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Abstract. In this article, we consider a Lamé system with a delay term
in the internal fractional feedback. We show the existence and uniqueness
of solutions by means of the semigroup theory under a certain condition
between the weight of the delay term in the fractional feedback and the
weight of the term without delay. Furthermore, we show the exponential
stability by the classical theorem of Gearhart, Huang and Pruss.

1 Introduction

In this article, we consider the initial boundary value problem for the Lamé
system given by:

utt − µ∆u− (µ+ λ)∇(div u)
+a1∂

σ,κ
t u(x, t− τ) + a2ut(x, t) = 0 in Ω× (0,+∞),

u = 0 in Γ × (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,
ut(x, t− τ) = f0(x, t− τ) in Ω× (0, τ),

(P)

2010 Mathematics Subject Classification: 35B40, 47D03, 74D05
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where µ, λ are Lamé constants, u = (u1, u2, ..., un)
T . Here Ω is a bounded

domain in IRn with smooth boundary Γ = ∂Ω. Moreover, a1 > 0, a2 > 0

and the constant τ > 0 is the time delay. The notation ∂σ,κt stands for the
exponential fractional derivative operator of order σ. It is defined by

∂σ,κt w(t) =
1

Γ(1− σ)

∫ t
0

(t− s)−σe−κ(t−s)
dw

ds
(s)ds 0 < σ < 1, κ > 0.

Delay effects arise in many applications and pratical problems because, in most
instances, physical, chemical, biological, thermal, and economic phenomena
naturally depend not only on the present state but also on some past occur-
rences. In recent years, the control of PDEs with time delay effects has become
an active area of research, see for example [1], [17], and references therein. In
many cases it was shown that delay is a source of instability and even an
arbitrarily small delay may destabilize a system which is uniformly asymp-
totically stable in the absence of delay unless additional conditions or control
terms have been used.The stability issue of systems with delay is, therefore, of
theoretical and practical importance. In particular, consider the wave equation
with homogeneous Dirichlet boundary condition

u ′′(x, t) − ∆xu(x, t) + µ1u
′(x, t)

+µ2u
′(x, t− τ) = 0 in Ω× (0,+∞),

u(x, t) = 0 on Γ × (0,+∞),
u(x, 0) = u0(x), u

′(x, 0) = u1(x) in Ω,
u ′(x, t− τ) = f0(x, t− τ) in Ω× (0, τ).

(PW)

For instance in [13] the authors studied the problem (PW). They determined
suitable relations between µ1 and µ2, for which the stability or alternatively
instability takes place. More precisely, they showed that the energy is expo-
nentially stable if µ2 < µ1 and they also found a sequence of delays for which
the corresponding solution of (PW) will be instable if µ2 > µ1. The main ap-
proach used in [13] is an observability inequality obtained with a Carleman
estimate.

Noting that the case of the wave equation with internal fractional feedback
(without delay) have treated in [8] where it is proven global existence and
uniqueness results. As far as we are concerned, this is the first work in the
literature that takes into account the uniform decay rates for Lamé system
with delay term in the internal fractional feedback.

The remainder of the paper falls into five sections. In Section 2, we show
that the above system can be replaced by an augmented one obtained by cou-
pling an equation with a suitable diffusion, and we study of energy functional
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associated to system. In section 3, we state a well-posedness result for prob-
lem (P). In section 4, we prove the strong asymptotic stability of solutions. In
section 5 we show the exponential stability using the Gearhart-Huang-Pruss
theorem.

2 Preliminary

This section is concerned with the reformulation of the model (P) into an
augmented system. For that, we need the following claims.

