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The complexity of an exotic edge coloring

of graphs
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Abstract. Coloring the nodes of a graph is a commonly used prepro-
cessing method to speed up clique search procedures. For the very same
purpose we propose coloring the edges of the graph. It will be shown that
the recommended type of edge coloring leads to an NP-complete problem.
Therefore in practical computations we should rely on some approximate
algorithm.

1 Introduction

Let G = (V, E) be a finite simple graph. In other words G has finitely many
nodes and G does not have any double edge or loop. In this situation an edge
of G can be identified with a two element subset of V. Consequently the set
of edges E of G forms a family of two element subsets of V. A subgraph ∆
of G is a clique if each two distinct nodes in ∆ are adjacent. A clique with
k nodes is called a k-clique. The number of the nodes of a clique sometimes
referred as the size of the clique. A k-clique in G is a maximal clique if it is
not a subgraph of any (k + 1)-clique in G. A k-clique ∆ in G is a maximum
clique if G does not have any (k+ 1)-clique. The size of a maximum clique in
G is called the clique size of G and it is denoted by ω(G).

Computing the clique size of a given graph has many important applications
inside and outside of mathematics. Many of these applications are described
in [1]. It was pointed out in [2] that the performance of their algorithms to

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C15, 03D15
Key words and phrases: maximal clique, maximum clique, k-clique, graph coloring,
coloring the nodes, coloring the edges, NP-complete problems

201

http://www.domain.edu
http://www.domain.edu
mailto:sszabo7@hotmail.com


202 S. Szabó

determine the clique size of a given graph is critically depend on efficiently
computable upper estimates of clique sizes. The most commonly used method
to estimate clique size is via coloring the nodes of the graph. Although there is
an interesting additional technique based on dynamic programming presented
in [5] and further developed in [4] in this paper we will restrict our attention
to the coloring idea.

Suppose that the nodes of a finite simple graph G are colored using k given
colors such that

(1) each node of G receives exactly one color,

(2) adjacent nodes never receive the same color.

This type of coloring is the most commonly encountered coloring of the nodes
of a graph. We will refer to it saying that the vertices of G have an L type
coloring with k colors. The letter L stands for the expression legal coloring.
The connection between the coloring and the clique size is the following. If the
nodes of the graph G have an L type coloring with k colors then ω(G) ≤ k.

It should not came to us as a surprise that coloring the edges of a graph
can provide upper estimates for the clique size. We color the edges of a graph
G with k colors such that

(1) each edge of G receives exactly one color,

(2) if x, y, z are nodes of a 3-clique in G, then the edges {x, y}, {x, z}, {y, z}
receive three distinct colors.

For the sake of easier reference we call this type of coloring of the edges of a
graph an S type edge coloring. The coloring could be called a rainbow triangle
coloring. (The letter S stands for the initial letter of the word “rainbow” in
Hungarian.) The minimum number of colors k for which the edges of an n-
clique have an S type coloring is denoted by χS(n). A possible connection
between the edge coloring and the clique size of a graph is the following. If the
edges of a graph G have an S type coloring with k colors and ω(G) = t, then
χS(t) ≤ k must hold. In other words if the edges of G have an S type coloring
with k colors and χS(t) > k, then ω(G) < t.

It is not hard to construct an S type coloring of the edges of a given graph
in greedy fashion. A greedy S type edge coloring together with the next lemma
provide a practical way to estimate the clique size.

Lemma 1 χS(n) ≥ n− 1 for each positive integer n.
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Proof. Let ∆ = (V, E) be an n-clique and suppose that the edges of ∆ have an S
type coloring with k colors. Let f : E→ {1, . . . , k} be the coloring of the edges of
∆. Finally let v1, . . . , vn be all the vertices of ∆. Note that f({v1, vi}) 6= f({v1, vj})
holds for each i, j, 1 ≤ i < j ≤ n since the edges {v1, vi}, {v1, vj}, {vi, vj} receive
three distinct colors. In particular the edges {v1, vi}, 2 ≤ i ≤ n receive distinct
colors. It follows that χS(n) ≥ k ≥ n− 1, as required. �

The reader will notice that the exact value of χS(n) can be determined.
Namely,

χS(n) =
{
n, if n is odd,
n− 1, if n is even

holds for each n ≥ 2. Suppose that the edges of an n-clique ∆ have an S
type coloring. The edges of ∆ receiving color c form the c-color class of the
coloring. Notice that the edges in the c-color class must form a matching in ∆.
A maximum matching is a 1-factor of ∆. It is a known result that an n-clique
can be decomposed into n−1 1-factors if n is even. Further, an n-clique cannot
be decomposed into n− 1 1-factors when n is odd. In the next section we will
see that the cruder result stated in Lemma 1 will suffice for our purposes.

