ActA UNIV. SAPIENTIAE, INFORMATICA, 1, 2 (2009) 235-258

&

Systolic multiplication — comparing two
automatic systolic array design methods

Laura Ruff
Babesg-Bolyai University, Cluj-Napoca
Faculty of Mathematics and Computer Science
email: laura@cs.ubbcluj.ro

Abstract. This paper provides a comparison between two automatic
systolic array design methods: the so called space-time transformation
methodology (a unifying approach to the design of VLST algorithms [14],
[15]), and a functional-based design method (see [6], [9], [10]).

The advantages (and possible disadvantages) of each method are
pointed out by representative case studies (variants of systolic arrays
generated with both design methods).

Many algorithms were already parallelised using the efficient tech-
nique of space-time transformations. However, it also has some draw-
backs. It may be hard to formulate the problem to be solved in the form
of a system of uniform recurrence equations, which is the usual starting
point for this method. On the other hand, the space-time transformation
method depends heavily on finding an affine timing function, which can
also lead to complex computations.

The functional-based method exploits the similarity between the in-
ductive structure of a systolic array and the inductive decomposition of
the argument by a functional program. Although it is less general in
the sense that it generates systolic arrays with certain properties, its
most significant advantage is that it needs to investigate the behaviour
of only the first processor of the systolic array, while other methods (as
the space-time transformation method, too) must work with an array of
processors. Moreover, the method is based on rewriting of terms (ac-
cording to certain equations, which are general for function definitions

AMS 2000 subject classifications: 68M07, 65Y05, 68W35

CR Categories and Descriptors: B.6.3 [Design Aids]: Subtopic - Automatic synthesis
B.6.1 [Design Styles]: Subtopic - Parallel circuits

Key words and phrases: systolic array, automatic systolic array design, space-time
transformations, functional approach

235

http://www.cs.ubbcluj.ro/~laura/
http://www.ubbcluj.ro/hu/index.html
http://www.cs.ubbcluj.ro
mailto:laura@cs.ubbcluj.ro

236 L. Ruff

and systolic arrays), thus the resulting systolic algorithm is certified to
be correct, and the method itself is relatively easy to automatize.

1 Introduction

The first examples of systolic arrays (very efficient special purpose parallel
computing devices) and the systolic algorithms running on them were con-
ceived in an ad—hoc manner, requiring a great amount of intuition and cre-
ativity from their inventors.

Later several [semi]automatic systolic array design methods were proposed
(a short survey can be found in [16]). Most of these systematic methods
use an iterative view of systolic arrays: the arrays (and the computations)
are represented as multidimensional matrices of a certain size (in fact some
methods only work for a fixed size, the problem cannot be parametrized). This
kind of representation leads to complex operations over the multidimensional
index space, on the other hand, due to the symmetric organisation of systolic
structures, there are many repetitions in the design process.

The most widespread and also the most general method is referred to as the
space-time transformation method. This is in fact a unifying approach to the
design of systolic arrays, which incorporates the main ideas used in several
automatic synthesis methods. The work of many researchers like Quinton,
Robert, Van Dongen [12, 14, 13|, Delosme and Ipsen [1], Nelis and Depret-
tere [8] relies on it. A review of the main ideas involved in the space-time
transformation method is presented by Song in [15].

Many algorithms were already parallelised with this efficient method, how-
ever it also has its drawbacks.

The problem to be solved should be formulated as a uniform recurrence
equation system, which is sometimes not an easy task. The uniformisation of
linear recurrence equations was tackled by Quinton and Dongen [13], Fortes
and Moldovan [3] and others but it is still not definitely solved.

The space-time transformation method heavily depends on finding an ade-
quate affine timing function. The problem with finding such a function is that
one needs to solve a linear equation system, which is usually a tedious and
difficult task, on the other hand it is only possible for systems having certain
properties.

As we already mentioned, the most design methods, thus the space-time
transformation method, too, uses an iterative approach to the problem. In
contrast, our design method presented in [6] follows a functional view: a linear

Systolic multiplication 237

systolic array is composed of a head processor and an identical tail array.
Similarly, functional programs for list operations describe how to compute the
head and the tail of the result in function of the head and the tail of the
arguments.

Our design method exploits this similarity, thus the synthesis problem can
be solved by [essentially] rewriting of the functional programs.

In this paper we compare this functional-based method with the space-time
transformation method using some representative case studies. Our purpose
is not the detailed presentation of the two methods (one can find such descrip-
tions in [14, 15] —about the space-time transformation method—, respectively
in [6, 9, 10] —about the functional/based method-). However, we would like
to point out the advantages (or disadvantages) of the two distinct methods
through some practical examples.

2 Systolic array design for polynomial multiplica-
tion

We start with a simple problem, the polynomial multiplication.
Let A and B two univariate polynomials of degree n—1 and m—1, respectively:

A=ap+tarsx+ar*«x?+...+apqxx"!

B=bo+bysxx+brkxZ+...+bmymqsx™"

We denote the product of A and B with C (polynomial of degree n +m — 2):

2 2
C=A*B=cotci*x+Cr*X 4+ ...+ Cmgno*x"TM=

where

ck=) aixb;, Vk, 0<k<m4n—-20<i<n-1,0<j<m—1 (1)
iHj=k

2.1 Solutions to the problem using the space-time transforma-
tion method

In order to be able to apply the space-time transformation methodology to the
problem, the coefficients of C should be given in a recursive way, thus (1) is
not an adequate formulation to start up with. We need a uniform recurrence
equation system which is a subclass of linear recurrence equation systems. Only
such systems are suitable for being directly mapped onto systolic architectures,

238 L. Ruff

as they require local data and local interconnections between the processing
elements (PEs).

