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Abstract. Let N0 be the set of all non-negative integers and P(N0) be its
power set. Then, an integer additive set-indexer (IASI) of a given graph G
is an injective function f : V(G)→ P(N0) such that the induced function
f+ : E(G) → P(N0) defined by f+(uv) = f(u) + f(v) is also injective.
An IASI f is said to be a weak IASI if |f+(uv)| = max(|f(u)|, |f(v)|)
for all u, v ∈ V(G). A graph which admits a weak IASI may be called
a weak IASI graph. The set-indexing number of an element of a graph
G, a vertex or an edge, is the cardinality of its set-labels. The sparing
number of a graph G is the minimum number of edges with singleton
set-labels, required for a graph G to admit a weak IASI. In this paper,
we study the admissibility of weak IASI by certain graph powers and
their corresponding sparing numbers.
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1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer
to [3, 7, 18]. For different graph classes, we further refer to [2, 4, 19]. Unless
mentioned otherwise, all graphs considered here are simple, finite and have no
isolated vertices.

The sumset of two non-empty sets A and B is denoted by A + B and is
defined by A + B = {a + b : a ∈ A, b ∈ B} (see [8]). Using the concept of
sumsets of two sets we have the following notion.

Let N0 denote the set of all non-negative integers. An integer additive set-
indexer (IASI, in short) of a graph G is defined in [5] as an injective function
f : V(G) → P(N0) such that the induced function f+ : E(G) → P(N0) defined
by f+(uv) = f(u) + f(v) is also injective (see [5, 9]).

The cardinality of the labeling set of an element (vertex or edge) of a graph
G is called the set-indexing number of that element (see [9, 6]).

Lemma 1 [6] Let A and B be two non-empty finite sets of non-negative in-
tegers. Then, max(|A|, |B|) ≤ |A + B| ≤ |A| |B|. Therefore, for an integer ad-
ditive set-indexer f of a graph G, we have max(|f(u)|, |f(v)|) ≤ |f+(uv)| =
|f(u) + f(v)| ≤ |f(u)||f(v)|, where u, v ∈ V(G).

Definition 1 [6] An IASI f is said to be a weak IASI if |f+(uv)| = |f(u) +
f(v)| = max(|f(u)|, |f(v)|) for all uv ∈ E(G). A graph which admits a weak IASI
may be called a weak IASI graph. A weak IASI f is said to be weakly k-uniform
IASI if |f+(uv)| = k, for all u, v ∈ V(G) and for some positive integer k.

Lemma 2 [6] An IASI f define on a graph G is a weak IASI of G if and
only if, with respect to f, at least one end vertex of every edge of G has the
set-indexing number 1.

Definition 2 [10] An element (a vertex or an edge) of graph which has the
set-indexing number 1 is called a mono-indexed element of that graph. The
sparing number of a graph G is defined to be the minimum number of mono-
indexed edges required for G to admit a weak IASI and is denoted by ϕ(G).

The following are some major results on the spring number of certain graph
classes, which are relevant in our present study.

Theorem 1 [10] An odd cycle Cn contains odd number of mono-indexed edges
and an even cycle contains an even number of mono-indexed edges.
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Theorem 2 [10] The sparing number of an odd cycle Cn is 1 and that of an
even cycle is 0.

Theorem 3 [10] The sparing number of a bipartite graph is 0.

Theorem 4 [10] The sparing number of a complete graph Kn is 1
2(n−1)(n−2).

Now, let us recall the definition of graph powers.

Definition 3 [3] The r-th power of a simple graph G is the graph Gr whose
vertex set is V, two distinct vertices being adjacent in Gr if and only if their
distance in G is at most r. The graph G2 is referred to as the square of G, the
graph G3 as the cube of G.

The following is an important theorem on graph powers.

Theorem 5 [17] If d is the diameter of a graph G, then Gd is a complete
graph.

Some studies on the sparing numbers of certain graph classes and graph
structures have been done in [12, 13, 14]. As a continuation of these studies,
in this paper, we determine the sparing number of the powers certain graph
classes. The statements of the main results of this paper can also be seen in
the review paper [15]. For the concepts of graph powers which admit certain
types of IASIs, see [16] also.

