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Abstract: In the industrial sector, maintenance of production facilities plays an 

important role to carry out production by increasing the reliability and availability of the 

production process. Predictive maintenance strategy seems adequate to anticipate the 

failure and degradation of the state of such equipment. A reliability study is needed to 

quantify indicators to describe the functioning of any system over time. In this paper, we 

present the results of a stochastic modeling conducted on the analysis of the availability 

of motor-pump system, installed in a cooling circuit in an industrial complex. The 

equipment considered in this study is composed of four subsystems. The proposed model 

is a dynamic Markovian approach, for the purpose of a comparison with the analytical 

calculation in terms of the indicators’ evaluation of the dependability of the studied 

system, including instant availability. The different states of the system components and 

the transition functions between these states have also been characterized. The results of 

availability obtained by the model are well correlated with those calculated analytically, 

confirming that the proposed model is very powerful, it will help predict the future states 

of the system, in order to predict any necessary preventive maintenance actions. 
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1. Introduction 

The reliability of the various industrial achievements becomes an important 

issue at the economic, ecological and human levels. Technology is moving too 

fast, materials are becoming too complex for common sense to be enough to 

predict the risks [1], [2]. Stochastic processes such as the Markov processes are 
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used to model the evolution of a system in the course of time [3]. The 

quantification of these processes is carried out either by analytical calculations 

when that is possible, or using simulation of Assembles-Carlo, or with 

deterministic numerical algorithms [4]. These tools of quantification can be 

difficult to use for people not initiated with these methods, thus tools of assistance 

to modeling such as the Dynamic Bayesian Networks, the Boolean logic driven 

Markov processes BDMP, were developed. These tools are generally coupled 

with the calculation algorithms. The quantification of the systems to be modeled 

is assisted by an intuitive chart of the system. 

For a whole reparable system, adequate models are required to ensure a good 

risk prediction, so to have a good performance of the system. This modeling is 

called stochastic modeling. 

The stochastic modeling often relates to reparable systems. This approach is 

the base of the monitoring methods, diagnosis and maintenance. 

For a reparable system, it is necessary to introduce another probabilistic 

concept: the availability A(t) is the probability that the device functions at 

moment t [5]. 

For that, one can rely on the description of the different degradations states of 

the system until the failure. The passage from a state to another is done by 

transitions. These transitions are regarded as instantaneous in the Markov model 

[6]. A stochastic process is a whole of random variables (XT)T=0 with values in the 

whole of the observations. A process is Markovian if the transition probability of 

the future states depends on the present state but does not depend on the past 

states [7]. 

The stochastic processes are used in modeling systems of discrete nature, and 

more precisely to model the temporal evolution of the dynamic systems. Indeed, 

such systems generally evolve from one state to another, and what matters to the 

modeler is the characterization of these states changes. Both the discrete-time and 

the continuous-time Markov chains [8], are defined and characterized by their 

probabilities of transition from a state to another [9]. 

The Markov chains are a succession of random variables (Xn, n ∈ N), where 

Xn represents the state of the system at moment n. The fundamental property of 

Markov chains known as property of Markov is that its future evolution depends 

on the past only through its current value. In other words, conditionally with Xn 

and Xn+k (k ∈ N) are independent. The applications of the Markov chains [10] are 

very numerous (networks, genetics of the populations, mathematical, stock 

management, stochastic algorithms of optimization, simulation). 

We can then define the law of "probability of transition" from a state (i) 

towards another state (j) by: 

 𝑃𝑖,𝑗 = 𝑃(𝑋𝑛 = 𝑗|𝑋𝑛−1 = 𝑖). (1)
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A system can be defined like a whole of interdependent components, designed 

to fulfill a given function, under conditions given at an interval of time [11]. 

For each system, it is important to clearly define the elements, which 

characterize it, namely: the function, the structure, the operating conditions and 

the environment in which it has to operate. The reliability of a system is expressed 

by the probability that this device achieves a necessary function under conditions 

of use for a period of time; it is thus a value ranging between 0 and 1. In the 

following we denote it by R(t), where t indicates the duration of the mission. 

 𝑅 (𝑡)  =  𝑃{𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 > 𝑡}. (2) 

Let us recall that the lifespan of a system is a measure of the rendered quantity 

of service. According to the studied system, it is expressed in term of time, 

kilometers, or other. 

The fact that the failure of a system can occur at any time brings us to consider 

this quantity as a random variable to which we can associate a function of density 

of probability f(t). It is important to recall that f(t) is the probability that the 

lifespan of a system lies between t and t + dt, or the probability that it breaks 

down between t and t + dt. 

