or
improve performance. These modifications arise either due to change of re-
quirements, or defects uncovered during system’s testing. The main difference
compared to standard system maintenance is that no change in system can
be processed without accordant modification in design/requirement models
(Section 4).

4 Model-driven maintenance

Program comprehension, impact analysis and regression testing are the most
challenging problems of software maintenance in the present [5]. An inconsis-
tent state of the software artifacts markedly contributes to all three mentioned
problems. Each software system consists of artifacts (e.g. source code, doc-
umentation, makefile, models of system) which describe only a limited part
of the software and the actual system is their composite. If all system arti-
facts are’t in consistent state, they can’t be used together as the source of
knowledge about the system. This rapidly decreases the ease with which a
software system or its component can be modified during its operation – the
maintainability of software system.

4.1 Model-driven maintenance process

Model-driven maintenance process is one useful aspect of knowledge-based
software life cycle oriented to better usability of all analysis, design and im-
plementation models in maintenance of systems [6]. MDM is based on uti-



50 J. Kunštár, I. Adamušč́ınová, Z.Havlice

lization of knowledge from the system models and dependences among them
for improving maintenance process. Inspiration for MDM is the MDA. MDA
concentrates on development of software system using UML as programming
language. The direction of progress is from models to application’s code. If
the change of the system needs to be done according the consistency rules of
SDUP (Section 3), it is important to come back to system models, so reverse
engineering needs to be used.
In MDM, models of system are the basis for whole maintenance process and
therefore there is a requirement to preserve essential models together with the
code of application. These essentials models are taken from project database
and joined to conjunctive preservation during the installation phase.
Knowledge from essential models, which is element of application, allows us to
go cyclically through the phases of life cycle during the maintenance process
without the need of browsing project database.

4.2 Model-driven maintenance life cycle

The main difference between the life cycle of normal software maintenance
and MDM is in the phase of software system life cycle where the maintenance
starts. Normal maintenance life cycle starts with the operation of software
system. As system is used, requirements for error correction or requirements
(user defined or as a consequence of environment change) for change of the
system are detected. The last phase of maintenance life cycle is modification
of the system itself. After modification, the system returns to the operation
again.
The view that maintenance is strictly a post-delivery activity is one of the
reasons that make maintenance hard. According to Pigoski’s definition of
software maintenance [7], it is very important to prepare software system for
its modifications still during the development of the system and not only after
delivery. Therefore MDM starts as early as during the system development by
conjunction of essential models to application’s code. MDM life cycle has the
same phases like mentioned normal maintenance life cycle. The difference is in
the way how the changes are performed at the basis of the user’s requirements.
On Figure 2 is displayed the modification process in accord with MDM.
As a first step, the requirements need to be well specified because it is very
important to avoid the misunderstandings between users of the system and
maintenance programmer. In here, active user participation is very important.
Unfortunately most users don’t understand the complex diagrams preferred by
many traditional modelers. Solution presents the adoption of inclusive models



The use of develop. models for improvement of SW maintenance 51

Figure 2: Modification of software system during MDM

which are used to help capture and analyze requirements for certain system
[8]. The maintainer can build the requirements diagram after all requirements
were exactly specified by users.
After requirements are well specified, maintainer can modify essential models
which are part of application. The use of extern CASE system for visualization
and applying of changes is useful in this phase. The changes of models can
be done without modification of working software system. In this way, the
maintenance programmer is able to discover impacts of required changes before
they are really implemented to the code of system. When a programmer knows
about all required changes he can implement them all in one step, without
impacts to unchanged part of the system.
After all, when required modifications are implemented to the code and to the
models of application, the consistency control needs to be done. If all changes
done in models were processed also in the code, they both describe the same
system - they are in consistent state.

5 Conclusions and future work

This paper presents the SDUP, which support the concepts of MDM. This
approach based on the conjunctive preservation of program code and mod-
els, supports consistency between the essential models and code, as no change
in code can be processed without accordant modification in system’s mod-
els. MDM utilizes knowledge acquired from system’s abstract models for un-
covering the unwanted side effects of required changes before they are really
performed to the system’s code. Utilization of system’s models streamlines
maintenance process and also helps to system comprehension.
In our next research we want to complete realization of proposed MDM. We
will work on the proper format of knowledges acquired from essential models.



52 J. Kunštár, I. Adamušč́ınová, Z.Havlice

We will also perform an experimental confirmation of contribution of proposed
approach to software maintenance.

Acknowledgement

This work was supported by VEGA Grant No. 1/0350/08 Knowledge-Based
Software Life Cycle and Architectures.

References

[1] OMG Systems Modeling Language (OMG SysML) v 1.0 (07-09-01), OMG
Available Specification, http://www.omgsysml.org/.

[2] A. Kleppe, J. Warmer, W. Bast, MDA Explained: The Model Driven Ar-
chitecture: Practice and Promise, 2003, 192 pp, Addison Wesley, ISBN
0-321-19442-X (2003).

[3] T. Weilkiens, Systems engineering with SysML/UML: modeling, analysis,
design, 322 pp, Morgan Kaufmann Publishers, ISBN: 978-0-12-374274-2
(2007).

[4] A. Benczúr, Z. Hernáth, Z. Porkoláb, LORD: Lay-Out Relationship and
Domain Definition Language, 10th Advances in Databases and Information
Systems, Ed: Yannis Manolopoulos et al., Thessaloniki, pp. 215-230 (2006).

[5] G. Canfora, A. Cimitile, Software Maintenance, Handbook of Software En-
gineering and Knowledge Engineering, volume 1. World Scientific, 2001,
ISBN: 981-02-4973-X (2001).

[6] Z. Havlice et al., Knowledge-based software life cycle and architectures,
Computer Science and Technology Research Survey, Košice, ISBN 978-80-
8086-071-4 (2007).

[7] T. M. Pigoski, Practical Software Maintenance Best Practices for Man-
aging Your Software Investment, John Wiley & Sons, New York, (1997).

[8] S. W. Ambler, R. Jeffries, Agile Modeling: Effective Practices for Ex-
treme Programming and the Unified Process, John Wiley & Sons, New
York (2002).

Received: October 13, 2008


