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Abstract. Making use of a convolution structure, we introduce a

new class of complex valued harmonic functions which are orientation
preserving and univalent in the open unit disc. The results presented
in this paper include the coefficient bounds, distortion inequality and
covering property, extreme points and certain inclusion results for this
generalized class of functions

1 Introduction and preliminaries

A continuous function f =u + iv is a complex-valued harmonic function in a
complex domain G if both u and v are real and harmonic in G. In any simply-
connected domain D C G, we can write f = h+ g, where h and g are analytic
in D. We call h the analytic part and g the co-analytic part of f. A necessary
and sufficient condition for f to be locally univalent and orientation preserving
in D is that [h/(z)| > |g’(z)| in D (see [3]).

Denote by H the family of functions

f=h+g (1)

2010 Mathematics Subject Classification: 30C45, 30C50
Key words and phrases: harmonic univalent functions, distortion bounds, extreme points,
convolution, inclusion property.

168



Starlike harmonic functions in parabolic region 169

which are harmonic, univalent and orientation preserving in the open unit disc
U ={z: |z| < 1} so that f is normalized by f(0) = ’(0) — 1 = 0. Thus, for
f = h+ 9 € H, the functions h and g analytic & can be expressed in the
following forms:

h(z) =z + Z anz"™, g(z) = anzn (0<Dbr <),
=2 n=1

and f(z) is then given by

flz) =z+ ) anz"+ ) bpzt (0<by<1). (2)
n=I1

n=2

We note that the family H of orientation preserving, normalized harmonic
univalent functions reduces to the well-known class S of normalized univalent
functions if the co-analytic part of f is identically zero, i.e. g = 0.

For functions f € H given by (1) and F € H given by

F(z) =H(z) + G(z) =z + Z Anz™ + Z Bnz™, (3)
n=1

n=2

we recall the Hadamard product (or convolution) of f and F by

(fxF)(2) =2+ ) anAnz"+ ) bpBnz" (z€U). (4)

n=2 n=1

In terms of the Hadamard product (or convolution), we choose F as a fixed
function in H such that (f*F)(z) exists for any f € H, and for various choices
of F we get different linear operators which have been studied in recent past.
To illustrate some of these cases which arise from the convolution structure
(4), we consider the following examples.

(1) If
F(z) :Z+Zan(0¢1) Zn‘i‘ZGn(O‘]) zZ" (5)
=2 n=1

and on (o) is defined by

O (o + Ar(n—1))...T(ap + Ap(n—1))
(M—1IT(B1+Bim—1))...T(Bgq+Bgm—1))

(6)

onla) =
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where @ is given by

P -1/ q
0= <H r(“m)) (H r(ﬁm)) (7)
m=0

m=0

and then the convolution(4) gives the Wright’s generalized hypergeometric
function (see [17])

pwq[(“bA])» 5 (B1,B1), .. ;2] =p lyq[(‘xmAn)],p(ﬁmBn)1,q;l]
defined by

p‘yq[(fxn»An)],p(Bm 1,052 Z{H I'( ‘Xm‘l'nAm}{H I'( Bm+an}_

n=0 m=1

which was initially studied by Murugusundaramoorthy and Vijaya (see [10]).
2)IfAn=1(m=1,...,p)and B;,y=1(m =1,...,q), then we have the
following relationship

—z—i—ZFnz —I-Zrnz (8)

n=2

where
(1)n—1-.. (&p)n_1 1

(B)n-1--.(Bgln1 (=1
and the convolution (4) gives the Dziok—Srivastava operator (see [5]):

/\-((X]) . ')(XP;BI) ) BQ)Z)f(Z) = HE(O(D B])f(Z),

where &1, ..., &p; B1,. .., Bqare positive real numbers, p < q+1;p, g € NU{0},
and (a)n denotes the familiar Pochhammer symbol (or shifted factorial).