 𝑓 (𝑡) ∙ 𝑑𝑡 =  𝑃{𝑡 < 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 < 𝑡 + 𝑑𝑡}. (3) 

The function of distribution or the function of distribution associated with the 

lifespan F(t), can be interpreted as the probability that the system still functions 

at the moment t. 

 𝐹(𝑡) = 𝑃{ 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 ≤ 𝑡}. (4) 

The failure of equipment can be characterized by a rate (λ) called failure rate. 

This rate is also called rate of chance or death rate. It is defined as being the 

conditional probability that the equipment breaks down between the moment t 

and t + Δt knowing that it survived until the moment t. It can also be defined as 

the proportion of components having survived until the moment t. It also 

represents the speed of arrival of the breakdown [12]. 

 λ(t) =
N (t+∆t)−N (t)

N (t)
, (5) 

with: 

• N (t): component count having survived until the moment t; 

• N (t+∆t): component count having survived until the moment t+∆t. 

The increase in the complexity of a mechanical system makes its reliability to 

decrease, if one does not take compensatory measures. This system is formed of 

independent components that are to say in series. It is said that the system is 

without redundancy. The reliability of these systems worsens dramatically with 

the increase of the number of the components. 
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When reliability is studied, one is interested not only in the probability of 

breakdown, but also in the number of breakdowns in particular, in order to repair 

the system on time. 

From this point of view, two new parameters of reliability become our center 

of interest. The availability by definition is very close to reliability, except that 

the required system must function at the moment (t) and not over a period of time 

(0 to t). 

For a system, with the assumption of a constant failure rate 𝜆 and of a constant 

repair rate μ, it is shown that the instantaneous availability is defined by (8): 

 𝜆 =  1 / 𝑀𝑇𝐵𝐹 (6) 

 𝜇 =  1 / 𝑀𝑇𝑇𝑅, (7) 

with:  

MTBF: Mean time between failures; 

MTTR: Mean time to restore. 

The traditional instantaneous availability of the equipment is given by the 

following equation: 

 𝐴(𝑡) =
 µ 

( 𝜆  + µ ) 
+

 𝜆 

𝜆 + µ 
𝑒– ( 𝜆 + µ) 𝑡 . (8) 

When λ and µ are independent of time, and when t becomes large, one notes 

that A(t) tends towards a constant value. This value is often called asymptotic 

availability. It is equal to:  

 𝐴∞ =
 1

1+𝜆/µ
. (9) 

The determination of A(t) will be done starting from the estimate of the 

reliability parameters. By analogy with reliability, it is possible to give to 

maintainability a probabilistic definition: "maintainability is the probability of 

restoring a system under specified operating conditions, in wished limits of time, 

when maintenance is accomplished under conditions and with prescribed means" 

[12]. 

The maintainability index (M) is the probability that a device is repaired before 

time t: 

 𝑀(𝑡) = 1 − 𝑒−𝜇𝑡 (10) 

 𝑀𝑇𝑇𝑅  =  𝛴𝑇𝑅 / 𝑁 (11) 

MTTR: Mean time to repair; 
∑ 𝑇𝑅: Total repair time. 
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2. Methodology of work 

We present in our study the case of a continuous process of feeding a boiler 

which feeds a steam turbine, which functions without interruption. The machine, 

which ensures the correct operation of this system, is a group motor-driven pump 

HPT 28-20, as can be seen in Fig. 1. 

 

Figure 1: General view of the pump HPT 28-20 m 8 floors 

We note that the group is made up of the following elements: 

 an electric motor; 

 a reducing coupler; 

 a nourricier pump; 

 a feeder pump. 

A. Determination of the reliability characteristics 

The machine history of failures and their times duration are summarized and 

given by Table 1. 

І. Calculation of the failure rate (λ) 

To calculate the failure rate λ, we must calculate first the MTBF (Mean time 

between failure, equal: the sum of TBF on N). In our case, the sum of TBF is 

29304 hours and N is equal to 30. Then we can calculate λ (see (6)), TBF values 

are given in Table 1. 