By Lemma 1, if the edges of a given graph G have an S type coloring with
k colors and n − 1 > k, then ω(G) < n. By the main result of this note
the problem to decide if the edges of a given graph have an S type coloring
with k colors is an NP-complete problem for k ≥ 3. This result loosely can be
interpreted such that determining the minimum value of k for which the edges
of G have an S type coloring with k colors is a computationally demanding
problem.

2 Numerical experiments

The main motivation of this paper is to explore the possibility of utilizing
edge coloring in clique search algorithms. It is relatively straightforward to
construct S type edge coloring for a given graph in a greedy fashion. The
greedy algorithm does not provide the optimum number of colors but it is
computationally feasible.

Let G = (V, E) be a given graph and suppose that we want to find an S
type coloring of the edges of G. We locate a clique ∆ in G. The clique ∆ is
not necessarily a largest clique in G. For our purposes any suboptimal clique
is suitable. Let e1, . . . , em be a fixed list of the edges of the given graph G
such that we list first the edges of ∆ then we list the remaining edges of G.
Decomposing ∆ into 1-factors and using the 1-factors as color classes we can



204 S. Szabó

Name |V | |E| L S

MON03 27 189 6 9
MON04 64 1296 12 20
MON05 125 5500 20 35
MON06 216 17550 30 57
MON07 343 46305 42 79
MON08 512 106624 56 108
MON09 729 221616 72 141
MON10 1000 425250 90 178
MON11 1331 765325 110 218
MON12 1728 1306800 132 261
MON13 2197 2135484 156 309
MON14 2744 3362086 182 361
MON15 3375 5126625 210 418

Table 1: Graphs associated with monotonic matrices.

color the edges of ∆ and we end up with a partial coloring of the edges of G.
Suppose C1, . . . , Cr are the existing color classes and ei is the first uncolored
edge of G. The edge ei can be placed into the colors class C1 if C1 does not
contain any edge ej such that ei and ej are edges of a 3-clique in G. If ei can
be placed into C1, then we put ei into C1. If ei does not fit into C1, then we
try to place it into C2. Continuing in this way either ei fits into one of the
colors classes C1, . . . , Cr or we open a new color class Cr+1 for ei. When all
the edges on the list e1, . . . , em are colored, then we have an S type coloring
of the edges of G.

We carried out a large scale numerical experiment to compare the upper
estimates for the clique size of the given graph G provided by the ordinary L
type node coloring and the proposed S type edge coloring of G. The results
are summarized in Tables 1, 2, and 3. We considered 13+10+13 = 36 graphs.
These graphs are coming from coding theory. They are related to monotonic
matrices, deletion error detecting, and error correcting codes, respectively.
Using sequential greedy coloring algorithms we constructed an L type coloring
of the nodes and an S type coloring of the edges for each graph. In the tables
we listed the number of colors, the number of nodes and the number of edges
of the graphs. From the results it is fairly clear that the greedy node coloring
provides tighter estimates for the clique sizes of the graphs than the edge
coloring does. Therefore in a clique search algorithm we do not recommend to
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Name |V | |E| L S

DEL03 8 9 2 1
DEL04 16 57 4 4
DEL05 32 305 8 11
DEL06 64 1473 14 24
DEL07 128 6657 26 53
DEL08 256 28801 50 114
DEL09 512 121089 101 236
DEL10 1024 499713 199 492
DEL11 2048 2037761 395 995
DEL12 4096 8247297 782 2024

Table 2: Graphs associated with deletion error correcting codes.

Name |V | |E| L S

JOHNSON06 15 45 4 3
JOHNSON07 35 385 10 11
JOHNSON08 70 1855 20 26
JOHNSON09 126 6615 35 52
JOHNSON10 210 19425 56 85
JOHNSON11 330 49665 84 131
JOHNSON12 495 114345 120 197
JOHNSON13 715 242385 165 279
JOHNSON14 1001 480480 220 377
JOHNSON15 1365 900900 286 496
JOHNSON16 1820 1611610 364 646
JOHNSON17 2380 2769130 455 813
JOHNSON18 3060 4594590 560 1008

Table 3: Graphs associated with Johnson error correcting codes.
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replace greedy sequential L type coloring of the nodes by greedy sequential S
type coloring of the edges. We suggest to use the edge coloring in a different
fashion. It can be used as a preconditioning tool.