Definition 1 Uniform recurrence equation system
A system of uniform recurrence equations (SURE) is a collection of s € N
equations of the form (2) and input equation of the form (3):

Vi(z) = fi(Vilz—0y),...,Vilz—0y)) (2)
Vi(z) = vije{l,.. L) (3)

where
- Vi:D —R. Vi,ie{l,...,s} are variable names belonging to a finite set

V. FEach variable is indexed with an integral index, whose dimension, n
(called the index dimension), is constant for a given SURE (in practice
this is usually 2 or 3).

—z€ D, where D C Z™ is the domain of the SURE.

- v{ is a scalar constant (input), Zi € Dinp, where Dinp C Z™ is the
domain of the inputs.

~ 04,,...,04 are vectors of Z™ and are called dependence vectors of the
SURE.

- Vi(z) does not appear on the right-hand side of the equation.

- fi :R® — R.

s

Informally, a SURE (as well as the associated dependence graph) can be
seen as a multidimensional systolic array, where the points of the domain D
are the PEs of the array and the communication channels are determined by
the dependencies. In this context, a transformation applied to the system
which preserves the number of domain points and the dependencies leads to
a computationally equivalent system. The goal of such a transformation is to
obtain a system where one of the indices can be interpreted as the time index
and the others as space-indices.

The form of the SURE, used as a starting point, has a considerable impact
on the result of the design.
If we start for example with the following algorithm:

¢g=0,vj,0 <ji<m+n-—-2
fori=0ton—1
forj=itoi4+m—1
Cj = ¢j + ay * bj_y,

Systolic multiplication 239

then we can formulate the uniform recurrence equation system (4)-(5). We
mention that there are well-known uniformisation techniques (see [13]) to de-
duce the SURE from the given algorithm, but unfortunately they cannot be
applied in a fully automatic way. Let us therefore consider the system (4)-(5)
as starting point.

Equations:
Cij = Cij+Biaji1xAi
Bij = Biaja (4)
Ay = Aqj,

where 0 <i<n—1,i<j<i+m-—1.
Input equations:

B = by, - 1<i<m-2

Co1s — 0, O0<i<m-—1 -
Ciqjitma1 = 0, 1<i<n—1

Aii = aq, 0<i<n-—-1

The results are considered to be the values of the following variables:

ci = Ci,i» OSiSTL—Z
Vol Gty n—1<i<n+m-—2.

Fig. 1 presents the dependence graph associated to the SURE (4)-(5), when
n=3m=4.

Each of the points of the domain D = {(1,j)[0 <1 < 2,1 <j < i+ 3} corre-
sponds to a computation, while the arrows represent the data dependencies.
The placement of the input values can also be read from the figure, although
this was determined after the computation of the timing function. The small
dots between the points (i,j), (i+1,j+1) of the domain D indicate a delay, that
is, the b values need two time steps to move from point (1,j) to (1+1,j 4+ 1).
Now we have the dependencies shown in Table 1.

The space-time transformation method consists basically of four main steps:

1. the formulation of the problem as a system of uniform recurrence equa-
tions,

2. finding one (ore more) adequate timing function(s)
— the timing function determines the time instant when the computation
takes place,

3. finding one (ore more) adequate allocation function(s) corresponding to
a certain timing function

240 L. Ruff

j \t<
s |
s |
. C3 . . . ’
—
cy 1
. C] . ‘I’
e — -
. b3 . b2 . b1 . bOAV aO.
S | a1
F

Figure 1: Dependence graph for polynomial multiplication (n = 3,m = 4):
data dependencies, placement of input data

— the allocation function determines the place (that is the processor)
where the computation is performed,
4. application of the space-time transformation.

Linear (and affine) transformations are most commonly used for both, the
timing and the allocation function, because thus we obtain a linear space-time
transformation, which preserves the dependencies between the computations.
Moreover, if the transformation is unimodular, then it has the advantage that
it preserves the number of points in the domain, and in addition it admits an
integral inverse. However, it is not mandatory to use unimodular transforma-
tions.

Given a SURE, the next step is to obtain a possible linear (or affine) timing
function, which should be positive and should preserve the data dependencies.
A natural requirement is that in order to be able to perform the computations
of Vi(z), its arguments should have been computed before. If such a function
exists, then we say that the SURE is computable.

Systolic multiplication 241

’ Equation ‘ lhs ‘ Ths ‘ Dependence vector ‘
(14) Cij | Civry (=1,1)
(16) Alg; | Aly; (0,1)
(18) Bli; | Blyj—q (0,1)
(20) Ai; | A2iqj (1,0)
(22) Bzi’]’ BZi_1 3j (] , 0)

Table 1: Dependence vectors

The previously mentioned constraints build a system of inequalities. Any
of its solutions gives an adequate timing function.

We might also want to minimise the computation time of the system. In
this case, we obtain the timing function:

t(i,j) =147

The timing function was determined according to the method described in
[14, 2] (we avoid to detail the computations here).

In order to get an adequate allocation function for a given timing function,
the condition that should hold (we also call it general constraint) can be intu-
itively expressed in the following way: two different computations performed
at the same time-step should not be mapped onto the same processor. This
means that the linear part P of the allocation function should not be parallel
to the direction T corresponding to the timing function (in our case T = (1, 1)).

