DOI: 10.1515/ausm-2017-0021

The sharp version of a strongly starlikeness condition

Olga Engel
Babeş-Bolyai University,
Cluj-Napoca, Romania
email: engel_olga@hotmail.com

Abdul Rahman S. Juma
University of Anbar,
Ramadi, Iraq
email: dr_juma@hotmail.com

Abstract. In this paper we give the best form of a strongly starlikeness condition. Some consequences of this result are deduced. The basic tool of the research is the method of differential subordinations.

1 Introduction

Let $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane. Let \mathcal{A} be the class of analytic functions f, which are defined on the unit disk \mathbb{U} and have the properties f(0) = f'(0) - 1 = 0. The subclass of \mathcal{A} , consisting of functions for which the domain $f(\mathbb{U})$ is starlike with respect to 0 is denoted by S^* . An analytic characterization of S^* is given by

$$S^* = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{zf'(z)}{f(z)} > 0, \ z \in \mathbb{U} \right\}.$$

In connection with the starlike functions has been introduced the following class

$$SS^*(\alpha) = \left\{ f \in \mathcal{A} : \left| \arg \frac{zf'(z)}{f(z)} \right| < \alpha \frac{\pi}{2}, \ \alpha \in (0,1], \ z \in \mathbb{U} \right\},$$

2010 Mathematics Subject Classification: 11A25

Key words and phrases: starlike functions, strongly starlike functions, subordination

which is the class of strongly starlike functions of order α . Another subclass of \mathcal{A} we deal with is the following

$$\mathcal{G}_{b} = \left\{ f \in \mathcal{A} : \left| \frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} - 1 \right| < b, \quad z \in \mathbb{U} \right\}, \tag{1}$$

where b > 0.

The authors of [3] proved the following result:

Theorem 1 If the function f belongs to the class $\mathcal{G}_{b(\beta)}$ with

$$b(\beta) = \frac{\beta}{\sqrt{(1-\beta)^{1-\beta}(1+\beta)^{1+\beta}}},$$

where $0 < \beta \le 1$, then $f \in SS^*(\beta)$.

Let $-1 \le B < A \le 1$. The class $S^*(A,B)$ is defined by the equality

$$S^*(A,B) = \Big\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \frac{1 + Az}{1 + Bz}, \ z \in \mathbb{U} \Big\}.$$

An other result regarding the class \mathcal{G}_b is the following theorem published in [4].

Theorem 2 Assume that $-1 \le B < A \le 1$ and $b(1 + |A|)^2 \le |A - B|$. If $f \in \mathcal{G}_b$, then $f \in S^*(A, B)$.

The aim of this paper is to prove the sharp version of Theorem 1, and an improvement of Theorem 2.

In our work we need the following results.

2 Preliminaries

Let f and g be analytic functions in \mathbb{U} . The function f is said to be subordinate to g, written $f \prec g$, if there is a function w analytic in \mathbb{U} , with w(0) = 0, |w(z)| < 1, $z \in \mathbb{U}$ and f(z) = g(w(z)), $z \in \mathbb{U}$. Recall that if g is univalent, then $f \prec g$ if and only if f(0) = g(0) and $f(\mathbb{U}) \subset g(\mathbb{U})$.

Lemma 1 [1] Let $p(z) = \alpha + \sum_{k=n}^{\infty} \alpha_k z^k$ be analytic in \mathbb{U} with $p(z) \not\equiv \alpha$, $n \geq 1$ and let $q: \mathbb{U} \to \mathbb{C}$ be an analytic and univalent function with $q(0) = \alpha$. If p is not subordinate to q, then there are two points $z_0 \in \mathbb{U}$, $|z_0| = r_0$ and $\zeta_0 \in \partial \mathbb{U}$ and a real number $m \in [n, \infty)$, so that q is defined in ζ_0 , $p(\mathbb{U}(0, r_0)) \subset q(\mathbb{U})$, and:

(i) $p(z_0) = q(\zeta_0)$,

(ii) $z_0 p'(z_0) = m \zeta_0 q'(\zeta_0)$,

(iii) Re
$$\left(1 + \frac{z_0 p''(z_0)}{p'(z_0)}\right) \ge m \operatorname{Re} \left(1 + \frac{\zeta_0 q''(\zeta_0)}{q'(\zeta_0)}\right)$$
.

We note that $z_0 \mathfrak{p}'(z_0)$ is the outward normal to the curve $\mathfrak{p}(\mathfrak{dU}(0, r_0))$ at the point $\mathfrak{p}(z_0)$, while $\mathfrak{dU}(0, r_0)$ denotes the border of the disc $\mathfrak{U}(0, r_0)$.