We color the edges of the given graph G before the clique search starts. One
can store the colors of the edges of G in an n by n matrixM conveniently. Here
n is the number of the nodes of G. The rows and columns of M are labeled by
the nodes of G and mu,v is the entry of M in the row labeled by node u and
column labeled by node v. If c is the color of the edge {u, v}, then we set mu,v

to be c. In the course of a clique search we can read off the colors of the edges
from the matrix M with relatively low cost. Let H be a subgraph of G and
suppose we are looking for a k-clique ∆ in H. Note that if the edges of G have
an S type coloring, then by inheritance the edges of H have an S type coloring
too. The edges joining to a node v of ∆ must have pair-wise distinct colors.
Therefore if the edges of H joining to the node v are colored with less than
k−1 colors, then v can be deleted from H. Deleting nodes from H reduces the
size of the search space and might help in speeding up the computation.

3 A complexity result

Let Γ = (V, E) be a finite simple graph. Using Γ we construct a new graph
G′ = (V ′, E′). We try to establish the following facts.

(1) If the nodes of Γ have an L type coloring with 3 colors, then the edges
of G′ have an S type coloring with 3 colors.

(2) If the edges of G′ have an S type coloring with 3 colors, then the nodes
of Γ have an L type coloring with 3 colors.

Let v1, . . . , vn be all the nodes of Γ . We assign a graph Hi to vi for each i,
1 ≤ i ≤ n. The constructions of Hi and G′ are guided by the structure of the
incidence matrix of Γ . The incidence matrix of Γ has n = |V | rows and m = |E|

columns. The rows are labeled by the nodes v1, . . . , vn and the columns are
labeled by the edges of Γ . If ek = {vi, vj} is an edge of Γ , then the two cells at
the intersection of rows vi, vj and column ek both contain a bullet.

We illustrate the construction working out the details in connection with
a toy example. The graph Γ in the example can be seen in Figure 1 and the
incidence matrix of this graph is in Table 4.

To vertex vi of Γ we assign a graph Hi which has 4m nodes, where m =
|E|. Let K = (V ′′, E′′) be a 4-clique such that V ′′ = {a, b, c, d}. We take m
isomorphic copies Ki,1, . . . , Ki,m of K. We choose the notation such that Ki,j =
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e1 e2 e3 e4 e5
v1 • • •
v2 • •
v3 • • •
v4 • •

Table 4: The node edge incidence matrix of of the graph Γ in the toy example.
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Figure 1: A geometric representation of the graph Γ in the toy example.
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Figure 2: A step of the construction of Hi. The 1st square is Ki,j and the 3rd
square is Ki,j+1.
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Figure 3: The graphs H1, . . . , H4 in the toy example.

(V ′′
i,j, E

′′
i,j) and V ′′

i,j = {ai,j, bi,j, ci,j, di,j}. We add the edges

{bi,j, ai,j+1}, {bi,j, di,j+1}, {ci,j, ai,j+1}, {ci,j, di,j+1},

for each j, 1 ≤ j ≤ m − 1. This step of the construction is depicted in Figure
2. Finally we add the edges

{bi,m, ai,1}, {bi,m, di,1}, {ci,m, ai,1}, {ci,m, di,1}.

We encourage the reader to visualize Hi as a long narrow paper strip divided
into 2m squares. The two opposite short sides of the rectangle are united
to form a closed strip. However, we draw Hi as an open flattened strip in
Figure 3 in order not to clutter the diagram. Figure 3 exhibits the geometric
representations of the graphs H1, . . . , H4 associated with the vertices v1, . . . , v4
of the toy example Γ .

If vi and vj are adjacent edges in Γ such that i < j, then to represent the
edge ek = {vi, vj} of Γ in G′ we add the edges

{aj,k, ci,k}, {aj,k, di,k}, {dj,k, ci,k}, {dj,k, di,k}

to G′. (The reader may follow the flow of the argument in Figure 6.) If vi and
vj are not adjacent edges in Γ , then we do not add any extra edges to G′. The
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Figure 4: The subgraphs spanned by N(u, v) in the proof of Lemma 2.
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Figure 5: Coloring the edges of a 4-clique in the proof of Lemma 3.

toy example Γ has five edges

e1 = {v1, v2}, e2 = {v1, v3}, e3 = {v1, v4},

e4 = {v2, v3}, e5 = {v3, v4}.

The reader can spot five modifications corresponding to these edges in Figure
3.

When we analyze the graph G′ we will use the following two lemmas.