Theorem 1 (see [12]) Let ω be the function:

ω(ξ) = |ξ|(2σ−1)/2, −∞ < ξ < +∞, 0 < σ < 1. (1)

Then the relationship between the ’input’ U and the ’output’ O of the system

∂tψ(ξ, t)+(ξ2+κ)ψ(ξ, t)−U(t)ω(ξ) = 0, −∞ < ξ < +∞, κ > 0, t > 0, (2)

ψ(ξ, 0) = 0, (3)

O(t) = (π)−1 sin(σπ)

∫+∞
−∞ ω(ξ)ψ(ξ, t)dξ (4)

is given by

O = I1−σ,κU = Dσ,κU, (5)

where

[Iσ,κf](t) =
1

Γ(σ)

∫ t
0

(t− s)σ−1e−κ(t−s)f(s)ds.

Proof. From (2) and (3), we have

ψ(ξ, t) =

∫ t
0

ω(ξ)e−(ξ2+κ)(t−s)U(s)ds. (6)

Hence, by using (4), we get

O(t) = (π)−1sin(σπ)e−κt
∫ t
0

[
2

∫+∞
0

|ξ|2σ−1e−ξ
2(t−s)dξ

]
eκsU(s)ds. (7)
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Thus,

O(t) = (π)−1sin(σπ)e−κt
∫ t
0

[
(t− s)−σΓ(σ)

]
eκsU(s)ds

= (π)−1sin(σπ)

∫ t
0

[
(t− s)−σΓ(σ)

]
e−κ(t−s)U(s)ds

(8)

which completes the proof. Indeed, we know that (π)−1sin(σπ) =
1

Γ(σ)Γ(1− σ)
. �

Lemma 1 (see [5]) If λ ∈ Dκ = IC\] −∞,−κ] then∫+∞
−∞

ω2(ξ)

λ+ κ+ ξ2
dξ =

π

sinσπ
(λ+ κ)σ−1.

We make the following hypotheses on the damping and the delay functions:

a1κ
σ−1 < a2. (9)

We are now in a position to reformulate system (P). As in [13], we introduce
the new variable

z(x, ρ, t) = ut(x, t− ρτ), x ∈ Ω, ρ ∈ (0, 1), t > 0.

Then the above variable z satisfies

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Ω, ρ ∈ (0, 1), t > 0.

Consequently, by using Theorem 1, the system (P) is equivalent to

utt − µ∆u− (µ+ λ)∇(div u)

+ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ, t)dξ+ a2ut(t) = 0 in Ω× (0,+∞),

ψt(x, ξ, t) + (ξ2 + κ)ψ(x, ξ, t)
−z(x, 1, t)ω(ξ) = 0 in Ω× (−∞,∞)× (0,+∞),
τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞),
u(x, t) = 0l on Γ × (0,+∞),
z(x, 0, t) = ut(x, t), in Ω× (0,+∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x) on Ω,
ψ(x, ξ, 0) = 0 on Ω× (−∞,∞),
z(x, ρ, 0) = f0(x,−ρτ) in Ω× (0, 1),

(P ′)
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where ζ = (π)−1 sin(σπ)a1.
We define the energy of the solution by:

E(t) =
1

2

n∑
j=1

(
‖ujt‖2L2(Ω) + µ‖∇uj‖

2
L2(Ω) + ζ

∫
Ω

∫+∞
−∞ |ψj(x, ξ, t)|

2 dξdx

)

+
ν

2

n∑
j=1

∫
Ω

∫ 1
0

|zj(x, ρ, t)|
2 dρdx+

(µ+ λ)

2
‖div u‖2L2(Ω).

(10)

where ν is a positive constant verifying

τζ

(∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

)
< ν < τ

(
2a2 − ζ

(∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

))
. (11)

Remark 1 Using Lemma 1, the condition (11) means that

τκσ−1 < ν < τ(2a2 − a1κ
σ−1).

Lemma 2 Let (u,ψ, z) be a regular solution of the problem (P ′). Then there
exists a positive constant C such that the energy functional defined by (10)
satisfies

E ′(t) ≤ −C

n∑
j=1

∫
Ω

(
u2t + z(x, 1, t)

2
)
dx. (12)

Proof. Multiplying the first equation in (P) by ujt, integrating over Ω and
using integration by parts, we get

1

2

d

dt
‖ujt‖22 − µ<

∫
Ω

∆ujujt dx− (µ+ λ)<

∫
Ω

∂

∂xj
(div u)ujt dx

+ζ

∫
Ω

ujt

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx+ a2

∫
Ω

|ujt(t)|
2 dx = 0.