For the previously obtained timing function, we get the following alloca-
tion functions, which satisfy the above-mentioned condition, moreover, the
resulting space-time transformation is unimodular:

p(i,j) = i
r(i,j) = j.

If we choose the allocation function p(i,j) = j — i, after the application of
the space-time transformation we obtain the linear systolic array depicted in
Fig. 2.

With the allocation function p(i,j) = i, we get the systolic array from Fig. 3,
while with p(i,j) =j the array from Fig. 4 is obtained. The placement of the
inputs is also depicted in the figures. In case of Fig. 3, the structure of the
array respectively the transition function is also shown.

242 L. Ruff

Co C1
— e . C2.C3.C4. Cs
az. aij. ao—{ by b1 b, b3z

Figure 2: Systolic array for polynomial multiplication (the allocation function
p(i,j) =j — 1 was used)

b) Computations:

L1l e [L9Q
cQ = crtaxbjg
br 90 o, bo = db
db = bg
c)
€5 €4 C3 C2 C1 Co__,[q, aj a —

Figure 3: Unidirectional systolic array for polynomial multiplication (the al-
location function p(i,j) = 1 was used for the projection) a) structure of a PE,
b) transition function, c) structure of the array and placement of the input
values

The data-flow in the arrays of Fig. 3 and Fig. 4 is unidirectional. In the
case of the array of Fig. 3 the elements of the result appear after n time steps
(where n is the number of PEs) as the output of the PE on the right edge of
the array, while in the case of the array from Fig. 4 the results are computed
in the local memories of the PEs.

The systolic array depicted in Fig. 2 is bidirectional, but the PEs work
alternately and they only perform useful computation at each second time
step. There are some well-known techniques to transform such arrays into a
more efficient one. Some ideas are presented in [11].

2.2 Functional approach

We have seen that the space-time transformation methodology works with the
whole index space. Due to the symmetric structure of the systolic array, this
leads to many repetitions in the design process. In case of our functional-based
approach to the systolic array design, however, we only have to analyse the

Systolic multiplication 243

by b3
bo__ b2 : ; ; ; ;
a; ai; ap— Co C1 C2 C3 Ca C5 —

Figure 4: Systolic Array for Polynomial Multiplication (the allocation function
p(i,j) =j was used)

behaviour of the first processor, exploiting the idea that the tail-array works
in the same way as the original one, solving actually the same kind of problem
of a smaller size.

The functional view (or inductive view) of systolic arrays is shown in Fig. 5:
informally, a linear systolic array with n PEs can be seen as a device, that
is composed of a head processor (PEy), connected to a tail-array, which is an
identical array of size n — 1.

Array of size n

R Array of size [

n—1 e

Figure 5: Informal view of a linear systolic array — functional approach

The arrows indicate the direction of the data-flow, from left to right (LR)
or from right to left (RL). The letter I stands for input channels, Q indicates
the output channels and R stands for the internal state registers (also called
local memory).

At each time step the PEs update their internal state (the values of the
output channels, respectively that of the internal registers) in function of the
input, respectively the value of the internal state registers in the previous
time step. The computations performed by a PE are given by the so called
transition function.

The global input is fed step by step into the array through the input channels
of the PEs on the edge, while the result appears at one or more output channels
of the marginal PEs (in some cases the result may be computed in the internal
state registers as in the case of the systolic array in Fig. 4).

244 L. Ruff

A fundamental step of the design method is the formal analysis of the differ-
ent systolic array types. In case of each class of systolic arrays, we characterise
by a recursive description the class of functions which can be realised by such
type of arrays.

Then, by equational rewriting, the expression of the list function which
must be realised is transformed into an expression having the required struc-
ture. The resulting expression reveals the scalar function, which must be
implemented by each individual processor.

The linear systolic arrays can be one- or bidirectional, depending on the
direction of the data-flow. A typical subclass of systolic arrays is that, where
the input data passes through the array unchanged.

The input or the output data-flow can be delayed or not, the arrays may
have more simple building blocks, that is PEs without internal state (also
called combinatorial PEs), or PEs having constant or variable internal state
registers (local memory).

Let us consider for example unidirectional systolic arrays with constant in-
ternal state registers and delayed input. An example for such an array is
depicted in Fig. 3.

We use the following notations (same as in [6, 9]):

e We denote by Xi (where 1 € Z) the infinite list (xi,Xi+1,Xi+2...). X
stands for Xo. Xnntm (Where n € Z and m € N) denotes the finite list
having m + 1 elements: (Xn, Xn i1, - - - Xntm)-

e We will denote by a™ the list of n elements all equal to a and by a*®
the infinite constant list with all elements equal to a.

e For any list X = (x0,%1,...,Xn,...), we denote by H[X] = x¢ the head of
it, and by T[X] = (x1,...,%n,...) the tail of it.

e The k' tail respectively head of X:

TelX] = (%1, XK4+1y+ -y Xn, - . .), for k > 0 is obtained by iterating T k
times. Note that T; = T. By convention Ty[X] = X.

Ty, for k < 0 is obtained by iterating T 7 |k| times,

where T_1[X;] = X;_1

Hy [X] = H[T[X]] gives the (k + 1) element of X (thus Hy = H).

e The prefiz of order n of a list is Pn[X] = (x0,...,Xn—1) = Xon_1.
e The concatenation of two lists is denoted by “—7:
<Clo, Cl],...,(lk> —X = <Clo, Cl],...,(lk,Xo,X],...>.