Lemma 2 If Γ has at least one edge, then the clique number of G′ is equal to
4. In symbols ω(G′) = 4.

Proof. Since Γ has an edge, it follows that G′ contains a 4-clique. Consequently
ω(G′) ≥ 4. It remains to show that ω(G′) ≤ 4.

Let ∆ be a maximum clique in G′ and let {u, v} be an edge in ∆. Let N(u, v)
be the set of the next nodes of G′.

(1) The nodes u and v.

(2) All the nodes adjacent to both u and v.

We call N(u, v) the neighborhood set of the edge {u, v}.
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Figure 6: The connecting device in the first construction.

An inspection shows that the subgraph of G′ spanned by the neighborhood
setN(u, v) can only be one of the three graphs shown in Figure 4. Since ∆must
be a subgraph of the graph spanned by N(u, v), it follows that ω(G′) ≤ 4. �

Lemma 3 Let ∆ be a 4-clique with nodes x, y, u, v. If the edges of ∆ have an
S type coloring with 3 colors, then the “opposite” edges {x, y} and {u, v} must
receive the same color.

Proof. The edges of the 3-clique whose nodes are x, y, u must receive three
distinct colors. We may assume that the edges {x, y}, {y, u}, {x, u} receive colors
1, 2, 3 respectively since this is only a matter of rearranging the colors 1, 2, 3
among each other. Edge {x, v} cannot receive color 1 because {x, v} and {x, y}

are edges of the 3-clique with nodes x, y, v. Edge {x, v} cannot receive color 3
since {x, v} and {x, u} are edges of the 3-clique with nodes x, u, v. Thus edge
{x, v} must receive color 2. Finally, edge {y, v} has to be colored with color 3
and edge {u, v} must be colored with color 1. (The reasoning can be followed
in Figure 5.) �

Suppose now that the nodes of Γ have an L type coloring with 3 colors. Let
f : V → {1, 2, 3} be the coloring. Let us consider the subgraph Hi of G′ assigned
to node vi of Γ . We color the edge {ai,1, di,1} of G′ with color f(vi). We know
from Lemma 3 that the edge {bi,1, ci,1} must be colored with color f(vi) in
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order to define an S type coloring of the edges of G′ with 3 colors. Therefore
we color all the “vertical” edges

{ai,j, di,j}, {bi,j, ci,j}, 1 ≤ j ≤ m

of Hi with color f(vi). In a fixed 4-clique in Hi we color the opposite “hori-
zontal” edges with the same color. Similarly in a fixed 4-clique in Hi we color
the “diagonal” edges with the same color. If the colors used for the vertical,
horizontal, and diagonal edges are pair-wise distinct, then the edges of Hi have
an S type coloring with 3 colors.

There are further edges in G′ which play the role of connecting devices
between Hi and Hj when vi and vj are adjacent nodes of Γ . Let ek = {vi, vj} be
the edge of Γ connecting the vertices vi and vj. The color of the edge {aj,k, dj,k}

has already been assigned to be f(vj). This forces us to color the edge {di,k, ci,k}

with color f(vj). But in the 4-clique Ki,k with edges ai,k, bi,k, ci,k, di,k only the
color of the vertical edges are fixed to be f(vi) and so we have a freedom to
choose the color of the horizontal edges.

Summing up our considerations we may say that the edges of the graph G′

have an S type coloring with 3 colors provided that the nodes of Γ have an L
type coloring with 3 colors.

Suppose now that the edges of G′ have an S type coloring with 3 colors. Let
f′ : E′ → {1, 2, 3} be this coloring. In particular the edges of the subgraph Hi
of G′ have an S type coloring with 3 colors for each i, 1 ≤ i ≤ n. By Lemma
3, in an S type coloring of the edges of Hi the vertical edges must receive the
same color. This colors is f′({ai,1, di,1}). We color the node vi of Γ with this
color. In other words we define a map f : V → {1, 2, 3} by setting f(vi) to be
f′({ai,1, di,1}).

We claim that f(vi) = f(vj) implies that vi and vj are not adjacent nodes of
Γ .