ІI. Calculation of the repair rate (μ) 

To calculate the rate of repair μ one must initially calculate the MTTR (Mean 

time to repair, equal: the sum of TTR on N). In our case, the sum of the TTR is 

172 hours and N is equal to 30. Then one can calculate μ (see (7)). The values of 

TTR are given in Table 1. 
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Table 1: Duration of good operation (TBF), and repair (TTR) of the feeder pump 

N° TTR(h) TTF(h) TBF(h) N° TTR(h) TTF(h) TBF(h) 

1 04 24 20 16 08 1104 1096 

2 08 1056 1048 17 08 600 592 

3 08 4296 4288 18 04 432 428 

4 18 1032 1014 19 04 912 908 

5 04 1896 1892 20 04 600 596 

6 08 168 160 21 18 576 558 

7 18 1776 1758 22 04 72 68 

8 01 648 647 23 15 672 457 

9 08 1344 1336 24 04 432 428 

10 08 1104 1096 25 01 312 311 

11 18 96 78 26 09 624 615 

12 16 3456 3440 27 08 336 328 

13 18 1704 1686 28 16 456 440 

14 08 1632 1624 29 16 96 80 

15 04 1272 1268 30 10 5520 5510 

 

The notation used in Table 1 is: 

TTR: total repair time; 

TTF: total operating time; 

TBF: running time. 

B. Markov chain of the studied system 

This method results from a mathematical theory. One has a whole of states of 

components, which, combined, makes it possible to define the whole of the states 

of the system. This system is divided into two subsets: 

• operating condition; 

• state of breakdown. 

One models the process like two subsystems (S1, S2) "in series" (Sealing system 

- valve of safety). The breakdown of one of the two systems causes the breakdown 

of the system.  
The Markov chain of the system is represented in Fig. 2. 
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Figure 2: Markov graphical model of the system 

The exponential law is selected to model the probability of failure of the feeder 

pump. The states of the system must be defined first. In the case of N "binary" 

components, we get a maximum number of 2N states [13]. Then, it is necessary 

to count all the possible "transitions" between the various states from the system 

by identifying their causes. In our case N = 2 thus the number of states is 22 = 4: 

- State 0: S1, S2 subsystems function; 

- State 1: S1 subsystem is broken down; 

- State 2: S2 subsystem is broken down; 

- State 3: subsystems S1, S2 are broken down, 

with: 

S1: subsystem 1 (sealing system); 

S2: subsystem 2 (valve of safety). 

The associated equation of states is then: 

 𝑃’0(𝑡) =  −2(𝜆1 + 𝜆2)𝑃0(𝑡) + 𝜇1𝑃1(𝑡) + 𝜇2𝑃2(𝑡) + (𝜇1 +  𝜇2)𝑃3(𝑡) (12) 

 𝑃’1(𝑡)  =   𝜆1𝑃0(𝑡)  −  𝜇1𝑃1(𝑡) (13) 

 𝑃’2(𝑡)  =  𝜆2𝑃0(𝑡)  − 𝜇2𝑃2(𝑡) (14) 

 𝑃’3(𝑡)  =  (𝜆1 + 𝜆2) 𝑃0(𝑡)  −  (𝜇1 +  𝜇2)𝑃3(𝑡) (15) 

 𝐴(𝑆) = 𝑃0 . (𝑆𝐼 − 𝑀)−1 (16) 

P0: Vector of initial conditions, 𝑃0 = [1 0 0 0]; 

P1: Probability of state 1; 

S: Laplace variable; 

M: Transition matrix; 
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I: Identity matrix, 𝐼 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]. 

The transition matrix M combines the graph: 

 𝑀 = [

−4λ λ λ 2λ
μ −μ 0 0
μ 0 −μ 0

2μ 0 0 −2μ

]. (17) 

Put: λ1=λ2=λ3=λ, μ1=μ2=μ3=μ. 

The solution is based directly on the Laplace transform so the equation (16) 

becomes: 

 𝐴(𝑆) = 𝑃0. [

S + 4λ −λ −λ −2λ
−μ 𝑆 + μ 0 0
−μ 0 𝑆 + μ 0

−2μ 0 0 𝑆 + 2μ

]

−1

. (18) 

The following model shows the availability of the system:  

 𝐴(𝑠) =
𝑆2+3𝜇 𝑆+2𝜇2

𝑆3+(4𝜆+3𝜇)𝑆2+(6𝜆𝜇+2𝜇2)𝑆
  . (19) 

By returning to the time domain: 

 𝐴(𝑡) =  
 µ 

3 𝜆  + µ
+

 6𝜆(16 𝜆2+ µ2) 

2(3𝜆 + µ )(16 𝜆2+ µ2)
∙ 𝑒

– ( 2𝜆 + 
3µ 

2
 − 

1

2
√(16 𝜆2+ µ2)) 𝑡 

. (20) 

3. Results and discussion 

We have all the parameters necessary to plot the curves for the reliability and 

maintainability functions. They are represented respectively by Fig. 3 and Fig. 4. 
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Figure 3: Curve of reliability 

According to Fig. 3, which represents the reliability of the system, one can see 

clearly that for an average time of operation (MTBF = 976.8 h), the reliability is 

about 37 %. This percentage of reliability is considered to be low, which can be 

interpreted as the absence of a regular maintenance program. 