=

Remark 1 Whenp=1,q=1, 61 =a, ax =1; 1 =c, then (8) corresponds
to the operator due to Carlson-Shaffer (see [2]) given by

L(a,c)f(z) = (f xF)(z),

where

F(z)::z+Z (a)n 1Z“—I—Z (@) ]E“ (c#0,—1,-2,...). 9)
n=1

= (c)n (c)n
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Remark 2 Whenp=1,q=0; 1 =k+1(k>—-1), 00 =1; 1 =1, then (8)
yields the Ruscheweyh derivative operator (see [8]) given by D*f(z) := (f+F)(z)

where
+Z<k—|—n—1) +Z<k+n_]>z’ (10)

which was initially studied by Jahangiri et al. (see [8]).
(3) If DY (z) = f * F where

Fiz) =z+ ) n'z"+(-1') n'z" (120), (11)
n=2 n=1

was initially studied by Jahangiri et al. (see [9]).

(4) Lastly, if Saf(z) = f * F we have

D=2+ Y [Calwlz"+ Y [Calai2, (12)
m=2 n=1
and N
Cula) = 207209 N =123 ) (13)

(n—T1)!

which is decreasing in « and satisfies

00 ifcx<%
lim Cy(a)=4q 1 if x=7 (14)
0 ifoc>%

For the purpose of this paper, we introduce here a subclass of H denoted
by Ru(F;A,y) which involves the convolution (3) and consist of all functions
of the form (1) satisfying the inequality:

i z(f(z) * F(z))’ B up}
Re {“” TNzt AfD+Fa) € 2 (15)

Equivalently

Re { (14 ety 2MEHEI -0z« 6wl (4
(1 =Nz + Alh(z) * H(z) + g(z) * G(z)] o
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where ze U, 0 <A< 1.
Also denote Ty (F; A, v) = Ru(F; A, v) (7 where T3 is the subfamily of H
consisting of harmonic functions f = h + g of the form

fz) =z— ) anz™+ ) buz™ (0<by<1). (17)
n=I1

n=2

called the class of harmonic functions with negative coefficients (see [14]).
It is of special interest to note that for suitable choices of A =0 and A = 1
the classes USD [13] and S, [11] to include the following harmonic functions

Re {(1+e™)(f(z) + F(z)) — ¥} > v,

wn 2(f(2) x F(z))" hp}
Re {(1+€ )—(f(z)*F(z)) e > .
We mention below some of the function classes which emerge from the func-
tion class Ry (F;A,v) defined above. Indeed, we observe that if we specialize
the function F by (5) to (11), and denote the corresponding reducible classes
of functions of Ry (F;A,v), respectively, by WA, v), GE(A,y) LEA,v),
R(k,A,v), Q(A,y) and S(LA,y).

It is of special interest because for suitable choices of F from (15) we can
define the following subclasses:
(i) If F is given by (5) we have (f * F)(z) = W§[o1]f(z) hence we define a class
WY (A,7y) satisfying the criteria

z(Whloi]f(z))
(1—=AN)z+ ?\Wg[oq]f(z)

Re {(1 +e'¥) —em’} >y

where Wg[oq] is the Wright’s generalized operator on harmonic functions (see
10]) .

(ii) If F is given by (8) we have (f * F)(z) = HE[o7]f(z) hence we define a class
GH(A,7y) satisfying the criteria

Z(HB[OH]]C(Z))/ i
(1= Nz +AHRlaqlf(z)  © } =Y

Re {(1 + etV

where Hiloei] is the Dziok - Srivastava operator (see [5]).
(iii) H%([a, 1;¢cl) = L(a,c)f(z), hence we define a class L$(A,y)satisfying the

criteria ,
zL(a,c)f(z)) _ ehp} >y

(1—=Nz+AL(a,c)f(z)

Re {(1 + e'¥)
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where L(a,c) is the Carlson - Shaffer operator (see [2]).
(iv) H%([k +1,1;1]) = D*f(z), hence we define a class R(k,A,y) satisfying
the criteria
k /
2D )
(1 —A)z + ADKf(z)

Re {(1 + ')

where D*f(z)(k > —1) is the Ruscheweyh derivative operator (see [12]) (also
see [8]).
(v) H%([Z, 1;2 — u]) = QYf(z) we define another class Q(A,y) satisfying the
condition

z(QFf(z))’ . ei‘l’} >y
(1 =Nz +AQEf(z)

Re {(1 +e¥)

given by
Q¥f(z) = T2 — WZ*DEF(2); (0 < u < 1),
where QF is the Srivastava-Owa fractional derivative operator (see [15]).