2 Sparing number of square of some graphs

In this section, we estimate the sparing number of the square of certain graph
classes. It is to be noted that the weak IASI f which gives the minimum number
of mono-indexed edges in a given graph G will not induce a weak IASI for its
square graph, since some of the vertices having non-singleton set-labels will
also be at a distance 2 in G. Hence, interchanging the set-labels or relabeling
certain vertices may be required to obtain a weak IASI for the square graph
of a given graph.

First consider a path graph Pn on n vertices. The following theorem provides
the sparing number of the square of a path Pn.

Proposition 1 The sparing number of the square of a path Pn is given by

ϕ(P2
n) =


1
3(2n− 3) if n ≡ 0 (mod 3)
1
3(2n− 2) if n ≡ 1 (mod 3)
1
3(2n− 1) if n ≡ 2 (mod 3)
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Proof. Let Pm : v1v2v3 . . . vn, where m = n − 1. In P2
m, d(v1) = d(vn) = 2

and d(v2) = d(vn−1) = 3 and d(vr) = 4, where 3 ≤ r ≤ n − 2. Hence,
|E(P2

m)| =
1
2

∑
v∈V d(v) = 1

2 [2 × 2 + 2 × 3 + 4(n − 4)] = (2n − 3). Also, for
1 ≤ i ≤ n − 2, the vertices vi, vi+1, and vi+2 form a triangle in P2

m. Then, by
Theorem 5, each of these triangles must have a mono-indexed edge. That is,
among any three consecutive vertices vi, vi+1, and vi+2 of Pm, two vertices must
be mono-indexed. We require an IASI which makes the maximum possible
number of vertices that are not mono-indexed. Hence, label v1 and v2 by
singleton sets and v3 by a non-singleton set. Since v4 and v5 are adjacent to
v3, they can be labeled only by distinct singleton sets that are not used before
for labeling. Now, v6 can be labeled by a non-singleton set that has not already
been used. Proceeding like this the vertices which has the form v3k, 3k ≤ n

can be labeled by distinct non-singleton sets and all other vertices by singleton
sets. Now, we have to consider the following cases.
Case-1: If n ≡ 0 (mod 3), then n = 3k. Therefore, vn can also be labeled by
a non-singleton set. Then the number of vertices that are not mono-indexed
is n

3 . Therefore, the number of edges that are not mono-indexed is 4(n3 −

1) + 2 = 1
3(4n − 6). Therefore, the total number of mono-indexed edges is

(2n− 3) − 1
3(4n− 6) = 1

3(2n− 3).
Case-2: If n ≡ 1 (mod 3), then n − 1 = 3k. Then, vn−1 can be labeled by a
non-singleton set and vn can be labeled by a singleton set. Then the number
of vertices that are not mono-indexed is n−1

3 . Therefore, the number of edges

that are not mono-indexed is 4( (n−1)
3 −1)+3 = 1

3(4n−7). Therefore, the total

number of mono-indexed edges is (2n− 3) − 1
3(4n− 7) = 1

3(2n− 2).
Case-3: If n ≡ 2 (mod 3), then n − 2 = 3k. Then, vn−2 can be labeled by a
non-singleton set and vn and vn−1 can be labeled by distinct singleton sets.
Then the number of vertices that are not mono-indexed is n−2

3 . Therefore, the

number of edges that are not mono-indexed is 4( (n−2)
3 = 1

3(4n− 8). Therefore,

the total number of mono-indexed edges is (2n−3)− 1
3(4n−8) = 1

3(2n−1). �

Figure 1 illustrates squares of even and odd paths which admit weak IASIs.
Mono-indexed edges of the graphs are represented by dotted lines.

Next, we shall discuss the sparing number of the square of cycles. We have
C2
3 = C3 = K3, C

2
4 = K4 and C2

5 = K5 and hence by Theorem 4, their sparing
numbers are 1, 3 and 6 respectively. The following theorem determines the
sparing number of the square of a given cycle on n vertices, for n ≥ 5.

Theorem 6 Let Cn be a cycle on n vertices. Then, the sparing number of the
square of Cn is given by
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ϕ(C2
n) =


2
3n if n ≡ 0 (mod 3)
2
3(n+ 2) if n ≡ 1 (mod 3)
2
3(n+ 4) if n ≡ 2 (mod 3).