A basic result we need in our research is the following:

Lemma 2 If $f \in A$, $b \in [0,1)$, and $p(z) = \frac{zf'(z)}{f(z)}$, then the inequality

$$\left|\frac{zp'(z)}{p^2(z)}\right| < b, \quad z \in \mathbb{U},\tag{2}$$

implies that

$$p(z) \prec \frac{1}{1 - bz}.$$

The result is sharp.

Proof. If the subordination $p(z) \prec q(z) = \frac{1}{1-bz}$ does not holds, then there are two points $z_0 \in \mathbb{U}$, $|z_0| = r_0 < 1$ and $\zeta_0 \in \partial \mathbb{U}$ and a real number $m \in [1, \infty)$, so that q is defined in ζ_0 , $p(\mathbb{U}(0, r_0)) \subset q(\mathbb{U})$, and:

$$p(z_0) = q(\zeta_0) = \frac{1}{1 - b\zeta_0}$$

$$z_0 p'(z_0) = m\zeta_0 q'(\zeta_0) = m \frac{b\zeta_0}{(1 - b\zeta_0)^2}.$$

Thus we get

$$\frac{z_0 p'(z_0)}{p^2(z_0)} = mb\zeta_0. (3)$$

Since $|mb\zeta_0| \ge b$, it follows that the equality (3) contradicts (2), and the proof is done.

3 Main results

The following theorem is the sharp version of Theorem 1.

Theorem 3 If $\alpha \in (0,1)$, and $f \in \mathcal{G}_{b(\alpha)}$, where $b(\alpha) = \sin\left(\alpha \frac{\pi}{2}\right)$, then $f \in SS^*(\alpha)$. The result is sharp.

Proof. If we denote $p(z) = \frac{zg'(z)}{g(z)}$, then the condition $f \in \mathcal{G}_{b(\alpha)}$ becomes

$$\left|\frac{zp'(z)}{p^2(z)}\right| < b(\alpha), \quad z \in \mathbb{U},$$
 (4)

and according to Lemma 2 we get

$$p(z) \prec q(z) = \frac{1}{1 - b(\alpha)z}.$$

The domain $D = q(\mathbb{U})$ is symmetric with respect to the real axis and the boundary of D is the curve

$$\Gamma = \left\{ \begin{array}{l} x(\theta) = \operatorname{Re} \frac{1}{1 - b(\alpha)e^{i\theta}} = \frac{1 - b(\alpha)\cos\theta}{1 + b^2(\alpha) - 2b(\alpha)\cos\theta}, \\ y(\theta) = \operatorname{Im} \frac{1}{1 - b(\alpha)e^{i\theta}} = \frac{b(\alpha)\sin\theta}{1 + b^2(\alpha) - 2b(\alpha)\cos\theta}, \end{array} \right. \quad \theta \in [-\pi, \pi].$$

The subordination $p(z) \prec q(z)$ implies that $|\arg(p(z))| \leq \arctan(M)$, where M is the slope of the tangent line to the curve Γ trough the origin. The equation of the tangent line is

$$\frac{x - x(\theta)}{x'(\theta)} = \frac{y - y(\theta)}{y'(\theta)}.$$

This tangent line crosses the origin if and only if

$$\frac{x(\theta)}{x'(\theta)} = \frac{y(\theta)}{y'(\theta)},$$

and this equation is equivalent to

$$2b(\alpha)\cos^2\theta - (3b^2(\alpha) + 1)\cos\theta + b(\alpha)(b^2(\alpha) + 1) = 0.$$

After a short calculation we get $\cos \theta = b(\alpha)$ and this implies

$$M = \frac{y'(\theta)}{x'(\theta)} = \frac{y(\theta)}{x(\theta)} = \frac{b(\alpha)\sin\theta}{1 - b(\alpha)\cos\theta} = \frac{b(\alpha)}{\sqrt{1 - b^2(\alpha)}}.$$

Finally if we put $b(\alpha) = \sin\left(\alpha \frac{\pi}{2}\right)$, then it follows that $|\arg(\mathfrak{p}(z))| < \arctan(M) = \arctan\frac{b(\alpha)}{\sqrt{1-b^2(\alpha)}} = \alpha \frac{\pi}{2}, \ z \in \mathbb{U}.$

Thus we have proved the implication

$$\left|\frac{z\mathfrak{p}'(z)}{\mathfrak{p}^2(z)}\right|<\sin\left(\alpha\frac{\pi}{2}\right)\ \Rightarrow\ |\arg(\mathfrak{p}(z))|<\arctan(M)=\alpha\frac{\pi}{2},$$

and the proof is done.

Putting $\alpha = 1$ in Theorem 3, we get the following starlikeness condition, which is the sharp version of Corollary 1 from [3].