The first operand must be finite, but the second may also be infinite.

We also use “*— 7 for prepending a scalar to a (finite or infinite) list:

a‘~ X=(a)—X.

Systolic multiplication 245

e We use (as in the theory of cellular automata) a special quiescent symbol
“$” in order to encode the “blank” values.

The list function f in (6) is the list extension of the scalar function f (we
obtain f[X] by applying the function f onto the elements of X). In the same
time the expression (6) characterizes the transition function of one PE [10].

fix o X] = fix] * f1X] (6)
Note that the syntactic restriction to one argument (and one value) is not
essential. X could also represent a multiple list (composed of a finite k number
of lists):
X = W W w2 W2 o owk e whT =
= W' w?2 . Wt wlh w2 wkyT

Thus a function having multiple list arguments can be seen as a function with
one single list-argument (even if we do not mention it explicitly).

The functioning of unidirectional systolic arrays with constant local memory
and delayed input is characterised by (7)-(8) (see [10]), where n is the number
of PEs (the size-parameter of the problem), X is the input list, the values of
Upn—1 correspond to the constant values of the local memory variables and
can be considered as parameters of the problem. Y denotes the global output-
list which collects the (partial) results, while YO = (y°)> gives the list of initial
values, which contribute to the computation of the results (usually the same
y© value is introduced repeatedly).

!

—+

FQO,nfl [n>X] = In—1 [X,(n,”, X n, FQO,n—Z n—]’X]] (7)

qu [1)X] = do [X»X—])YO]) (8)

where the list function f4[(X, X', Y)] satisfies property (6).

Given Fy, . ,[n,X], our task is to find Qon—1, which is a permutation of
Uon-—1, y° (such that YO = (y°)) and the transition function, denoted by f
such that (7)-(8) should hold.

Let us consider again the problem of polynomial multiplication. The coef-
ficients of one polynomial will be matched with the finite list of parameters
(let us choose for this purpose the n coefficients of polynomial A, that is the
list Agmn—1), while the coefficients of the other polynomial will form the input
list. We get an infinite input list by adding an infinite number of 0 elements

246 L. Ruff

to the list of coefficients (B m—1—0%). We will also insert a number of n —1
elements of 0 in front of the list in order to describe the problem according to
the idea depicted in Fig. 6.

bm,1*xm’1+...+b1*x+bo * an71*xn*1+”‘

+a; xx+ ap

’ ao*B ‘ +
’ (a;xx)*B ‘ 0
’ (an_z*xn._z) * B ‘ 0 0

’ (a1 *x™ 1) % B ‘ 0 0

Cm4n—2 * xmin—2 4 . + co

Figure 6: Polynomial multiplication

The coefficients of the product will be the first n +m — 1 elements of the
list C:
C ={co,c1,...), where
n—1
ci=) apbiy,i,i=0,1,..n+m—-2¢c;=8$Vii>n+m—1
j=0

Using the more concise list notation this means:

(where ax(b =~ B) = (axb) ‘= (axB))
We can write that
Fagn Bl = Y5 apBj=an1#B_(n1)+ Y55 apBj =
= Un_1 *B—(n—ﬂ + FAo,n—z n—1 ,B],
which is of the form (7). We get by simple projection the part of the tran-

sition function corresponding to the computation of the ¢ (partial) results:
f[b,db, a,c] = axb + c. The rest of the transition function is already known.

Systolic multiplication 247

=

By analysing condition (8) we get: Fq,[1,B] = flap, X,X_1,C°, that is
ao*B = apxB 4+ CO = ¢® = 0 and C° = 0.

We got the solution of Fig. 3 with much less effort than in the case of
the space-time transformation method. The systolic array obtained is also
appropriate for integer multiplication, only a local memory register of variable
value should be added to each PE, in order to preserve the carry [10].

The automatic synthesis of the arrays shown in Fig. 2 and Fig. 4 is similarly
simple. However, because these have a different structure, we have to start
from another description of the problem, while in the case of the space-time
transformation method we obtained the three different solutions starting from
the same recurrence equation. However, if we would like to design a systolic
array with predefined properties, this is not a drawback at all.

3 Online systolic multiplication

In this section we describe an online systolic array, the functional-based design
of which was detailed in a former paper [6]. After outlining the results, we
present how such an array could have been synthesized using the space-time
transformation methodology.

Online arrays are an important special subclass of bidirectional arrays. They
are characterised by the fact that they begin to provide the first result after a
constant number of time steps (regardless of the number of PEs). This feature
make them very useful for solving real time problems, where the response time
is a critical factor.

The array receives the input data through the first PE and the elements of
the result leave the array through the same PE.

3.1 Solutions obtained using the functional approach

We have presented the design of such systolic arrays in [6], and we used as case
study the design of online arrays for polynomial multiplication, respectively
the multiplication of multiple precision integers. That is why we do not detail
the design process here; in the sequel, we will only outline its main steps.
Step 0: formal analysis of the systolic array with the given properties
We have analysed the behaviour of specific online systolic arrays with input
list X, where the input X’ of the tail-array is Ty[X] for some fixed k, thus if the
array computes the function F[X], then the tail-array will compute F[Ti[X]].
Such a behaviour of the input can be achieved by including into the internal
state a “state variable” s with values from {0 = $,1,2,...,k + 2}, and the

248 L. Ruff

following assignments for s:

o { s, x=%V s=k+2

Tl s+1, x#£A$ A s<k+2

The PE will send the x values to the next PE if s > k, otherwise a $ value
will be passed.