Figure 1: Squares of even and odd paths which admit weak IASI

Proof. Let Cn : v1v2v3 . . . vnv1 be the given cycle on n vertices. The square of
Cn is a 4-regular graph. Also, V(C2

n) = V(Cn). Therefore, by the first theorem
on graph theory, we have

∑
v∈V d(v) = 2|E|. That is, 2|E| = 4n ⇒ |E| = 2n,

n ≥ 5.
First, label the vertex v1 in C2

n by a non-singleton set. Therefore, four ver-
tices v2, v3, vn, andvn−1 must be labeled by distinct singleton sets. Next, we can
label the vertex v4 by a non-singleton set, that is not already used for labeling.
The vertices v2 and v3 have already been mono-indexed and the vertices v5
and v6 that are adjacent to v4 in C2

n must be labeled by distinct singleton sets
that are not used before for labeling. Proceeding like this, we can label all the
vertices of the form v3k+1, where k is a positive integer such that 3k+1 ≤ n−2

(since the last vertex that remains unlabeled is vn−2).
Here, we need to consider the following cases.
Case-1: If n ≡ 0 (mod 3), then n − 2 = 3k + 1 for some positive integer k.
Then, vn−2 can be labeled by a non-singleton set. Therefore, the number of



The sparing number of certain graph powers 191

vertices that are labeled by non-singleton sets is n
3 . Since C2

n is 4-regular, we

have the number of edges that are not mono-indexed in C2
n is 4n

3 . Hence, the

number of mono-indexed edges is 2n− 4n
3 = 2n

3 .
Case-2: If n ≡ 1 (mod 3), then n − 2 6= 3k + 1 for some positive integer k.
Then, vn−2 can not be labeled by a non-singleton set. Here n− 3 = 3k+ 1 for
some positive integer k. Therefore, the number of vertices that are labeled by
non-singleton sets is n−1

3 and the number of edges that are not mono-indexed in

C2
n is 4(n−1)

3 . Hence, the number of mono-indexed edges is 2n− 4(n−1)
3 = 2(n+2)

3 .
Case-3: If n ≡ 2 (mod 3), then neither n − 2 nor n − 3 is equal to 3k + 1

for some positive integer k. Here n − 4 = 3k + 1 for some positive integer k.
Therefore, the number of vertices that are labeled by non-singleton sets is n−2

3

and the number of edges that are not mono-indexed in C2
n is 4(n−2)

3 . Hence,

the number of mono-indexed edges is 2n− 4(n−2)
3 = 2(n+4)

3 . �

Figure 2 illustrates the admissibility of weak IASIs by the squares of cycles.
The graphs given in the figure are examples to the weak IASIs of an even cycle
and an odd cycle respectively.

Figure 2: Weak IASIs of C2
12 and C2

7.

A question that arouses much interest in this context is about the sparing
number of the powers of bipartite graphs. Invoking Theorem 5, we first verify
the existence of weak IASIs for the complete bipartite graphs.

Theorem 7 The sparing number of the square of a complete bipartite graph
Km,n is 1

2(m+ n− 1)(m+ n− 1).
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Proof. The diameter of a graph Km,n is 2. Hence by Theorem 5, K2
m,n = Km+n.

Hence, every pair of vertices, that are not mono-indexed, are at a distance 2.
The set-labels of all these vertices, except one, must be replaced by distinct
singleton sets. Therefore, by Theorem 4, ϕ(K2

m,n) =
1
2(m+n−1)(m+n−2). �

A balanced bipartite graph is the bipartite graph which has equal number of
vertices in each of its bipartitions.

Corollary 1 If G is a balanced complete bipartite graph on 2n vertices, then
ϕ(G) = (n− 1)(2n− 1)

Proof. Let G = Kn,n. Then by Theorem 7, ϕ(G) = 1
2(2n − 1)(2n − 2) =

(n− 1)(2n− 1). �

Let G be a bipartite graph. The vertices which are at a distance 2 are either
simultaneously mono-indexed or simultaneously labeled by non-singleton sets.
Therefore, in G2, among any pair of vertices which are are not mono-indexed
and are at a distance 2 between them, one vertex should be relabeled by a
singleton set. Hence, the sparing number of the square of a bipartite graph
G depends on the adjacency pattern of its vertices. Hence, the problem of
finding the sparing number of bipartite graphs does not offer much scope in
this context.

Now we proceed to study the admissibility of weak IASI by the squares
of certain other graph classes. First, we discuss about the sparing number of
wheel graphs. A wheel graph can be defined as follows.