Then

1

2

d

dt

n∑
j=1

(
‖ujt‖2L2(Ω) + µ‖∇uj‖

2
L2(Ω)

)
+

(µ+ λ)

2
‖div u‖2L2(Ω)

+ a2

n∑
j=1

‖ujt‖2L2(Ω) + ζ<

n∑
j=1

∫
Ω

ujt

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx = 0.

(13)
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Multiplying the second equation in (P ′) by ζψj and integrating over Ω ×
(−∞,+∞), we obtain:

ζ

2

d

dt

n∑
j=1

‖ψj‖2L2(Ω×(−∞,+∞)) + ζ

n∑
j=1

∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ, t)|

2 dξdx

− ζ<

n∑
j=1

∫
Ω

zj(x, 1, t)

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx = 0.

(14)

Multiplying the third equation in (P ′) by νzj and integrating over Ω× (0, 1),
we get:

1

2

d

dt

n∑
j=1

‖zj‖2L2(Ω×(0,1)) +
τ−1

2

n∑
j=1

∫
Ω

(
z2j (x, 1, t) − u

2
jt(x, t)

)
= 0. (15)

From (10), (13) and (15) we get

E ′(t) = − a2

n∑
j=1

‖ujt‖2L2 − ζ
n∑
j=1

∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ, t)|

2 dξdx

− ζ<

n∑
j=1

∫
Ω

ujt

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx

+ ζ<

n∑
j=1

∫
Ω

zj(x, 1, t)

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx

+
ντ−1

2

n∑
j=1

∫
Ω

u2t(x, t)dx −
ντ−1

2

n∑
j=1

∫
Ω

z2j (x, 1, t)dx.

(16)

Moreover, we have∣∣∣∣∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξ

∣∣∣∣ ≤ (∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

) 1
2
(∫+∞

−∞ (ξ2 + κ)|ψj(x, ξ, t)|
2 dξ

) 1
2

.

Then∣∣∣∣∫
Ω

zj(x, 1, t)

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx

∣∣∣∣
≤
(∫+∞

−∞
ω2(ξ)

ξ2 + κ
dξ

) 1
2

‖zj(x, 1, t)‖L2(Ω)

(∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ, t)|

2 dxdξ

) 1
2
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and∣∣∣∣∫
Ω

ujt(x, t)

∫+∞
−∞ ω(ξ)ψj(x, ξ, t)dξdx

∣∣∣∣
≤
(∫+∞

−∞
ω2(ξ)

ξ2 + κ
dξ

) 1
2

‖ujt(x, t)‖L2(Ω)

(∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ, t)|

2 dxdξ

) 1
2

.

Applying the Cauchy-Schwarz inequality we obtain

E ′(t) ≤
(
−a2 +

ζI

2
+
ντ−1

2

) n∑
j=1

∫
Ω

u2jt(x, t)dx

+

(
ζI

2
−
ντ−1

2

) n∑
j=1

∫
Ω

z2j (x, 1, t)dx,

where I =

∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ, which implies

E ′(t) ≤ −C

n∑
j=1

∫
Ω

(
u2jt(x, t) + z

2
j (x, 1, t)

)
dx

with

C = min

{(
a2 −

ζI

2
−
ντ−1

2

)
,

(
−
ζI

2
+
ντ−1

2

)}
.