(vi) If F is given by (12), we have S(z) * f(z) = (f * F)(z), hence we define a
class PGy (o, y) satisfying the criteria

z(S«(z) * f(z))’ b
(T—Nz+ASal2) xfz) } =Y (18)

Re {(1 +et)

this class was introduced and studied by Vijaya [16] for A = 1.
(vii) If F is given by (11), we have D'(z) = (f * F)(z), hence we define a class
S(1,A,7y) satisfying the criteria

z(D'(z))’ i
(T—Nz+ADY(z) ¢ } =Y

Re {(1 + ')

where DY(z); (1 € N) is the Sildgean derivative operator for harmonic func-
tions (see [9]) A =1.

Motivated by the earlier works of (see [6, 9, 17]) on the subject of harmonic
functions, in this paper we obtain a sufficient coefficient condition for functions
f given by (2) to be in the class Sy (F;A,v). It is shown that this coefficient
condition is necessary also for functions belonging to the class 7y (F;A,v).
Further, distortion results and extreme points for functions in 7x(F;A,vy) are
also obtained.

For the sake of brevity we denote the corresponding coefficient of F as Cy,
throughout our study unless otherwise stated.
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2 Coefficient bounds

In our first theorem, we obtain a sufficient coefficient condition for harmonic
functions in Ry (F;A,v).

Theorem 1 Let f =h+g be given by (2). If

5 [Zn— Oy, 2l —|—y)7\|bn|] c

1— 1— (19)

n=1
where a1 =1 and 0 <y < 1, then f € Ry (F A, v).

Proof. We first show that if (19) holds for the coefficients of f = h + g, the
required condition (19) is satisfied. From (16) we can write

Re {(1—1—6‘”’)“ z(h(z) * H(z ))'—z(g(z)*@(zn'( )]_ew}zy

Nz + Alh(z) * H(z) + g(z) * G(z

)
_ pe dU +e)z(h(z) * H(z))" —z(g(z) * G(2))]
(T =A)z + Alh(z) * H(z) + g(z) = G(z)]
)

e™[(1—A)z+A(h(z) * H(z) + 9(2) = G(2) 1} B
(1-A)z+Ah(z) *H(z) + g(2) *G(2)] |
= Re Alz) >y
B(z)

where

A(z) = (1 +e™)[z(h(z) * H(z))" — z(g(z) * G(z))"]—
—e[(1—=A)z+A(h(z) *H(z) + g(z) * G(2))] =

—z+ Z I+ (m—2AeV]Chanz™ — Z N+ (m—A)e]Chbnz"

n=2 n=1

and B(z) = (1 —A)z+ Alh(z) * H(z) + g(z) * G(z)]
=z+ Z ACnhanz™ + Z AC bnzZ"
n=2 n=1

Using the fact that Re {w} > vy if and only if |1 —y +w| > |1 +v — w]|, it suffices to
show that

IA(z) + (1 —v)B(z)| = |A(z) — (1 +v)B(z)| = 0. (20)
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Substituting for A(z) and B(z) in (20), we get

IA(z) + (1 —v)B(z)| = A(z) — (1 +v)B(z)| —

2—vy)z+ Z[TH— (n—Ae™ 4+ (1 —y)AIChanz"—

n=2

— Y M+ (n—Ae" —(1-y)AICpby 2"

o0

> 2-¥)ld= ) m+m=A)+(1=y)ACulanlz"™ -
n=2
—Y (A — (1= yAIC o] 2" —

—ylzZl—= Y I+ (n—=2A) —(1+7)ACulan| 2™ —
n=2

— ) M+ =2+ (1+y)AICulbn] 2" >

n

= [2n—(14+y)A n+(14+y)A
20 )i {2— > [P Ry 222 YR
n=1

Il
=

Y

1

Y

n=1

The above expression is non negative by (19), and so f € Ry(F;A,v).