The functioning of such an array (for k = 2) is characterised by (10), where
G denotes the function which computes the internal state of the array (the
internal state includes besides the computation of the output values the values
of the local memory variables, too), and fy is the part of the transition function
which computes the (partial) results:

Ta[FIX]] = fy[T4[X], T[GIXI], FIT2IX]]. (10)

Step 1: formulation of the problem as a functional program
The two polynomials are represented by the list of coefficients completed with
an infinite number of redundant zeroes. The input list is the multiple list
compound of these two lists.

We assume as known the scalar operations “ + ” and % 7 in the ring of
the coefficients. We will use the functional definition of the simple operations
to unfold the expression “A % B”, until we get an equation of the form (10).

Some definitions (we transformed the notations used in mathematics to our
list-notation in a very simple, natural way):

addition of a scalar with a polynomial: a + (b = B) = (a + b) = B
addition of polynomials: (a ‘= A)+ (b= B)=(a + b) = (A +B)
multiplication of a scalar with a polynomial:

ax (b B)=(a* b) (a* B)

multiplication of polynomials:

(a“ A)x (b B)=(a*x b)) ((a*x B)+(b*x A)+ (0= (AxB))).

Step 2: unfolding
Unfolding consists in extracting repetitively the elements of the result list,
beginning with the first one, by using the functional definitions of the list
functions and a few simple unfolding rules, presented in [6].

After the unfolding of the first four elements of the expression A x B, we get

Systolic multiplication 249

the following result:

AxB=

=(ap * by,
ao % by + bo ¥ ay,
az ¥ by + ay ¥ by + ap ¥ ba),
az ¥ by + a2 ¥ by + a3 ¥ ba ¥ ap ¥ bz)—
— ((ap * Bsg) + (bo * As)+
+(ar * B3) + (b1 * A3) + (A2 B2))

From here we can write the equality of the form (10):

T
b

[A] T4[B
[[
1[A] % T3]
1(B] % T3
TL[A] « T2[B

0

*

T
=
b

0

o =

T4[A % B] = +

T
s

*

[AAETE S

T

>

)

respectively the first four elements of the output.

Step 3: the elements of the resulted expression are associated to the corre-
sponding elements of the systolic array (using already specified rewrite rules).
The head and tail functions H; and T; are realised by adding some suitable
static respectively tranmsition variables to the internal state. The list having
(almost) all elements equal to Hj is realized by a “static” variable hi having
x, if s =1
hi) if s 75 i

Let us also consider the “transition” variables zg,z1,z2,z3 having the as-
signments: zo = z1, z1 = z2, z2 = 23, z3 = x . In the expression of T4[F[X]],
the subexpression T4[X] will be realized by the expression x, and each T;[X]
will be realized by the expression z; (for 0 <1i < 3).

We denote the input channels by xa and xb, and the corresponding static
and transition variables by haji, hbji, respectively zaj, zbi, as shown in Fig. 7.

According to the rules mentioned above, the expression on the right—hand
side is projected into:

the assignment: h; := {

(hag * xb) + (hbg ¥ xa) +
-+- (ha1) Zbg) —|— (hb] * za3) + y’

250 L. Ruff

xa xa
IS S
xb |ZQ0 .. zaz | gy
—zby ... zb3
y hao ha1 y/
1 hbp hb

Figure 7: Online systolic array for polynomial multiplication

The expressions representing the computation of the first 4 elements are found
in the same way.

Thus, the part of the transition function describing the assignment for the
output channel y (that is, the computation of the result) is:

$ s=9%=xa
xa * xb s=9%#xa
hbo % xa + hag * xb s=1
ha; ¥ hby ¥

¥ hbp * xa + hagy * xb s=2
hb; % zaz + hap * zbs +

+ hbo * xa + hag * xb s=3
hb; zaz + hay * zbs +

T hbo % xa ¥ hao ¥ xb +y’ s=4

The rest of the transition function, containing the computation of variables
s, hay, hby, zay, zbi, xa’, xb’ is known.

We can use the same kind of array for the multiplication of arbitrary large
integers again, by adding a register of variable value to each PE [6].

3.2 Solution using the space-time transformation method

None of the systolic arrays obtained from the SURE (4)—(5) is an online one.
As we already mentioned, the result is significantly influenced by the form of
the SURE used as starting point. Consequently, we need another formulation

Systolic multiplication 251

of the problem, which again requires some intuition. We use the following
notation:

In the sequel let the values of Aj be equal to a; if 0 <1< n —1, otherwise 0.
In the same way Bj = bj, if 0 <j < m — 1, otherwise 0.

c1,1
2
AxB=Ap*Bo+(Ag*B1+A7%Bg)*xx+(Ag*Bs+ A7 %By+As*Bg)*xx“+
~— -~
Co,0 Co,1 Co,2
Ci2
+(A0*83+A]*Bz+A2*B]+A3*B0)*X3+...
Co,3
Generally:
Vi,j: 0<i<ji+j<m+n—2
Ai*Bi l:]
Ciy; = Ai* By + Aj* By j=1i4+1 (11)

Ai*Bj+Aj*Bi+Ci+1,j—l]>l+]
The result: Cx = CO‘k, Vk, 0 <k<m+4+n-— 2.

