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Abstract: This paper presents a novel method of synthesis of cylindrical gears 
having opposite curvatures on the contacting flanks. The method is an improved variant 
of cylindrical gears having Archimedean spiral curved toothline – developed by the 
author [3, 4]. Due to the increased cutting capacity of the milling head used in the 
technological variant that will be presented the kinematics of the meshing results more 
sophisticated like in the simplest case where a single radial feed is applied. Due to the 
fact that the present technology uses a cutter head with three cutter groups that executes 
a tangential feed motion the meshing process can be discussed in three variants: single 
parameter meshing, bi-parametric meshing and a novel method developed by the author 
– the double meshing model. This paper discusses the most widely used method in the 
theory of gear meshing, the single parametric method.  

The model of the improved cutting tool, the kinematics of meshing, and the 
mathematical model of gearing are presented in detail. 
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1. Why cylindrical gears with Archimedean spiral shaped toothline? 

The improvement of the contact between the tooth flanks and the increase of 
the load capacity remains a permanent challenge in the world of gear science. 
The development of cylindrical gears with curved teeth represents one of the 
possible ways in this direction. Cylindrical gears represent a class of machine 
elements present in most mechanical power transmission applications. In order 
to improve their load capacity by given dimensions there exist two tasks that 
must be fulfilled: the modification of the tooth profile consisting in addendum 
chamfering and sometimes in admissible dedendum undercut, and the 
localization of the theoretical contact in a point instead of the theoretical line – 
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modification defined as localization of the contact patch. This last task is very 
important to be fulfilled in case of high performance gears of all types. In the 
case of cylindrical gears there exist two basic types assisted by well suited and 
robust manufacturing technologies: right teethed and helical teethed cylindrical 
gears. The localization of the contact patch is realized here by applying high 
performance but expensive grinding or shaving technologies. By external 
cylindrical gears –both spur or helical – always convex tooth-surfaces contact. 

It is mathematically proved by Hertz’s contact theory that better load 
capacity is reached if the contact occurs between surfaces having opposite 
curvatures. The idea was applied for the beginning by the bevel gears of 
automotive power transmission where the flank line of the teeth is a looped 
epicycloid. 

The most famous development regarding the improvement of the load 
capacity of a cylindrical gear pair is known as the Wildhaber-Novikov teething. 
This is realized using a set of complementary racks with circular arc shaped 
tooth profile. As a consequence one of the gears results with convex while the 
other with concave tooth profile. Despite of the thorough study and research 
(realized almost in the ’60-s) the achieved results weren’t reach the expected 
parameters. It was also remarked that the form and the position of the contact 
patch modifies intensely with the modification of the axis distance [1], [2].  

In order to avoid the disadvantage occurred by Wildhaber-Novikov gear 
teeth the sense of curvature should be – in the vision of the author – set along 
the tooth length. In this case the generating element of the gear pair is a self-
moving rack with Archimedean spiral curved toothline. The kinematic geometry 
of the gear pair meshing fulfills Olivier’s second principle as it is shown in the 
right sketch of Fig. 1. This represents a plain section through the axis of the 
milling head. The left sketch of Fig. 1 present the structure of the milling head. 
A defined number of profiled cutters are suited on an Archimedean spiral whose 
pitch is equal to the pitch of the generating rack. The profile of each cutter is 
corresponding to the profile of the rack defined by DIN 3972. These plain 
trapezoidal symmetric profiles are included in axial planes of the milling head. 
As a consequence of the cutter placement defined before, if the milling head 
rotates, a sliding rack profile appears in the axial plane that slides along a radial 
direction. If two gears are positioned correspondently to the moving rack, the 
same geometric dependencies will be reached as in the case of spur gears. 
However, in parallel sections there eexist some delays that lead to the curvature 
of the generating tooth and finally to the curving of the generated toothline. 
Finally, the effect consists in the cutting of tooth spaces limited by a concave 
and a convex surface. 
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Figure 1: The sketch of the rack generating milling head and the coupling gear pair. 

It is proven [3] that one single milling head body is sufficient for the 
generating of both elements of the gear pair. The problem consists in the changing 
of the sense of the leading spiral by positioning the cutters on the opposite side as 
shown in Fig. 2. Due to this a head with symmetric cutter positioning slots solves 
the problem. This will constitute another advantage versus the Wildhaber-
Novikov variant where two distinct cutting tools are necessary to generate the 
gear-pair. The curvatures on the coupling flanks can be easily adjusted using the 
tangential shifting parameters 21,qq . The localization of the contact and the 
relative sliding of the coupling surfaces can be optimized by the rational selection 
of the profile shifting parameters 21, ξξ .  

2. The principle of meshing using tangential feed 

The gear meshing kinematics presented above uses the radial feed to achieve 
the complete depth of cut. The cutting process based on this is estimated to be 
slow. In order to increase the productivity, radial feed will be replaced with 
tangential feed, and the structure of the milling head will be improved, by 
considering 0Z  groups of cutters, each of them containing 3 up to 5 cutters. 
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Figure 2: The meshing of the elements of the gear pair using a single cutter head  
with symmetrical positioning of the inserts. 