The harmonic function

T—v

— 1-v n S
2= ”né 2n— (1 +yNC, ™ +; 2n+ (1 +y)AIC,

|bn|:| Crlz™! }

201 ) {z— S [2n—1(1;1/-1/)7\an n 2“_1(1$Y)A|bn|} cn}.

un(2)™ (21)

o0 o0
where Y [xn|+ Y_ [yn| =1 shows that the coefficient bound given by (19) is

n=2 n=1

sharp.
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The functions of the form (21) are in Ry/(F;A,y) because

3 <[2T1— (1 +Y)}\]C“Ian\ n [2n — (1 +Y)7\]Cn|bn|> _

1—vy 1—

n=1
o0 o0
:1+Z‘Xn|+Z|yn‘:2-
n=2 n=1
Next theorem establishes that such coefficient bounds cannot be improved

further.
Theorem 2 Fora;=1and0<vy<1,f=h+7ge Tx(FA,v) if and only if

— [2n—(1+7vy)A 2n+(1+v)A
> [P Ry 2 Ry e <20

n=1

Proof. Since 74 (F;A,v) C Ru(F;A,v), we only need to prove the ”only if”
part of the theorem. To this end, for functions f of the form (17), we notice
that the condition

Re{“+ew) z(h(z) * H(z))’ —2(g(2) * G(z))’

(1 —=A)z+Alh(z) « H(z) + g(z) * G(z]]

—(e“"ﬂ/)} >0

The above inequality is equivalent to

(T—y)z— 3 (1 +e) — (1 +v + eP)AICranz™

Re n=2 —
z— Y ACpanz™+ Y ACpbnz"
n=. n=1
S m(1+e™) + (14+v+e)AICrbnz™
n=1
- = = > 0.
z— Y ACpanz™+ Y ACpb,z"

n=2 n=1

The above required condition must hold for all values of z in U. Upon choosing
the values of z on the positive real axis where 0 < z =1 < 1, and noting that
Re(—e) > —|e?¥| = —1, we must have

(T—=v)—

M8

2n— (T+y)AIChan™ ' — 5 2n— (1 +v)AIC by !
2 n=1

. . >0. (23)
1— Y AChanm '+ Z1 ACnbyrn!
n=

n=2
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If the condition (22) does not hold, then the numerator in (23) is negative for v
sufficiently close to 1. Hence, there exist zg = 7o in (0,1) for which the quotient of
(23) is negative. This contradicts the required condition for f € 75(F;A,y). This
completes the proof of the theorem. O

3 Distortion bounds and extreme points

The following theorem gives the distortion bounds for functions in 75 (F; A, v)
which yields a covering result for the class 7y (F;A,v).

Theorem 3 Let f € Ty (F;A,v). Then for |z| =1 < 1, we have

1 1—vy 14y
4_

2
RO Ve s, Sy +v)xb‘>r S

< (T+by)r+— — by | .
=(+birt e <4(1+w7\ (v ‘)

Proof. We only prove the right hand inequality. Taking the absolute value of
f(z), we obtain

(1—Dby)r

<(1+b1lzl+ ) (an+bn)z™ <

f(z)] = Z—I—Zanzn_i_zgnzn
= n= n=2
) n=2 - [4—(1+v)AIC2

= (M- (4+yNC: A= (149G, E
n;( v ¢ o)

-1 (v, ) o
< v g (e s

< (1+byr+ — _ by ) 2.
< (4bir+ = (4—(1+y))\ A=+ ‘>T

The proof of the left hand inequality follows on lines similar to that of the
right hand side inequality. O

The covering result follows from the left hand inequality given in Theorem 3.
Corollary 1 If f(z) € Ty (F;A,y), then

. B—(0+yNC—(T—y) B-0+vAC—(1+Y)
P < G e e LU
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Proof. Using the left hand inequality of Theorem 3 and letting r — 1, we
prove that