3.2.1 Uniformisation of the recurrence equation

In equation (11), A; is needed in the computation of Ci; for all values of j,
i1 <j <m+n—2-—1, this means a broadcast of A;. Similarly, A; is needed
in the computation of Cij, Vi,0 <i<m+n—2—j. A common method to
eliminate broadcast is to pipeline the given value through the nodes where it is
needed (see [13]). Thus, we replace A; with a new variable Al ;, and pipeline
it in the direction (i,j) — (i,j +1). Aj will be replaced by the variable A2 ;
and pipelined through the direction (i,j) — (i+1,j). B and Bj will be replaced
in the same way with B1 and B2, respectively.
We obtain the following uniform recurrence equation:

Vij: 0<i<ji+j<m+n-—2

Azi‘]‘ * BZi,,-] =1 (12)

Ci,j =94 Al ij * BZi,,- + AZU- * B]i,j j=1i+1 (13)
Aly;*B2i;+A2{;«Bli; + Cipr5-1 j>i+1 (14)
ot =1 (15)
Y ATy j>1 (16)

252 L. Ruff

B; j =1 17

Bl | B =1 (17)
’ B]i,j,]) >1 (18)

A; i=0 19

A2 = j 1 (19)
’ AZi_U i>0 (20)

B; i=0 21

B2 = j 1 (21)
’ BZi_L)- i>0 (22)

Note that equations (15), (17), (19), (21) are input equations of the form (3).
Now the input A; appears in input equation (15) and (19), too. Bj also
appears in two input equation. This would mean that we have to input the
coefficients of the polynomials A and B twice.
This can be avoided by changing input equation (15) with
Aly;=A2y; =i (23)
In the same way, we change (17) by:
Bly;=B2y; j=i. (24)

Table 2. shows the dependencies of the SURE.

’ Equation \ lhs \ Ths \ Dependence vector ‘
(14) Cij Cit1,-1 (=1,1)
(16) Al ij A]i,j,1 (0,])
(18) Bli; Bli;—1 (0,1)
(20) A2 Ali1; (1,0)
(22) B2;; B2i_1; (1,0)
(14) Ci,j Al 1) Aziy]’, B1 i) BZiyj (0, 0)
(23) Aly; Ali; (0,0)
(24) B1y; B2;; (0,0)

Table 2: Dependence vectors

Note that the dependencies for A1 and B1 respectively A2 and B2 are the
same. In the following we will only reason about A1 and A2; B1, respectively
B2, can be handled similarly.

Systolic multiplication 253

3.2.2 Finding an adequate timing function

According to the method presented in [2], we are looking for affine timing
functions with the same linear part for each variable V of the SURE (12)-(22)
of the form ty =xxi4+y*j+ zy.

For each dependence of Table 2 of the form Vi(z) « V;(z'), we are writing
the dependency constraint of the form ty, (z) > ty, (z'). We get:

Cij « Alyj = tc(i,j) > tair(i,j)

Cij « Al = tc(i,j) > taz(i,j)

Cij ¢ Cipja = tcli,j)>tcli+1,j—1) (25)
Aly; « Al = tailij) >tai,i—1)

A2i; — A2y = taxij) >taxli—1,9)

Aly; — A2y = tai(i,j) > taz(i,j)

From the conditions marked with (25) and the computation time minimiza-
tion condition we get the following system of inequalities:

Zc > ZA1

Ze > ZA2

y—x>0

y>0 (26)
x>0

ZA1 > ZA2

X+yY+zc+za1 + za2 — minimal

We also need the constraint that the time function is positive on the domain.
Then from (26) we get the solution:

x =1
y=2
ZAZZO
ZA]:1
ZCZZ

The time functions are the following:

te(i,j) = i+2j+2
tar(tj) = tegi(ij) =i4+2j+1 (27)
taz(l,j) = teali,j) =1i+2j

The common linear part of the time functions is T = (1, 2).

254 L. Ruff

3.2.3 Possible allocation functions

Given the timing functions found in section 3.2.2, we are looking for affine
allocation functions with the same linear part for each variable V of the SURE
(12)—(22) of the form py = a* 1+ f *j +yyv. The common linear part of the
allocation functions is P = («,). The general constraint in our case is:

&
P

In Table 2 one can look for the dependence vector corresponding to a cer-
tain variable. That is (—1,1),(0,1) and (1,0) for variables C, A1 and A2,
respectively.

For a variable V and a corresponding dependence vector 0y, the dataflow-
direction is (T * 0y, P x 0y/) = ((1,2) * Ov, (&, B) * 0v), where the component
T * 8y indicates the “speed” of variable V, while the component P * 8y shows
the direction of the V values.

According to the weak conditions (only for dependencies of the form V(z) «
V(z')), the node z" should be “close enough” to z, such that V(z’) can arrive
to the required place in ty/(z) — tv(z’) steps. The conditions are:

1
sy (28)

Cij «Ciprj1=Ipci,j) —pci+1,j—1)[<tci,j) —tcli+T1,j—1)
Alyje—Algia =paiii) —par(i,j — 1 <tai1(i,j) —tar(i,i—1) (29)
A2i5-A2i 15 =pa2(i,i) —paxi—1,j) <taz(i,j) —ta2(i—1,j)

In the case of dependencies of the form Vi(z) « Vj(z'),1 # j, we can write
the so-called strong dependencies of the form (30).

tv; (z) =ty (2)
pvi(z) —py (2)]| = { 5 evj] J P« 0y, (30)
In our case, these are:
Cij—Aly = pelij)—parlij) = [Jltelii) —ta(L,i)] B
Cij — A2; = pclij) —rpaxii) = (tc(i,j) —taz(i,i))e (31)