Definition 4 [4] A wheel graph is a graph defined by Wn+1 = Cn + K1. The
following theorem discusses the sparing number of the square of a wheel graph
Wn+1.

The sparing number of the square of a wheel graph Wn+1 is determined in
the following result.

Proposition 2 The sparing number of the square of a wheel graph on n + 1

vertices is 1
2n(n− 1).

Proof. The diameter of a wheel graph Wn+1, for any positive integer n ≥ 3,
is 2. Hence, by Theorem 5, the square of a wheel graph Wn+1 is a complete
graph on n+ 1 vertices. Therefore, by Theorem 4, the sparing number of the
square graph W2

n+1 is 1
2n(n− 1). �

Next, we determine the sparing number of another graph class known as
helm graphs which is defined as follows.
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Definition 5 A helm graph, denoted by Hn, is the graph obtained by adjoining
a pendant edge to each vertex of the outer cycle Cn of a wheel graph Wn+1. It
has 2n+ 1 vertices and 3n edges.

The following result determines the sparing number of a helm graph.

Theorem 8 The sparing number of the square of a helm graph Hn is 1
2n

(n+ 1).

Proof. Let v be the central vertex, V = {v1, v2, v3, . . . , vn} be the vertex set of
the outer cycle of the corresponding wheel graph and W = {w1, w2, w3, . . . , wn}

be the set of pendant vertices in Hn.
The vertex v is adjacent to all the vertices in V and is at distance 2 from all

the vertices in W. Therefore, the degree of v in H2
n is 2n. In Hn, for 1 ≤ i ≤ n,

each vi is adjacent to two vertices vi−1 and vi+1 in V and is adjacent to wi in
W and to the vertex v and is at a distance 2 from all the remaining vertices
in V and from the vertices wi−1 and wi+2 in W. Therefore, the degree of each
vi ∈ V in H2

n is n+3. Now, in Hn, each vertex wi is adjacent to the vertex vi in
V and is at a distance 2 from two vertices vi−1 and vi+2 in V and to the central
vertex v. Hence, the degree of each wi ∈W in H2

n is 4. Therefore, the number
of edges in Hn, |E| = 1

2

∑
u∈V(Hn)

d(u) = 1
2 [2n+ n(n+ 3) + 4n] = 1

2n(n+ 9).

It is to be noted that W is an independent set in H2
n and we can label

all vertices in W by distinct non-singleton sets. It can be seen that there are
more edges in H2

n that are not mono-indexed if we label all the vertices of
W by non-singleton sets than labeling possible number of vertices of V ∪ {v}

by non-singleton sets. Therefore, the number of edges of H2
n which are not

mono-indexed is 4n. Therefore, the number of mono-indexed edges in H2
n is

1
2n(n+ 9) − 4n = 1

2n(n+ 1). �

Figure 3 illustrates the existence of a weak IASI for the square of a helm
graph.

An interesting question in this context is about the sparing number of some
graph classes containing complete graphs as subgraphs. An important graph
class of this kind is a complete n-sun which is defined as follows.

Definition 6 [2] An n-sun or a trampoline, denoted by Sn, is a chordal graph
on 2n vertices, where n ≥ 3, whose vertex set can be partitioned into two
sets U = {u1, u2, c3, . . . , un} and W = {w1, w2, w3, . . . , wn} such that W is
an independent set of G and wj is adjacent to ui if and only if j = i or
j = i+ 1 (modn). A complete sun is a sun G where the induced subgraph 〈U〉
is complete.
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Figure 3: Square of a helm graph with a weak IASI defined on it.

The following theorem determines the sparing number of the square of com-
plete sun graphs.

Theorem 9 Let G be the complete sun graph on 2n vertices. Then sparing
number of G2 is

ϕ(G2) =

{
n2 + 1 if n is odd
n
2 (2n− 1) if n is even.

Proof. Let G be a sun graph on 2n vertices, whose vertex set can be par-
titioned into two sets U = {u1, u2, c3, . . . , un} and W = {w1, w2, w3, . . . , wn}

such that wj is adjacent to ui if and only if j = i or j = i+ 1 (mod n), where
W is an independent set and the induced subgraph 〈U〉 is complete.