1 1—vy T+vy _
- (g i) =

— (1 —by) - L

M-y —(1+vy)bi] =

Cald — (1 +v)Al
(1= b1)Cald— T+ YA = (1 —y) + (1 +v)by
B Cald — (1 +v)Al B
B0+ yNC—(0—y) “B-0+yAC—(1+Y)
B { [4— (1 +vy)AC, 4 —(1+v)AIC, 'b”} <.
0

Next we determine the extreme points of closed convex hulls of 7 (F; A, v)
denoted by clcoZx(F;A,v).

Theorem 4 A function f(z) € Tx(F;A,v) if and only if

f(z) = Z (Xnhn(z) + Yngn(z))

n=1
where
hi(z) = 2 hal2) =2 o 2% (n>2),
2n— (T+v)AICh
1—vy n

gnl(z) =z + (n=>2),

2n—(1+yACy

(e¢]

Y Xn+Yn)=1, Xn>0and Yy >0.

n=1
In particular, the extreme points of Tr(F;A,v) are {hn} and {gn}.
Proof. First, we note that for f as in the theorem above, we may write

f(z) = Z (Xnhn(z) + Yngn(z)) =

n=I1

> 1

—-Y
(Xn+¥n)z— n; 2n— (1 +7)A\Cn

M8

Xnz™+

p

3
Il

=N

o0 ] o
2w (T r NG, ™

n=1

_|_
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Then

= 2n—(1+ - JAIC
> YNG4y 2 2og| =
-Y
n=2 n=1

:Z +iYn_1—X1<1

and so f(z) € clcoTx(F;A,v).
Conversely, suppose that f(z) € clcoZy(F;A,y). Setting

[2n — (T +v)AICy

Xn: 1— |an|, (OSXnSLnZZ)
2n— (1 A
Yn:[n (]_—l_;/) ]Cn|bn|a (OSYnSLnZ])
and X1 =1— > X, — > Ypn. Therefore, f(z) can be rewritten as
n=2 n=1
o o
f(z) =z— Z anz™ + ZE@“ =
n=2 n=1

_ T-vy n 1- AL
=272 et e

=z+ Z(hn(z) —z)Xn + Z(gn(z) —z)Yn =
n=2 n=1
= z{1 —an Zvn}+ Zhn ><n+Zgn Yo =
i z) + Yngn(z)) as required.

n=1

4 Inclusion results

Now we show that 7x(F;A,v) is closed under convex combinations of its
member and also closed under the convolution product.
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Theorem 5 The family T (F;\,7y) is closed under convexr combinations.
Proof. Fori=1,2,..., suppose that f; € 7¢(F;A,y) where
=2z— Zalnz + Zblnz
n=2

Then, by Theorem 2

© o (4yNCh | & B (1 4yINC,
in bin<1. 24
Ly LT iy eesh )

o0
For Y t;=1,0<t; <1, the convex combination of f; may be written as
i=1

itifi(z) :z—Z (Ztlaln> z +Z (Zt bm> "

n=2

Using the inequality (22), we obtain

i 2n — (1]1»’}’/}/))\](:“ (i tiai,n> n i 2n — (11j’;/}/)}\]cn (i tib;

n=2 i=1
— — 2n— (1 +v)A 2n — 1—|—y) AlCh
.Zti<z T ln—i—Z bin| <) ti=1,
i=1 n=2 i=1
o0
and therefore Y tif; € Ty (F;A,v). O

i=1
Now, we will examine the closure properties of the class 73 (F;A,y) under
the generalized Bernardi-Libera -Livingston integral operatorL.(f) which is
defined by

Lo(f) = CZ“ Jtc Tf(t)dt,c > —1.
0

Theorem 6 Let f(z) € Ty(F;A,v). Then L.(f(z)) € T (F; A, v)
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Proof. From the representation of L.(f(z)), it follows that

c+1 [ _ —
Llf) = — Jtc "R + 9] at =
0
] z o0 z o0
_ Ct JtC1 (t — Z ant“> dt + Jtc—‘ (Z bntn> dt | =
z 0 n=2 0 n=1

o0 oo
B c+1 n c+1 n
= Z_TIZZC"'nanZ —|—nZ1€+n bnz™.