In order to verify the claim assume on the contrary that vi and vj are
adjacent nodes of Γ and f(vi) = f(vj) holds. Let ek = {vi, vj} be the edge of
Γ that connects the nodes vi and vj. Let us consider the 4-clique Ki,j,k of G′

whose vertices are ci,k, di,k, aj,k, dj,k. Since the edges of G′ have an S type
coloring with 3 colors, it follows that the edges of the 4-clique Ki,j,k have an S
type coloring with 3 colors. Lemma 3 is applicable to Ki,j,k and gives that the
edge {aj,k, dj,k} of Hj and the edge {di,k, ci,k} of Hi are colored with the same
color. This common color is f(vj). The vertical edge {ai,k, di,k} of Hi is colored
with color f(vi). This implies f(vi) = f(vj). From f(vi) = f(vj), it follows that
two edges of the 3-clique with nodes ai,k, di,k, ci,k are colored with the same
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Figure 7: The graph assigned to the edge {vi, vj}.

color. Namely the edges {ai,k, di,k} and {ci,k, di,k} are receiving the same color.
This contradiction proves our claim.

Theorem 4 The problem to decide if the edges of a finite simple graph have
an S type coloring with 3 colors is an NP-complete problem.

Proof. For the proof we should recall the known result that the problem of
deciding if the nodes of a finite simple graph have an L type coloring with 3
colors is an NP-complete problem. The result on the coloring of the nodes can
be found for example in [3] or [6]. �

4 An alternative construction

In this section we give a second proof for Theorem 4 using a new construction.

Proof. Let Γ = (V, E) be a finite simple graph. Using Γ we construct a new
graph G′ = (V ′, E′). We try to show that the following requirements hold.

(1) If the nodes of Γ have an L type coloring with 3 colors, then the edges
of G′ have an S type coloring with 3 colors.

(2) If the edges of G′ have an S type coloring with 3 colors, then the nodes
of Γ have an L type coloring with 3 colors.

Let v1, . . . , vn be all the nodes of Γ . We assign two points xi and yi to node
vi for each i, 1 ≤ i ≤ n. We choose the points x1, . . . , xn, y1, . . . , yn to be
pair-wise distinct. We connect the nodes xi and yi in G′ with an edge.
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Figure 8: The graph G′ associated with the toy example.

If vi and vj are adjacent nodes in Γ , then we add three new nodes ai,j, bi,j,
ci,j and eleven new edges

{xi, ai,j}, {xi, ci,j}, {yi, ai,j}, {yi, ci,j},

{xj, bi,j}, {xj, ci,j}, {yj, bi,j}, {yj, ci,j},

{ai,j, bi,j}, {ai,j, ci,j}, {bi,j, ci,j}.

If vi and vj are not adjacent in Γ , then we do not add any new node or new
edge to G′. This step of the construction is illustrated in Figure 7. The graph
G′ associated with the toy example is in Figure 8.

Suppose first that the nodes of Γ have an L type coloring with 3 colors. Let
f : V → {1, 2, 3} be such a coloring. We define an edge coloring f′ : E′ → {1, 2, 3}

of G′. To do so we set f′({xi, yi}) to be f(vi) and we set

f′({ai,j, ci,j}) = f(vi), f
′({bi,j, ci,j}) = f(vj).

Let us consider the 3-clique ∆ in G′ whose nodes are ai,j, bi,j, ci,j. Two edges
of ∆ has already been colored. So we color the edge {ai,j, bi,j} with the only
color in the set {1, 2, 3} \ {f(vi), f(vj)}. We color the edges {xi, ai,j}, {yi, ci,j} with
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one of the colors in the set {1, 2, 3} \ {f(vi)} and we color the edges {xi, ci,j},
{yi, ai,j} with the remaining last color. Similarly, we color the edges {xj, bi,j},
{yj, ci,j} with one of the colors in the set {1, 2, 3} \ {f(vj)} and we color the edges
{xj, ci,j}, {yj, ci,j} with the remaining last color.

An inspection shows that the coloring f′ : E′ → {1, 2, 3} is an S type coloring
of the edges of G′.

Next suppose that the edges of G′ have an S type coloring with 3 colors. Let
f′ : E′ → {1, 2, 3} be such a coloring. Using the edge coloring f′ of G′ we define
a coloring f : V → {1, 2, 3} of the nodes of Γ by setting f(vi) to be f′({xi, yi}).
We claim that f(vi) = f(vj) implies that vi and vj are not adjacent in Γ .

In order to prove the claim assume on the contrary that f(vi) = f(vj) and
the nodes vi and vj are adjacent in Γ . Since f′ is an S type coloring of the edges
of G′, it follows that

f′({ai,j, ci,j}) = f′({xi, yi}) = f(vi),
f′({bi,j, ci,j}) = f′({xj, yj}) = f(vj).

Let us watch the 3-clique ∆ in G′ whose nodes are ai,j, bi,j, ci,j. (The reader
may consult with Figure 7.) We get the contradiction that two edges of ∆ are
colored with the same color. �
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