Since ν is chosen satisfying assumption (11), the constant C is positive. This
completes the proof of the lemma. �

3 Well-posedness

In this section, we give the existence and uniqueness result for system (P ′)
using the semigroup theory. Let us denote U = (u, v,ψ, z)T , where v = ut.
The system (P ′) can be rewrite as follows:{

U ′ = AU, t > 0,

U(0) = (u0, u1, ψ0, f0),
(17)

where A : D(A) ⊂ H→ H is the linear operator defined by

A


u

v

ψ

z

 =


v

µ∆u+ (µ+ λ)∇(div u) − ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ− a2v

−(ξ2 + κ)ψ+ z(x, 1)ω(ξ)
−τ−1zρ(x, ρ)

 (18)
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and H is the energy space given by

H =
(
H10(Ω)

)n
×
(
L2(Ω)

)n
×
(
L2(Ω× (−∞,+∞))

)n
×
(
L2(Ω× (0, 1))

)n
.

For any U = (u, v,ψ, z)T ∈ H, Ũ = (ũ, ṽ, ψ̃, z̃)T ∈ H, we equip H with the
inner product defined by

< U, Ũ >H=

n∑
j=1

∫
Ω

(
vjṽj + µ∇uj∇ũj

)
dx+ (µ+ λ)

∫
Ω

(div u)(div ũ)dx

+ ζ

n∑
j=1

∫
Ω

∫+∞
−∞ ψj(x, ξ)ψ̃j(x, ξ)dξdx+ ζ

n∑
j=1

∫
Ω

∫ 1
0

z(x, ρ)z̃j(x, ρ)dρdx.

The domain of A is given by

D(A) =


(u, v,ψ, z)T in H : u ∈

(
H2(Ω) ∩H10(Ω)

)n
, v ∈

(
H1(Ω)

)n
,

−(ξ2 + κ)ψ+ z(x, 1, t)ω(ξ) ∈
(
L2(Ω× (−∞,+∞))

)n
,

z ∈
(
L2
(
Ω;H1(0, 1)

))n
,

|ξ|ψ ∈
(
L2(Ω× (−∞,+∞))

)n
, v = z(., 0) in Ω

 . (19)

We show that the operator A generates a C0 semigroup in H. We prove that A
is a maximal dissipative operator. For this we need the following two Lemmas.

Lemma 3 The operator A is dissipative and satisfies for any U ∈ D(A),

<〈AU,U〉H ≤ −C

n∑
j=1

∫
Ω

(
v2 + z(x, 1)2

)
dx. (20)

Proof. For any U = (u, v,ψ, z) ∈ D(A), using (17), (12) and the fact that

E(t) =
1

2
‖U‖2H, (21)

estimate (20) easily follows. �

Lemma 4 The operator (λ̃I−A) is surjective for λ̃ > 0.

Proof. For any G = (G1, G2, G3, G4)
T ∈ H, where Gi = (g1i , g

2
i , ..., g

n
i )
T , we

show that there exists U ∈ D(A) satisfying

(λ̃I−A)U = G. (22)



344 A. Benaissa, S. Gaouar

Equation (22) is equivalent to
λ̃u− v = G1(x),

λ̃v− µ∆u− (µ+ λ)∇(div u) + ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+ a2v = G2(x),

λ̃ψ+ (ξ2 + κ)ψ− z(x, 1)ω(ξ) = G3(x, ξ),

λ̃z(x, ρ) + τ−1zρ(x, ρ) = G4(x, ρ)

(23)

Suppose u is found with the appropriate regularity. Then, (23)1 and (23)3
yield

v = λ̃u−G1(x) ∈
(
H1(Ω)

)n
(24)

and

ψ =
G3(x, ξ) +ω(ξ)z(x, 1)

ξ2 + κ+ λ̃
. (25)

We note that the last equation in (23) with z(x, 0) = v(x) has a unique solution
given by

z(x, ρ) = v(x)e−λ̃ρτ + τe−λ̃ρτ
∫ρ
0

G4(x, r)e
λ̃rτdr. (26)

Inserting (24) in (26), we get

z(x, ρ) = λ̃u(x)e−λ̃ρτ−G1(x)e
−λ̃ρτ+τe−λ̃ρτ

∫ρ
0

G4(x, r)e
λ̃rτdr, x ∈ Ω,ρ ∈ (0, 1).