Using the inequality (22), we get

Z Pn—(14+vy)A c+1 2n+(14+v)A, c+1
> (SR E o + N S ) o
— —-v c+n -y c+n
= /2n—(1+v)A 2n+ (1 +v)A

B LIS 22 P
n=1 Y Y

< 2(1—1y), since f(z) € T (F;A,y).

Hence by Theorem 2, L.(f(z)) € Tx(F;A,y). O

Concluding remarks

For suitable choices of F(z), as we pointed out the Ry (F;A,y) contains, various
function class defined by linear operators such as the Carlson-Shaffer opera-
tor, the Ruscheweyh derivative operator, the Salagean operator, the fractional
derivative operator, and so on. When A = 0 and A = 1 the various results
presented in this paper would provide interesting extensions and generaliza-
tions of those considered earlier for simpler harmonic function classes[1] and
[8, 9, 10] respectively. The details involved in the derivations of such spe-
cializations of the results presented in this paper are fairly straight- forward,
hence omitted.



182 G. Murugusundaramoorthy, K. Vijaya
References
[1] O.P. Ahuja and J. Jahangiri, Noshiro-type harmonic univalent functions,

2]

[10]

[11]

[12]

Sci. Math. Japonica, 56 (2002), 1-7.

B. C. Carlson and S. B. Shaffer, Starlike and prestarlike hypergeometric
functions, SIAM J. Math. Anal., 15 (2002), 737-745.

J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad.
Aci. Fenn. Ser. A. I. Math., 9 (1984), 3-25.

J. Dziok and Raina, Families of analytic functions associated with the
Wright’s generalized hypergeometric function, Demonstratio Math., 37
(2004), 533-542.

J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions
associated with the generalized hypergeometric function, Intergral Trans-
form Spec. Funct., 14 (2003), 7-18.

J. M. Jahangiri and H. Silverman, Harmonic univalent functions with
varying arguments, Internat. J. Appl. Math., 8 (2002), 267-275.

J. M. Jahangiri, Harmonic functions starlike in the unit disc., J. Math.
Anal. Appl., 235 (1999), 470-477.

J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Starlikeness
of Rucheweyh type harmonic univalent functions, J. Indian Acad. Math.,
26 (2004), 191-200.

J. M. Jahangiri, G. Murugusundaramoorthy and K.Vijaya, Salagean-type
harmonic univalent functions, Southwest J. Pure Appl. Math., 2 (2002),
T77-82.

G. Murugusundaramoorthy and K. Vijaya, A subclass of harmonic func-
tions associated with Wright hypergeometric functions, Advanced Stud.
Contemp. Math., 18 (2009), 87-95.

F. Rgnning, Uniformly convex functions and a corresponding class of
starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189-196.

S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc., 49 (1975), 109-115.



Starlike harmonic functions in parabolic region 183

[13]

[14]

T. Rosy, B. A. Stephen, K. G. Subramanian and H. Silverman, Classes of
convex functions, Int. J. Maths. and Maths. Anal., 23 (2000), 819-825.

H. Silverman, Harmonic univalent functions with negative coefficients, J.
Math. Anal. Appl., 220 (1998), 283-289.

H.M. Srivastava and S. Owa, Some characterization and distortion theo-
rems involving fractional calculus, generalized hypergeometric functions,
Hadamard products, linear operators and certain subclasses of analytic
functions, Nagoya Math. J., 106 (1987), 1-28.

K. Vijaya, Certain subclass of harmonic prestarlike functions in the
parabolic region, Acta Universitatis Apulensis, 18 (2009), 1-9.

E. M. Wright, The asymptotic expansion of the generalized hypergeomet-
ric function, Proc. London. Math. Soc., 46 (1946), 389-408.

Received: November 25, 2009



