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Abstract. Testing is one of the most indispensable tasks in software en-
gineering. The role of testing in software development has grown signifi-
cantly because testing is able to reveal defects in the code in an early stage
of development. Many unit test frameworks compatible with C/C++
code exist, but a standard one is missing. Unfortunately, many unsolved
problems can be mentioned with the existing methods, for example usu-
ally external tools are necessary for testing C++ programs.

In this paper we present a new approach for testing C++ programs.
Our solution is based on C++ template metaprogramming facilities, so it
can work with the standard-compliant compilers. The metaprogramming
approach ensures that the overhead of testing is minimal at runtime. This
approach also supports that the specification language can be customized
among other advantages. Nevertheless, the only necessary tool is the
compiler itself.

1 Introduction

Testing is the most important method to check programs’ correct behaviour.
Testing can reveal many problems within the code in development phase. Test-
ing is cruicial from the view of software quality [5]. Many purposes of testing
can be, for instance, quality assurance, verification and validation, or reliability
estimation. Nonetheless, testing is potentially endless. It can never completely

Computing Classification System 1998: D.2.5
Mathematics Subject Classification 2010: 62N03
Key words and phrases: testing, C++, template metaprogramming

154


http://plcportal.inf.elte.hu/en/Pages/default.aspx
http://www.inf.elte.hu/english/Lapok/default.aspx
http://www.elte.hu/en
mailto:patakino@elte.hu

Testing by C++ template metaprograms 155

identify all the defects within the software. The main task is is to deliver
faultless software [20].

Correctness testing and reliability testing are two major areas of testing.
However, many different testing levels are used. In this paper we deal with
unit tests that is about correctness. The goal of unit testing is to isolate each
part of the program and to show that the individual parts are correct. A unit
test provides a strict, written contract that the piece of code must satisfy.
As a result, it affords several benefits. Unit tests find problems early in the
development phase. Unfortunately, most frameworks need external tools [10].

A testing framework is proposed in [3, 4] which is based on the C++0x — the
C++ forthcoming standard. The framework takes advantage of concepts and
axioms. These constructs support the generic programming in C++ as they
enable to write type constraints in template parameters. By now, these con-
structs are removed from the draft of the next standard. Metaprogram testing
framework has already been developed [16] too, but it deals with metaprogams,
it is just the opposite of our approach.

C++ template metaprogramming is an emerging paradigm which enables
to execute algorithms when ordinary C++ programs are compiled. The style
of C++ template metaprograms is very similar to the functional program-
ming paradigm. Metaprograms have many advantages that we can harness.
Metalevel often subserves the validation [8].

Template metaprograms run at compilation-time, whereupon the overhead
at runtime is minimal. Metaprograms’ “input” is the runtime C++ program
itself, therefore metaprograms are able to retrieve information about the host-
ing program. This way we can check many properties about the programs
during compilation [12, 14, 21, 22].

Another important feature of template metaprograms is the opportunity of
domain-specific languages. These special purpose languages are integrated into
C++ by template metaprograms [7, 9]. Libraries can be found that support the
development of domain-specific languages [11]. New languages can be figured
out to write C++ template metaprograms [18]. Special specification languages
can be used for testing C++ programs without external tools.

In this paper we present a new approach to test C++ code. Our framework
is based on the metaprogramming facility of C+4. We argue for testing by
meta-level because of numerous reasons.

The rest of this paper is organized as follows. In Section 2 C++ template
metaprograms are detailed. In Section 3 we present the basic ideas behind our
approach, after that in Section 4 we analyze the advantages and disadvantages
of our framework. Finally, the future work is detailed in Section 5.
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2 C++ template metaprogramming

The template facility of C++ allows writing algorithms and data structures
parametrized by types. This abstraction is useful for designing general algo-
rithms like finding an element in a list. The operations of lists of integers,
characters or even user defined classes are essentially the same. The only dif-
ference between them is the stored type. With templates we can parametrize
these list operations by type, thus, we have to write the abstract algorithm
only once. The compiler will generate the integer, double, character or user
defined class version of the list from it. See the example below:

template<typename T>
struct list

{
void insert( const T& t );
/] ...
}s
int main()
{
list<int> 1; //instantiation for int

list<double> d; // and for double
l.insert( 42 ); // usage
d.insert( 3.14 ); // usage

}

The list type has one template argument T. This refers to the parameter
type, whose objects will be contained in the list. To use this list we have
to generate an instance assigning a specific type to it. The process is called
instantiation. During this process the compiler replaces the abstract type T
with a specific type and compiles this newly generated code. The instantiation
can be invoked explicitly by the programmer but in most cases it is done
implicitly by the compiler when the new list is first referred to.

The template mechanism of C++ enables the definition of partial and full
specializations. Let us suppose that we would like to create a more space
efficient type-specific implementation of the 1ist template for the bool type.
We may define the following specialization:

template<>
struct list<bool>
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{
//type-specific implementation

};

The implementation of the specialized version can be totally different from
the original one. Only the names of these template types are the same. If during
the instantiation the concrete type argument is bool, the specific version of
list<bool> is chosen, otherwise the general one is selected.