(27)
In particular,

z(x, 1) = λ̃u(x)e−λ̃τ + z0(x), x ∈ Ω (28)

with z0 ∈ L2(Ω) defined by

z0(x) = −G1(x)e
−λ̃τ + τe−λ̃τ

∫ 1
0

G4(x, r)e
λ̃rτdr, x ∈ Ω. (29)

Inserting (24) in (23)2, we get

(λ̃2 + λ̃a2)u− µ∆u− (µ+ λ)∇(div u) + γa1

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ

= G2(x) + (λ̃+ a2)G1(x).

(30)
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Solving system (30) is equivalent to finding u ∈
(
H2 ∩H10(Ω)

)n
such that

n∑
j=1

∫
Ω

(
(λ̃2 + λ̃a2)ujwj − µ∆ujwj

)
dx− (µ+ λ)

∫
Ω

∂

∂xj
(div u)wjdx

+ ζ

n∑
j=1

∫
Ω

wj

∫+∞
−∞ ω(ξ)ψj(x, ξ)dξdx =

n∑
j=1

∫
Ω

(gj2(x) + (λ̃+ a2)g
j
1(x))wjdx

(31)

for all w ∈
(
H10(Ω)

)n
. Inserting (25) in (31) and using (28), we obtain that

n∑
j=1

∫
Ω

(
(λ̃2 + λ̃a2)ujwj+µ∇uj∇wj dx

)
+ (µ+ λ)

∫
Ω

(div u)(div w)dx

+λ̃θ

n∑
j=1

∫
Ω

ujwje
−λ̃τ dx =

n∑
j=1

∫
Ω

(
g
j
2(x) + (λ̃+ a2)g

j
1(x)

)
wj dx

−ζ

n∑
j=1

∫
Ω

wj

(∫∞
−∞

ω(ξ)gj3(x, ξ)

ξ2 + κ+ λ̃
dξ

)
dx− θ

n∑
j=1

∫
Ω

wjz0(x)dx.

(32)

where θ = ζ

∫+∞
−∞

ω2(ξ)

ξ2 + κ+ λ̃
dξ. Problem (32) is of the form

B(u,w) = L(w), (33)

where B :
(
H10(Ω)

)n × (H10(Ω)
)n → IC is the sesquilinear form defined by

B(u,w) =
n∑
j=1

∫
Ω

(
(λ̃2 + λ̃a2)ujwj + µ∇uj∇wj dx

)
+ (µ+ λ)

∫
Ω

(div u)(div w)dx+ λ̃θ

n∑
j=1

∫
Ω

ujwje
−λ̃τ dx

and L :
(
H10(Ω)

)n → IC is the antilinear functional given by

L(w) =
n∑
j=1

∫
Ω

(
g
j
2(x) + (λ̃+ a2)g

j
1(x)

)
wj dx

− ζ

n∑
j=1

∫
Ω

wj

(∫∞
−∞

ω(ξ)gj3(x, ξ)

ξ2 + κ+ λ̃
dξ

)
dx− θ

n∑
j=1

∫
Ω

wjz0(x)dx.



346 A. Benaissa, S. Gaouar

It is easy to verify that B is continuous and coercive, and L is continu-
ous. Consequently, by the Lax-Milgram theorem, we conclude that for all
w ∈

(
H10(Ω)

)n
, the system (33) has a unique solution u ∈

(
H10(Ω)

)n
. By the

regularity theory for the linear elliptic equations, it follows that u ∈
(
H2(Ω)

)n
.

Therefore, the operator (λ̃I−A) is surjective for any λ̃ > 0. Consequently, us-
ing Hille-Yosida theorem, we have the following existence result:

Theorem 2 (Existence and uniqueness)

(1) If U0 ∈ D(A), then system (17) has a unique strong solution

U ∈ C0(IR+, D(A)) ∩ C1(IR+,H).