 

Figure 4: Curve of maintainability. 

The maintainability of the motor-driven pump is represented in Fig. 4. 

According to this curve, one can see clearly that maintainability increases 

abruptly and reaches significant values in a very short time, the only interpretation 

of this being that the equipment encounters several technical problems, which 

require the stops to repair them. 
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The availability is represented by Fig. 5. 

 

Figure 5: Curve of availability 

Fig. 5 represents the availability of the system, according to analytical 

computations based on the MTBF and according to the Markov model proposed; 

one can observe that the computed values and the model availability are well 

correlated. The coefficient of correlation is of the order (R=0.996) this value 

confirms that the suggested Markov model is very powerful, and will contribute 

to the future prediction of the state of the motor-driven pump without waiting the 

breakdown. According to the objectives of the maintenance service (the 

availability of the system), and based on the proposed model, we can foresee the 

time necessary to schedule a preventive maintenance action. 

4. Conclusion 

Industrial systems are becoming complex and associated maintenance is 

becoming more expensive. Maintenance strategies are at the heart of this concern. 

These need to have reliability indicators, specific to each system that can be 

measured or modeled to trigger conditional preventive maintenance actions. On 

the other hand, predictive maintenance consists of using models to predict the 

reliability of the components of such a system, with the aim of increasing its 

availability through the implementation of anticipated interventions, in order to 

reduce the time required for maintenance. In this context, stochastic models of 

degradation are mathematical models that describe the degradation of a system 

over time. This degradation often leads to a decrease in the performance of the 

production system. Markov model is often used when evaluating the availability 
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of repairable systems, based on the principle of changing the state of one 

component to another with the characterization of the transition between these 

states. 

The proposed model is a dynamic Markov model approach, for the purpose of 

a comparison with the analytical calculation in terms of evaluation of availability 

indicator of the studied system. The different states of system components as well 

as the transition functions between these states have also been characterized. The 

proposed model adequately describes the instantaneous availability required for 

the future states prediction of the studied system, and consequently the 

improvement of the maintenance program. 

References 

[1] Alain, P., Michel, G., Maurice, M., “Reliability of systems”, Editions Eyrolles, Paris, vol 

(15), No 4, pp. 778-790, Jul 2000. 

[2] Jean, L., G., “Reliability of systems. Mathematical methods”, Masson, Paris, 1991. 

[3] Shophie, M., Cocozza, T., Michel, R., “Various stochastic models for maintenance 

optimization”, Journal of the French Statistical Society, vol 3, Paris, pp. 9-21, 2000. 

[4] Cocozza, T., “Stochastic process and reliability of mathematical systems and applications”, 

N°28, 1997. 

[5] Pascal, “Modelling malfunctions of a system under maintenance activities. Research master’s 

report”, 2007. 

[6] Agnes, L., Claudie, C., “Stochastic processes and modeling”, ismag master 2 - mi00451x, 

2012. 

[7] Claire, P. E., “Dependability”, 3rd TR - SE option, 2012. 

[8] Banege, L., “Stochastic process. Markov chains and Poisson Process”, 2004. 

[9] Bouzaouit, A., HadjadjAouel, E., Bennis, O. “Stochastic modeling for the follow-up the 

bearing degradation”, U.P.B, Sci Bull, N°79, pp. 209-218, 2017. 

[10] Bouzaouit, A., Bennis, O., Gahgah, M., “Modelling of the dynamic evolution of the state 

change of the bearings”, RECENT Journal, vol (3), pp. 254-258, 2012. 

[11] Parick, L., Marc, T., Toscana, R., “Reliability, diagnosis and predictive maintenance 

systems”, Lavoisier SAS, 2012. 

[12] Monchy, F., “The maintenance function, Training in Management of Industrial 

Maintenance”, Collection of technologies from University to industry, MASSON, 1991. 

[13] Benchouia, N., “The sacking of Reliability Systems has PEMFC fuel”, Doctoral thesis, 

Skikda University, Algeria, 2014. 