Template specialization is an essential practice for template metaprogram-
ming too [1]. In template metaprograms templates usually refer to other tem-
plates, sometimes from the same class with different type argument. In this
situation an implicit instantiation will be performed. Such chains of recur-
sive instantiations can be terminated by a template specialization. See the
following example of calculating the factorial value of 5:

template<int N>
struct Factorial
{
enum { value=N*Factorial<N-1>::value };

};

template<>
struct Factorial<0>
{

enum { value = 1 };

};

int main()
{

int result = Factorial<b>::value;

To initialize the variable result here, the expression Factorial<5>: :value
has to be evaluated. As the template argument is not zero, the compiler in-
stantiates the general version of the Factorial template with 5. The definition
of value is N * Factorial<N-1>::value, hence the compiler has to instan-
tiate Factorial again with 4. This chain continues until the concrete value
becomes 0. Then, the compiler chooses the special version of Factorial where
the value is 1. Thus, the instantiation chain is stopped and the factorial of
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5 is calculated and used as initial value of the result variable in main. This
metaprogram “runs” while the compiler compiles the code.

Template metaprograms therefore stand for the collection of templates, their
instantiations and specializations, and perform operations at compilation time.
The basic control structures like iteration and condition appear in them in
a functional way [17]. As we can see in the previous example iterations in
metaprograms are applied by recursion. Besides, the condition is implemented
by a template structure and its specialization.

template<bool cond,class Then,class Else>
struct If

{

typedef Then type;

};

template<class Then, class Else>
struct If<false, Then, Else>

{

typedef Else type;

3

The If structure has three template arguments: a boolean and two abstract
types. If the cond is false, then the partly-specialized version of If will be
instantiated, thus the type will be bound to Else. Otherwise the general
version of If will be instantiated and type will be bound to Then.

With the help of If we can delegate type-related decisions from design time
to instantiation (compilation) time. Let us suppose, we want to implement a
max (T,8) function template comparing values of type T and type S returning
the greater value. The problem is how we should define the return value.
Which type is “better” to return the result? At design time we do not know
the actual type of the T and S template parameters. However, with a small
template metaprogram we can solve the problem:

template <class T, class S>
typename If<sizeof (T)<sizeof(S),S,T>::type
max( T x, S y)
{
return x >y ? x ! y;

}
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Complex data structures are also available for metaprograms. Recursive
templates store information in various forms, most frequently as tree struc-
tures, or sequences. Tree structures are the favorite forms of implementation
of expression templates [24]. The canonical examples for sequential data struc-
tures are typelist [2] and the elements of the boost: :mpl library [11].

We define a typelist with the following recursive template:

class NullType {};

typedef Typelist<char,Typelist<signed char,
Typelist<unsigned char,NullType> > >
Charlist;

In the example we store the three character types in a typelist. We can use
helper macro definitions to make the syntax more readable.

#define TYPELIST_1(x)

Typelist< x, NullType>
#define TYPELIST_2(x, y)

Typelist< x, TYPELIST_1(y)>
#define TYPELIST_3(x, y, z)

Typelist< x, TYPELIST_2(y,z)>
/...
typede
TYPELIST_3(char,signed char,unsigned char)

Charlist;

Essential helper functions — like Length, which computes the size of a list
at compilation time — have been defined in Alexandrescu’s Loki library [2]
in pure functional programming style. Similar data structures and algorithms
can be found in the metaprogramming library [11].

The examples presented in this section expose the different approaches of
template metaprograms and ordinary runtime programs. Variables are rep-
resented by static constants and enumeration values, control structures are
implemented via template specializations, functions are replaced by classes.
We use recursive types instead of the usual data structures. Fine visualizer
tools can help a lot to comprehend these structures [6].
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3 Testing framework

In this section we present the main ideas behind our testing framework which
takes advantage of the C++ template metaprogramming.

First, we write a simple type which makes connection between the compilation-
time and the runtime data. This is the kernel of the testing framework. If the
compilation-time data is not equal to the runtime data, we throw an exception
to mark the problem.

struct _Invalid
{

/...
};

template < int N >
class _Test

{

const int value;
public:

_Test( int i ) : value( i )
{
if ( value!=N )
throw _Invalid();

}
int get_value() const
{
return value;
}

};

Let us consider that a runtime function is written, that calculates the fac-
torial of its argument. This function is written in an iterative way:

int factorial( int n )
{
int £ = 1;
for( int i = 1; i <= n; ++i)
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{
f x= i;
}
return f;
}

It is easy to test the factorial function:

template <int N>
_Test<Factorial<N>::value> factorial_test( const _Test<N>& n )
{

return factorial( n.get_value() );

3

When factorial_test is called, it takes a compile-time and runtime pa-
rameter. The constructor of _Test guarantees, that the two parameters are
equal. We take advantage of the parameter conversions of C++. When an
integer is passed as _Test, it automatically calls the constructor of _Test
which tests if the runtime and compilation time parameters are the same.
If the runtime and compilation time parameters disagree, an exception is
raised. The return type of factorial_test describes that it must compute the
Factorial<N>. When it returns a value, it also calls the constructor of _Test.
At compilation time it is computed what the return should be according to
the metaprogram specification — e.g. what the Factorial<N> is. Because the
factorial test takes a _Test parameter, two parameters cannot be different.
When the factorial test returns it is also evaluates if the result of compi-
lation time algorithm is the same with the result of the runtime algorithm,
and an exception raised if it fails. So, we have a runtime and compilation time
input, first we calculate the result at compilation time from the compilation
time input. At runtime we have the very same input and a runtime function,
and evaluates if the runtime algorithm results in the very same output. If it
fails an exception is thrown.