(tA1 (lv]) - tAZ(i’)]) &

Aly; — A2y = paili,j) —paz(i,i)

From (29) we get:

VANVANRPVAN
N —
W
=

1B — o
Bl

x|

Systolic multiplication 255

From (31) we get:

Yc—va1 = 0
Yc—vYAa2z = « (33)
YA —YA2 = «

From conditions (28) and (32) we get the set of solutions for o and f3:

((X)B) S {(_])_])>(_]>O)) (O)_]))(an),(())])) (])O)) (]’])} (34)

In (34) the first and the last three solutions are symmetric and the solution
(x,) = (0,0) can be excluded because the transformation matrix (—]E)

would be then singular (that means that it would transform some points of D
lying on a line into a single point, which is not admitted). Thus we have only
three different results:

Pe{(0,1),(1,0),(1,1)} (35)

From (35) and (33) we get three different solutions for adequate allocation
functions corresponding to the given timing functions:

pc(i,j) =par(i,i) =pei(i,j) =1
{ pasli,i) = peali,j) =i—1 (37)

pc(ij) =paili,j) =pei(i,j) =i+]
{ paz(i,j) =pe2(i,j) =1+j—1 (38)

3.2.4 Mappings to different systolic arrays

We apply the space-time transformation onto the SURE (12)-(22) according
to the timing functions from (27) and allocation functions from (37). That is:

te(i,j) = i+2j+2 pc(i,j) = i
ta1(i,j) = tgili,i) = i+2i+1 paii,j) = peilij) = 1
taz(i,j) = teai,j) = i+2j paz2(i,j) = pe2i,j) = i—1

We have chosen this transformation, because this is the one the application of
which results in an online array. The transformed SURE:

P

t—
VP p>03p+2<t<—pH2min) -2 cZ

256 L. Ruff

A2¢_2p-1%B2¢ 2 t=3p+2 (39)
C. Al ap*B2iop 1 +A2¢ 2p1%Bl 1, t=3p+4 (40)
tp = § — _ _ _
Aly qp*B2i 2p 1+ A2t 2p 1% Bl qpt
+ Ceetpti t>3p+4 (41)
= Ht—1,p—1 t=3p+2 (42)
P ATy t>3p+2 (43)
BT Et—1,p—1 t=3p+2 (44)
LA 3 P t>3p+2 (45)
- At p=0 (46)
A2tp =<K =
bp 2t71,p71 p>0 (47)
BZip,=1{_2
’ t—1,p—1 p>0 (49)

Note that this transformation is not unimodular, for this reason the domain
of the system (39)-(49) is sparse (see the (t—p)/2 € Z condition). The resulted
array can be optimised: by merging two neighbouring PEs, we get the online
array presented in Section 3.1.

As a conclusion, in this case it is obvious that we have succeeded to de-
sign the same systolic array in a more “elegant” and efficient way using the
functional approach.

4 Conclusions

In this paper we have compared two automatic systolic array design methods:
the space-time transformation methodology and the functional-based method.

We presented different solutions of a representative problem, using both
methods, in order to demonstrate the main characteristics, differences, advan-
tages and eventual disadvantages of the two design methods.

The space-time transformation method is obviously the most widespread
methodology, and also the most complex one. However, besides its numerous
advantages it also has some drawbacks, too: the formulation of the problem as
a SURE may be sometimes of serious difficulty, complex computations on the
whole index space (repetitions), in order to find an adequate timing function,
a complex linear programming problem has to be solved.

Systolic multiplication 257

Other methods that imply more simple computations (for example concern-
ing the computation of the timing function [7]) only work for a fixed size.

The most relevant advantage of our functional-based method is, that ex-
ploiting the symmetric structure of the systolic array, in fact we only have to
analyse the behaviour of the first PE. The method also works for parametrized
problems (the size of the problem does not have to be fixed in advance). More-
over, the design process consists basically in the application of rewrite rules,
thus its implementation is relatively simple.

For the moment, the method is applicable only to linear systolic arrays; this
is, however, for practical reasons (efficiency, reliability and ease of implemen-
tation) the most popular class of systolic arrays. It relies on a formal analysis
performed in advance, thus it is less general than the space-time transforma-
tion method.

The considerations above make us believe that it is worth working on the
improvement of the functional-based design method by analysing other classes
of systolic arrays, too.

References

[1] J.-M. Delosme, I. C. F. Ipsen. Systolic array synthesis: computability
and time cones, in Parallel algorithms & architectures (Luminy, 1986),
pp- 295-312, North-Holland, 1986. = 236

[2] P. Feautrier, Some efficient solutions to the affine scheduling problem,
Part I : One-dimensional Time, Int. J. of Parallel Programming, 21, 5
(1992) 313-348. = 241, 253

[3] J. A. B. Fortes, D. I. Moldovan, Data broadcasting in linearly scheduled
array processors, I11th Annual Symp. on Computer Architecture, 1984,
pp. 224-231. = 236

[4] P. Gribomont, V. Van Dongen, Generic systolic arrays: a methodology
for systolic design, Lecture Notes in Computer Science, 668, 1992, pp.
746-761.

[5] T. Jebelean, Systolic multiprecision arithmetic, PhD Thesis, RISC-Linz
Report 94-37, April 1994.