The sketch of the cutter head and the principle of work is presented in Fig. 3. 
The cutter groups angularly equidistant positioned in the cutter head. Here 
cutters with a single edge are used, each of them meshing one surface of the 
generating rack tooth or gap. The cutters are fitted on equiangular distanced 
Archimedean spirals with the spiral pitch given by  

 

Figure 3: The cutter head and the principle of tangential feed.  
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The magnitude of teeth’s curvature is the reference radius sR  of the spiral. 
The reference edge is the central edge e.g. the 3th in each group. Denoting 

with sτ the angular distance between two consecutive edges, the limit radius 
values of the leading spiral are 
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The kinematics of the meshing is shown on Fig. 4. A number of 3 frames are 
used as follows: frame ( )000 zyx  of the machine body, considered stationary; 
frame ( )sss zyx  of the milling head; finally, frame ( )111 zyx bound to the 
machined gear. The chosen leading parameter in this kinematic model is the 
rotation angle of the milling head about its own axis sϕ .  
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Figure 4: The kinematics of meshing.  
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The tangential feed can be defined considering the tangential velocity sv  or 
in dependence with the rotation angle sϕ , meaning in this case the length of 
tangential sliding. This last definition is more adequate for the next purposes. 
Finally, the rotation angle 1ϕ  of the machined gear depends on the rotation 
angle of the milling head and the corresponding tangential displacement of the 
milling head )( sx ϕ∆ . The geometric condition is that of slideless rolling of the 
pitch circle on the pitch line of the imaginary rack. 

In order to prime the function )( sx ϕ∆ let’s suppose that cutting velocity cv  
and tangential feed length pro minute 1s  are known or determined with analogy 
to other similar cutting processes. In this case, the rotation n of the milling head 
can be computed with the well-known formula 
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Considering that the tangential displacement during one complete rotation 
amounts ns /1  the sought dependence can be primed as 
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The rotation of the machined gear, considering equation (4) and the pitch of 
the spiral given by (1) became 
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Using dependences (4) and (5) the model of the single parametric meshing 
can be built up. 

3. The equations of the single parametric mesching 

A. The equations of the generating surfaces 

Generating surfaces in the theory of meshing are considered – both one and 
two parametric cases – the support surfaces of the cutting edges, which can take 
very variate forms; their definition stats from the presumption that the cutting 
tool possesses an infinity of edges e.g. a grinding wheel [5], [6], [7]. In the case 
described in this paper the generating surfaces are the support of the cutting 
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edges. Generatrix is the straight segment of cutting edge while the directory is 
the Archimedean spiral. The equations can be easily written using Fig. 5.  
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Figure 5: The built-up of the generating surfaces. 

Here is to remark that generating surfaces are meshed by the cutting edges 
when frame ( )eee zyx  moves counterclockwise with origin eO  on the 
Archimedean spiral while axis ss zO  is still contained in plane ( )ee zx . Notation 
“Kx” denotes the convex toothspace generating edge. By analogy, notation “Kx” 
is used for the concave surface. Using the matrix transformation between the 
involved frames 
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the generalized equations of the generating surfaces result as follows: 
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B. The equation of gearing 

The equation of gearing will be written using the kinematic model developed 
by Litvin [8]. First the equations of the generating surface families must be 
written. This is accessible using geometric dependences emphasized on Fig. 4. 
The equation of the transformation is 

ss rMr 11 =        (8) 

where the transformation matrix has the following expression: 
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The relative velocity can be written with help of Fig. 6. First, the tangential 
velocity component of the milling head is 

0is sψω=        (10) 

Adding this to the component resulted from the superposition of rotations the 
relative velocity can be computed as follows: 
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The normal vectors of the generating surfaces are computed using the 
classical formula υrrn ′×′= u . With all partial results, after a long calculus, 
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equation of gearing can be transformed in an algebraic equation of 2nd degree 
in parameter u: 

022 =′+′+′ cukua        (12) 

The coefficients of the equation have the following expressions: 
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Figure 6: The relative velocity.  
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C. The computing of the meshed surface 

The equation of gearing returns solutions of type 

( ) 2,1,, == ifu sii ϕυ       (14) 

for both toothspace limiting surfaces. Due to the fact that equation of gearing 
returns all solutions, it is necessary to separate only those that contribute to 
build up the real materialized part of the machined gear. As a conclusion, some 
parameter limiting conditions must be defined. 

If the width of the machined gear is kB  then y coordinate of the generating 
surfaces must fulfill the condition: 

kk ByB 5.05.0 1 ≤≤−       (15) 

Considering the start position of the frames involved in the mathematical 
model, it can be easily established the limits of the rolling angle 1ϕ  considering 
an analogy with the coupling of a spur involute gear and a rack. After some 
calculus it results 
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Finally, the value of the edge parameter moves within the interval 
[ ]ss bau ,−∈ , while the spiral parameter [ ]00 /,/ ZZ ππυ −∈ .  
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Considering two sets of iN  respectively jN equidistant values on the 
intervals mentioned before, the generating surface can be approximated as a 
system of nodes  ( ) ( ) ( )( )jijiji zyx ,

1
,

1
,

1 ,, . Now the equation of gearing will be brought 
on the following particular form: 
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The angle ( )ji ,
1ϕ  results numerically for each ( )jiu υ,  parameter combination. 

If the solution meets the interval defined by the limit values given through 
expressions (16) and (17) a real point results on the meshed surface. 

Another possible way to compute the points of the meshed surface consists 
in the determination of the contact curve on the generating surface. In this case, 
the gear’s rolling parameter 1ϕ  will be represented as a set of iN  values on the 
rolling interval. For each i

1ϕ and each jυ  a correspondent value jiu ,  is obtained 
through solving equation (12). With this, the contact curve on the generating 
surfaces are written using equations (7). The meshing surface results with the 
transposing of the contact curve in the frame ( )111 ,, zyx  using the matrix 
transformation (8). 
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Unspecified notations 

0α  – the rack profile angle 
m  – the module 

dR  – the radius of the pitch circle 

ar  – the radius of the addendum circle 

fr  – the radius of the dedendum circle 

br  – the radius of the involute basic circle 
a  – the half width of the generating rack profile on the pitch line 
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ξ  – profile shifting coefficient 

sω  – angular velocity vector of the milling head 

1ω  – angular velocity vector of the machined gear 
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