Of course, we have to call the factorial_test function:

int main()

{
factorial_test< 6 >( 6 );
}

In this case, we write Factorial metafunction that counts the factorial at
compilation time, but we do not have to write this metafunction with metapro-
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grams. This metaprogram can be generated by the compiler from a specifica-
tion that can be defined in EClean [18, 17], Haskell, or other domain-specific
language [15].

Instead of return value, references are often used to transmit data to the
caller:

void inc( int& i )
{
++7;

}

At this point, we cannot wrap the call of this function into a tester function.
Hence, in this case we deal with a new local variable to test.

template < int N >
_Test<N+1> inc_test( const _Test<N>& n )
{

int i = n.get_value();

inc( i );

return 1i;

3

Since doubles cannot be template arguments we have to map doubles to
integers. The natural way to do this mapping is the usage of the significand
and exponent. Here is an example, that presents this idea:

template <int A, int B>
struct MetaDouble

{

}

double f( double d )
{

return d=*10;

3

template < int A, int B >
class _Test

{
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const double d;
public:
_Test( double x ): d( x )
{
if ( get_value() '=d )
throw _Invalid();

}
double get_value() const
{
return A * pow( 10.0L, B );
}

};

template <int A, int B>
_Test<A,B+1> f_test(MetaDouble<A, B> d)
{
double dt = Axpow( 10.0L, B );
return f( dt );
}

This framework can be easily extended in the way of C++ Standard Tem-
plate Library (STL) [19]. We may use functor objects instead of the equality
operator to make the framework more flexible because it can test more re-
lations. We can take advantage of default template parameters of template

classes. The following code snippet can be applied to the integers:

template <int N, class relation = std::equal_to<int> >

class _Test

{
const int value;
const relation rel;

public:
_Test( int i ) : value( i )
{
if ( rel(N, value) )
throw _Invalid();



164 N. Pataki

int get_value() const
{
return value;
}
}

4 Evaluation

In this section we argue for our approach. We describe pros and cons and
present scenarios where our method is more powerful then the existing ones.

One the most fundamental advantages is that our framework does not need
external tools, the only necessary tool is the compiler itself. Nevertheless,
another important feature, that we compute the result at compilation time, so
the runtime overhead is minimal. Of course, the compilation time is increased.
The performance analysis of C++ template metaprograms is detailed in [13].

Our approach is able to detect and pursue the changes external APIs’ inter-
face. For instance, the type of return value has been changed, we do not need
to modify the specifications. Just like the max example in 2 section, metapro-
grams can determine the type of return values, etc.

Domain-specific languages can be developed with the assistance of template
metaprograms. Therefore, specification languages can be easily adopted to our
approach. Users can select a specification language from the exisiting ones or
develop new domain-specific languages for the specification [23]. The usual
specification methods support only one specification language at all.

Moreover, metaprograms are written in an functional way, but runtime C++
programs are written in an imperative way. Therefore, testing approach and
implementation is quite different. It is easy to focus on the results this way. A
very useful advantage is that that our framework can be used for legacy code
too.

Albeit there are some typical approaches which cannot be tested with our
method. For instance, metaprograms cannot access database servers and metapro-
grams cannot deal with other runtime inputs. Files and requests cannot be
managed with metaprograms. On the other hand, we can test the business
logic of the programs: is the result correct if the input would be the specifi-
cated one. Also, calls of virtual methods cannot be handled at compilation
time.

Our approach cannot facilitate the testing of multithreaded programs. Test-
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ing concurrent programs is hard, but the compiler acts as a single-threaded
non-deterministic interpreter.

5 Conclusions and future work

Testing is one of the most important methods to ensures programs’ correctness.
In this paper we argue for a new approach to test C++ programs. Our solution
takes advantage of C++ template metaprogramming techniques in many ways.
We have examined the pros and cons of our method.

After all, the most important task is to work out a set of special specification
languages and generate standard compliant C4++ metaprograms from these
specifications.

In this paper we argue for a method that manages runtime entities at com-
pilation time. With this method we tested runtime functions. Many other in-
teresting properties should be managed in this way, for instance, the runtime
complexity or the prospective exceptions.

Another important task is developing mapping between the runtime and
compile time advanced datastructures. Node-based datastructures (like trees,
linked lists) are also available in metalevel, but we have not mapped these
structures to runtime akins. User-defined classes also may be mapped to the
their compilation-time counterparts.

An other opportunity is that we take advantage of the metalevel and gen-
erate testcases at compilation time. In our approach the users specificate the
test cases. It would be more convenient if the compiler could generate testcases
which covers most of execution paths.
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