In G, the degree of each ui is n + 1 and the degree of each wj is 2. It
can be seen that each vertex wj is adjacent to two vertices in U and is at
a distance 2 from all other vertices in U. Hence, in G2, each vertex wj is
adjacent to all vertices in U and to two vertices wj−1 and wj+1 (in the sense
that w0 = wn and wn+1 = w1). That is, in G2, the degree of each vertex wj

in W is n + 2 and the degree of each vertex ui in U is 2n − 1. Therefore,
|E(G2)| = 1

2

∑
v∈V d(v) = 1

2 [n(n+ 2) + n(2n− 1)] = 1
2n(3n+ 1).
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If we label any vertex ui by a non-singleton set, then no other vertex in G2

can be labeled by non-singleton sets, as each ui is adjacent to all other vertices
in G2. Therefore, we label possible number of vertices in W by non-singleton
sets. Since wj is adjacent to wj+1, only alternate vertices in W can be labeled
by non-singleton sets.

Case 1: If n odd, then 1
2(n− 1) vertices W can be labeled by distinct non-

singleton sets. Therefore, the number of edges that are not mono-indexed in
G2 is 1

2(n − 1)(n + 2). Hence, the number of mono-indexed edges in G2 is
1
2n(3n+ 1) − 1

2(n− 1)(n+ 2) = n2 + 1.
Case 2: If n even, then n

2 vertices W can be labeled by distinct non-singleton

sets. Therefore, the number of edges that are not mono-indexed in G2 is 1
2n(n+

2). Hence, the number of mono-indexed edges in G2 is 1
2n(3n+1)− 1

2n(n+2) =
1
2n(2n− 1). �

Theorem 9 is illustrated in Figure 4. The first and second graphs in 9 are
example to the weak IASIs of the square of the complete n-sun graphs where
n is odd and even respectively.

Figure 4: Weak IASIs of the square of a complete 3-sun and a complete 4-sun.

Another important graph that contains a complete graph as one of its sub-
graph is a split graph, which is defined as follows.

Definition 7 [2] A split graph is a graph in which the vertices can be parti-
tioned into a clique Kr and an independent set S. A split graph is said to be
a complete split graph if every vertex of the independent set S is adjacent to
every vertex of the the clique Kr and is denoted by KS(r, s), where r and s are
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the orders of Kr and S respectively.

The following theorem establishes the sparing number of the square of a
complete split graph.

Theorem 10 Let G = KS(r, s) be a complete split graph without isolated ver-
tices. Then, the sparing number of G2 is 1

2 [(r+s−1)(r+s−2)], where r = |V(Kr)|
and s = |S|.

Proof. Since G has no isolated vertices, every vertex of vi S is adjacent to at
least one vertex uj of Kr. Then, vi is at a distance 2 from all other vertices of
Kr. Hence, in G2 each vertex vi in S is adjacent to all the vertices of Kr. Also,
in G, two vertices of S is at a distance 2 from all other vertices of S. Therefore,
every pair of vertices in S are also adjacent in G2. That is, G2 is a complete
graph on r+s vertices. Hence, by Theorem 4, ϕ(G2) = 1

2 [(r+s−1)(r+s−2). �

So far we have discussed about the sparing number of square of certain
graph classes. In this context, a study about the sparing number of the higher
powers of these graph classes is noteworthy. In the following section, we discuss
about the sparing number of arbitrary powers of certain graph classes.

3 Sparing number of arbitrary graph powers

For the descriptions of graph powers, please see [16] also. For any positive
integer n, we know that the diameter of a complete graph Kn is 1. Hence, any
power of Kn, denoted by Kr

n is Kn itself. Hence, we have the following result.

Proposition 3 For a positive integer r, ϕ(Kr
n) =

1
2(n− 1)(n− 2).

Proof. We have Kr
n = Kn. Hence, ϕ(Kr

n) = ϕ(Kn). Therefore, by Theorem 4,
ϕ(Kr

n) =
1
2(n− 1)(n− 2). �

The following results discuss about the sparing numbers of the arbitrary
powers of the graph classes which are discussed in Section 2.

Proposition 4 For a positive integer r > 1, the sparing number of the r-th
power of a complete bipartite graph Km,n is 1

2(m+ n− 1)(m+ n− 2).