Corollary 1 If $f \in A$ and

$$\left|\frac{1+\frac{z\mathrm{f}''(z)}{\mathrm{f}'(z)}}{\frac{z\mathrm{f}'(z)}{\mathrm{f}(z)}}-1\right|<1,\ \ z\in\mathbb{U},$$

then $f \in S^*$.

For $\alpha = \frac{1}{2}$, we get the sharp version of Corollary 2 from [3].

Corollary 2 If $f \in A$ and

$$\left|rac{1+rac{z\mathrm{f}''(z)}{\mathrm{f}'(z)}}{rac{z\mathrm{f}'(z)}{\mathrm{f}(z)}}-1
ight|<rac{\sqrt{2}}{2},\;\;z\in\mathbb{U},$$

then $f \in SS^*\left(\frac{1}{2}\right)$.

Theorem 4 If $f \in \mathcal{G}_b$ and b(1 + A - B + |B|) < A - B, then $f \in S^*(A, B)$.

Proof. Let $q, h : \mathbb{U} \to \mathbb{C}$ be the functions defined by

$$q(z) = \frac{1}{1 - hz}, h(z) = \frac{1 + Az}{1 + Bz}.$$

According to Lemma 2 we have $p(z) = \frac{zf'(z)}{f(z)} \prec q(z)$ which is equivalent to

$$p(\mathbb{U}) \subset q(\mathbb{U}).$$
 (5)

We will prove that $q(\mathbb{U}) \subset h(\mathbb{U})$. A simple calculation shows that the domains $q(\mathbb{U})$ and $h(\mathbb{U})$ are convex.

The border of the domain $q(\mathbb{U})$ is the curve

$$\Gamma: q(e^{i\theta}) = \frac{1}{1 - he^{i\theta}}, \quad \theta \in [0, 2\pi],$$

and the border of $h(\mathbb{U})$ is the curve

$$\Delta: h(e^{i\eta}) = \frac{1 + Ae^{i\eta}}{1 + Be^{i\eta}}, \eta \in [0, 2\pi].$$

The inequality $\mathfrak{b}(1+A-B+|B|) < A-B$ is equivalent to $\frac{\mathfrak{b}}{1-\mathfrak{b}} < \frac{A-B}{1+|B|}$. This inequality implies

$$|q(e^{i\theta}) - 1| = \frac{b}{|1 - be^{i\theta}|} \le \frac{b}{1 - b} < \frac{A - B}{1 + |B|} \le \frac{A - B}{|1 + Be^{i\eta}|} = |h(e^{i\eta}) - 1|.$$

Thus we get

$$|q(e^{i\theta}) - 1| < |h(e^{i\eta}) - 1|, \text{ for every } \theta, \eta \in [0, 2\pi].$$

Since $1 \in q(\mathbb{U})$ and $1 \in h(\mathbb{U})$, the inequality (6) implies that the curve Γ is inside the curve Δ .

This means that

$$q(\mathbb{U}) \subset h(\mathbb{U}).$$
 (7)

For example if we consider

$$q(z) = \frac{1}{1 - 0.6z}$$
 and $h(z) = \frac{1 + 0.3z}{1 - 0.5z}$

and the inequality b(1 + A - B + |B|) < A - B is satisfied for b = 0.6, A = 0.3 and B = -0.5 then we obtain the following graphics:

which shows that $q(\mathbb{U}) \subset h(\mathbb{U})$. For b = 0.7, A = 0.3 and B = -0.5 the inequality b(1 + A - B + |B|) < A - B is not satisfied and consequently we obtain the following image:

which shows that $q(\mathbb{U}) \not\subset h(\mathbb{U})$. Finally (5) and (7) implies $p(\mathbb{U}) \subset h(\mathbb{U})$ and since h is univalent we infer $\frac{zf'(z)}{f(z)} = p(z) \prec h(z), \quad z \in \mathbb{U}$.

This subordination is equivalent to $f \in S^*(A, B)$.

If $0 \le B < A \le 1$, then we get the following corollary, which improve the result of Theorem 2.

Corollary 3 Let $0 \le B < A \le 1$ and $b \in (0, +\infty)$ such that $b(1+A) \le 1+B$. If $f \in \mathcal{G}_b$, then $f \in S^*(A, B)$.

References

- [1] S. S. Miller, P. T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker, New York, Basel 2000.
- [2] S.S. Miller, P.T. Mocanu, The theory and applications of second-order differential subordinations, Stud. Univ. Babes-Bolyai Math., 34 (4) (1989), 3–33.

- [3] M. Nunokawa, S. Owa, H. Saitoh, N. Takahashi, On a strongly starlikeness criteria, *Bull. Inst. Math. Acad. Sinica*, **31** (3) (2003), 195–199.
- [4] J. Sokól, L. Trojnar-Spelina, On a sufficient condition for strongly starlikeness, J. Ineq. Appl., 383 (1) (2013).

Received: January 8, 2017