[6] T. Jebelean, L. Ruff. Functional-Based Synthesis of Systolic Online Multi-
pliers, Proceedings of SYNASC-05 (International Symposium on Symbolic
and Numeric Scientific Computing), (eds. D. Zaharie, D. Petcu, V. Ne-
gru, T. Jebelean, G. Ciobanu, A. Ciortag, A. Abraham, M. Paprzycki),

http://www4.ncsu.edu/~ipsen/
http://perso.ens-lyon.fr/paul.feautrier/
http://www.springerlink.com/content/0885-7458
http://www.acis.ufl.edu/fortes/
http://www.hlt.utdallas.edu/~moldovan/
http://www.informatik.uni-trier.de/~ley/db/conf/isca/isca84.html
http://www.cs.ubc.ca/local/reading/proceedings/cascon94/htm/english/aut/vandonge.htm
http://www.eisz.hu/egyeb/wmain11.php
http://www.risc.uni-linz.ac.at/people/homepage.cgi?query=tjebelea
http://www.risc.uni-linz.ac.at/
http://www.risc.uni-linz.ac.at/people/homepage.cgi?query=tjebelea
http://cs.ubbcluj.ro/~laura/
http://web.info.uvt.ro/~dzaharie/
http://web.info.uvt.ro/~petcu/
http://www.risc.uni-linz.ac.at/people/homepage.cgi?query=tjebelea
http://www.ibspan.waw.pl/~paprzyck/

258

L. Ruff

[10]

[11]

[16]

[17]

IEEE Computer Society, 2005, pp. 267-275. = 235, 236, 237, 244, 247,
248, 250

L. Kazerouni, B. Rajan, R. K. Shyamasundar, Mapping linear recurrence
equations onto systolic architectures, International Journal of High Speed
Computing (IJHSC), 8, 3 (1996) 229-270. = 257

H. W. Nelis, E. F. Deprettere, Automatic design and partitioning of sys-
tolic/wavefront arrays for VLSI, Circuits, systems, and signal processing,
7,2 (1988) 235-251. = 236

L. Ruff, T. Jebelean, Functional-based synthesis of a systolic array for
ged computation, Lecture Notes in Computer Science, 4449, 2007, pp.
37-54. = 235, 237, 244

L. Ruff, Functional-based synthesis of unidirectional linear systolic ar-
rays, Pure Math. Appl., 17, 34 (2006) 419-443. = 235, 237, 245, 247

L. Ruff, Optimisation of bidirectional systolic arrays with sparse in-
put by “folding”, 10th Symposium on Programming Languages and Soft-
ware Tools, SPLST07, Dobogdks, Hungary, E6tvos University Press (eds.
Zoltéan Horvath, Laszl6 Kozma, Viktoria Zsok), 2007, pp. 420-432. = 242

P. Quinton, The systematic design of systolic arrays in Automata Net-
works in Computer Science, (eds. F. F. Soulie, Y. Robert, M. Tchuente),
Manchester University Press, 1987, pp. 229-260. = 236

P. Quinton, V. Van Dongen. The Mapping of Linear Recurrence Equa-
tions on Regular Arrays, Journal of VLSI Signal Processing 1, 2 (1989)
95-113. 236, 239, 251

P. Quinton, Y. Robert. Systolic algorithms and architectures,
Prentice-Hall, 1990. = 235, 236, 237, 241

S. W. Song. Systolic algorithms: concepts, synthesis, and evolution,
Temuco, CIMPA School of Parallel Computing, Chile, 1994. = 235,
236, 237

L. Ruff. Automatic design of systolic arrays: a short survey. Technical
report no. 02-27 in RISC Report Series, University of Linz, Austria, De-
cember 2002. = 236

S. Wolfram. The Mathematica Book, 5th edition, Wolfram Media, 2003.
Received: April 28, 2009

http://www2.computer.org/portal/web/guest/home
http://www.worldscinet.com/ijhsc/ijhsc.shtml
http://www.liacs.nl/~edd/
http://www.springerlink.com/content/109373/
http://cs.ubbcluj.ro/~laura/
http://www.risc.uni-linz.ac.at/people/homepage.cgi?query=tjebelea
http://www.eisz.hu/egyeb/wmain11.php
http://cs.ubbcluj.ro/~laura/
http://www.bke.hu/puma/index.html
http://cs.ubbcluj.ro/~laura/
http://ikportal.inf.elte.hu:81/rendezvenyek/splst.html
http://www.eotvoskiado.hu/
http://people.inf.elte.hu/hz/
http://people.inf.elte.hu/kozma/
http://www.irisa.fr/cosi/Quinton/
http://graal.ens-lyon.fr/~yrobert/
http://ralyx.inria.fr/2008/Raweb/participants.html?prenom=Maurice&nom=Tchuente
http://www.manchesteruniversitypress.co.uk/
http://www.irisa.fr/cosi/Quinton/
http://www.springerlink.com/content/100304/
http://www.irisa.fr/cosi/Quinton/
http://graal.ens-lyon.fr/~yrobert/
http://www.prenticehall.com/
http://cs.ubbcluj.ro/~laura/
http://www.studyguide.at/uni-linz/
http://www.stephenwolfram.com/
http://www.wolfram-media.com/

	1 Introduction
	2 Systolic array design for polynomial multiplication
	2.1 Solutions to the problem using the space-time transformation method
	2.2 Functional approach

	3 Online systolic multiplication
	3.1 Solutions obtained using the functional approach
	3.2 Solution using the space-time transformation method
	3.2.1 Uniformisation of the recurrence equation
	3.2.2 Finding an adequate timing function
	3.2.3 Possible allocation functions
	3.2.4 Mappings to different systolic arrays

	4 Conclusions