Proof. Since K2
m,n = Km+n, we have Kr

m,n = Km+n for any positive integer
r ≥ 2. Therefore, ϕ(Kr

m,n) = ϕ(Km+n) =
1
2(m+ n− 1)(m+ n− 2). �
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Proposition 5 Let G be a split graph, without isolated vertices, that contains
a clique Kr and an independent set S with |S| = s. Then, for r ≥ 3, the sparing
number of Gr is 1

2(r+ s− 1)(r+ s− 2).

Proof. Since S has no isolated vertices in G, every pair vertices of S are
at a distance at most 3 among themselves. Hence, G3 is a complete graph.
Therefore, For any r ≥ 3, Gr is a complete graph. Hence by Theorem 4, the
sparing number of Gr is 1

2(r+ s− 1)(r+ s− 2). �

Theorem 11 For a positive integer r > 2, the sparing number of Hr
n is

ϕ(Hr
n) =

{
bn2 c(n+ 3) if r = 3

n(2n− 1) if r ≥ 4.

Proof. Let u be the central vertex, V = {v1v2v3, . . . , vn} be the set of vertices
of the cycle Cn and W = {w1, w2, w3, . . . ,

wn} be the set of pendant vertices in Hn. In Hn, the central vertex u is adjacent
to each vertex vi of V and each vi is adjacent to a vertex wi in W.

Since each vertex wi in W is at a distance at most 3 from u as well as from
all vertices of V, for 1 ≤ i ≤ n, and from two vertices wi−1 and wi+1 of W, the
subgraph of H3

n induced by V ∪ {u,wi−1, wi, wi+1} is a complete graph. Hence
only one vertex of this set can have a non-singleton set-label. We get minimum
number of mono-indexed edges if we label possible number of vertices in W

by non-singleton sets. Since wi is adjacent to wi−1 and wi+1, only alternate
vertices in W can be labeled by non-singleton sets. Therefore, bn2 c vertices in
W can be labeled by non-singleton sets. Therefore, since each wi is of degree
n+ 3, total number of edges in H3

n, that are not mono-indexed, is bn2 c(n+ 3).
The distance between any two points of a helm graph is at most 4. Hence,

G4 is a complete graph. Therefore, For any r ≥ 4, Gr is a complete graph.
Hence by Theorem 4, the sparing number of Gr is n(2n− 1). �

We have not determined the sparing number of arbitrary powers of paths
and cycles yet. The following results discusses the sparing number of the r-th
power of a path on n vertices.

The diameter of a path Pm on n = m+ 1 vertices is m = n− 1. Therefore,
by Theorem 5, Pm

m = Pn−1
n−1 is a complete graph. Hence, we need to study about

the r-th powers of Pn−1 if r < n− 1.

Theorem 12 Let Pn−1 be a path graph on n vertices. Then, its spring number
is r−1

2(r+1) [r(2n− 1− r) + 2i].
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Proof. Let Pm : v1v2v3 . . . vn, where m = n − 1. In P2
m, d(v1) = d(vn) =

r, d(v2) = d(vn−1) = r + 1, . . . , d(vr) = d(vn−r+1 = r + r − 1 = 2r − 1 and

d(vj) = 2r, r + 1 ≤ j ≤ n − r. Hence,
∑

v∈V(Pn)

d(v) = 2[r + (r + 1) + (r + 2) +

. . .+ 2r− 1)] + (n− 2r)2r = r(2n− 1− r). Therefore, |E(Pr
m)| =

r
2(2n− 1− r).

It can be seen that among any r + 1 consecutive vertices vi, vi+1, . . . vi+r of
Pm, r vertices must be mono-indexed. Hence, label v1, v2, . . . , vk by singleton
sets and vr+1 by a non-singleton set. Since vr+2, vr+3 . . . , v2r+1 are adjacent
to vr+1, they can be labeled only by distinct singleton sets that are not used
before for labeling. Now, v2r+2 can be labeled by a non-singleton set that has
not already been used. Proceeding like this the vertices which has the form
v(r+1)k, (r+1)k ≤ n can be labeled by distinct non-singleton sets and all other
vertices by singleton sets.

If n ≡ i (mod (k + 1)), then vn−i can also be labeled by a non-singleton
set. Then the number of vertices that are not mono-indexed is n−i

r+1 . Therefore,

the number of edges that are not mono-indexed is 2r[ (n−i)
r+1 − 1] + (r + i) =

1
r+1 [r(2n−1−r)−(r−1)i]. Therefore, the total number of mono-indexed edges

is r
2(2n− 1− r) − 1

r+1 [r(2n− 1− r) − (r− 1)i] = r−1
2(r+1) [r(2n− 1− r) + 2i]. �

Figure 5 depicts the cube of a path with a weak IASI defined on it.

Figure 5: Cubes of a path which admits a weak IASI

The diameter of a cycle Cn is bn2 c. Therefore, by Theorem 5, C
bn
2
c

n (and
higher powers) is a complete graph. Hence, we need to study about the r-th
power of Cn if r < bn2 c. The following theorem discusses about the sparing
number of an arbitrary power of a cycle.

Theorem 13 Let Cn be a cycle on n vertices and let r be a positive integer
less than bn2 c. Then the sparing number of the the r-th power of Cn is given
by ϕ(Cr

n) =
r

r+1((r− 1)n+ 2i) if n ≡ i (mod (r+ 1)).
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Proof. Let Cn : v1v2v3 . . . vnv1 be the given cycle on n vertices. The graph Cr
n

is a 2r-regular graph. Therefore, we have |E(Cr
n)| =

1
2

∑
v∈V d(v) = rn.

First, label the vertex v1 in Cr
n by a non-singleton set. Therefore, 2r vertices

v2, v3, . . . vr+1, vn, vn−1 . . . vn−r+1 can be labeled only by distinct singleton sets.
Next, we can label the vertex vr+2 by a non-singleton set, that is not already
used for labeling. Since the vertices v2, v3, . . . vr+1 have already been mono-
indexed, r vertices vr+3, vr+4, . . . v2r+2 that are adjacent to vr+2 in Cr

n must be
labeled by distinct singleton sets. Proceeding like this, we can label all the
vertices of the form v(r+1)k+1, where k is a positive integer less than bnc, such
that (r+1)k+1 ≤ n− r (since the last vertex that remains unlabeled is vn−r).

If n ≡ i (mod (k+ 1)), then n− i = (r+ 1)k+ 1 for some positive integer k.
Then, vn−(r−i) can be labeled by a non-singleton set. Therefore, the number

of vertices that are labeled by non-singleton set is n−i
r+1 . Since Cr

n is 2r-regular,

the number of edges that are not mono-indexed in Cr
n is 2rn−i

r+1 . Hence, the

number of mono-indexed edges is rn− 2rn−i
r+1 = r

r+1((r− 1)n+ 2i). �

Figure 6 illustrates the admissibility of weak IASIs by the squares of even
and odd cycles.

Figure 6: Cube of a cycle with a weak IASI defined on it.

4 Conclusion

In this paper, we have established some results on the admissibility of weak
IASIs by certain graphs and graph powers. The admissibility of weak IASI by
various graph classes, graph operations and graph products and finding the
corresponding sparing numbers are still open.
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In this paper, we have not addressed the following problems, which are
still open. The adjacency and incidence patterns of elements of the graph
concerned will matter in determining its admissibility of weak IASI and the
sparing number.

Problem 1 Find the sparing number of the r-th power of trees and in par-
ticular, binary trees for applicable values of r.

Problem 2 Find the sparing number of the r-th power of bipartite graph
and in general, graphs that don’t have a complete bipartite graphs as their
subgraphs, for applicable values of r.

Problem 3 Find the sparing number of the r-th power of an n-sun graph
that is not complete, for applicable values of r.

Problem 4 Find the sparing number of the square of a split graph that is
not complete.

Some other standard graph structures related to paths and cycles are lob-
ster graph, ladder graphs, grid graphs and prism graphs. Hence, the following
problems are also worth studying.

Problem 5 Find the sparing number of arbitrary powers of a lobster graph.

Problem 6 Find the sparing number of arbitrary powers of a ladder graphs
Ln.

Problem 7 Find the sparing number of arbitrary powers of grid graphs (or
lattice graphs) Lm,n.

Problem 8 Find the sparing number of arbitrary powers of prism graphs and
anti-prism graphs.

Problem 9 Find the sparing number of arbitrary powers of armed crowns
and dragon graphs.

More properties and characteristics of different IASIs, both uniform and
non-uniform, are yet to be investigated. The problems of establishing the nec-
essary and sufficient conditions for various graphs and graph classes to have
certain IASIs are also open.
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