(2) If U0 ∈ H, then system (17) has a unique weak solution

U ∈ C0(IR+,H).

�

4 Strong stability

One simple way to prove the strong stability of (17) is to use the following
theorem due to Arendt-Batty and Lyubich-Vũ (see [2] and [10]).

Theorem 3 ([2]-[10]) Let X be a reflexive Banach space and (T(t))t≥0 be a
C0−semigroup generated by A on X. Assume that (T(t))t≥0 is bounded and
that no eigenvalues of A lie on the imaginary axis. If r(A) ∩ iR is countable,
then (T(t))t≥0 is stable.

Our main result is the following theorem

Theorem 4 The C0-semigroup etA is strongly stable in H; i.e, for all U0 ∈ H,
the solution of (17) satisfies

lim
t→∞ ‖etAU0‖H = 0.

For the proof of Theorem 4, we need the following two lemmas.
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Lemma 5 A does not have eigenvalues on iIR.

Proof.
Case 1: We will argue by contraction. Let us suppose that there λ̃ ∈ IR, λ̃ 6= 0
and U 6= 0, such that

AU = iλ̃U. (34)

Then, we get

iλ̃u− v = 0,

iλ̃v− µ∆u− (µ+ λ)∇(div u) + ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+ a2v = 0,

iλ̃ψ+ (ξ2 + κ)ψ− z(x, 1)ω(ξ) = 0,

iλ̃z(x, ρ) + τ−1zρ(x, ρ) = 0.

(35)

Then, from (20) we have

v = 0, z(x, 1) = 0. (36)

Hence, from (35)3 and (36) we obtain

u ≡ 0, ψ ≡ 0. (37)

Note that (35)4 gives us z = ve−iλ̃ρτ = 0 as the unique solution of (35)4. Hence
U ≡ 0.

Now if λ̃ = 0, inserting (35)1 into (35)2, we deduce that

{−µ∆u− (µ+ λ)∇(div u) = 0, u = 0 in Γ. (38)

Multiplying by u, integrating over Ω we have

‖∇u‖2L2(Ω) + ‖div u‖2L2(Ω) = 0. (39)

Hence u = 0. Then U ≡ 0. �

Lemma 6 We have

iIR ⊂ ρ(A).
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Proof. We will prove that the operator iλ̃I − A is surjective for λ̃ 6= 0. For
this purpose, let G = (G1, G2, G3, G4)

T ∈ H, we seek X = (u, v,ψ, z)T ∈ D(A)
of solution of the following equation

(iλ̃I−A)X = G. (40)

Equivalently, we have
iλ̃u− v = G1,

iλ̃v− µ∆u− (µ+ λ)∇(div u) + ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+ a2v = G2,

iλ̃ψ+ (ξ2 + κ)ψ− z(x, 1)ω(ξ) = G3,

iλ̃z(x, ρ) + τ−1zρ(x, ρ) = G4.

(41)

From (41)1 and (41)2, we have

− λ̃2u−µ∆u−(µ+λ)∇(div u)+ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+a2v(t) = (G2+ iλ̃G1)

(42)
with u|Γ = 0. Solving system (42) is equivalent to finding u ∈ (H2 ∩H10(Ω))n

such that

n∑
j=1

∫
Ω

(
−(λ̃2 + iλ̃a2)ujwj + µ∇uj∇wj dx

)
+ (µ+ λ)

∫
Ω

(div u)(div w)dx

+iλ̃θ

n∑
j=1

∫
Ω

ujwje
−λ̃τ dx =

n∑
j=1

∫
Ω

(
g
j
2(x) + (iλ̃+ a2)g

j
1(x)

)
wj dx

−ζ

n∑
j=1

∫
Ω

wj

(∫∞
−∞

ω(ξ)gj3(x, ξ)

ξ2 + κ+ iλ̃
dξ

)
dx− θ

n∑
j=1

∫
Ω

wjz0(x)dx

(43)
for all w ∈ (H10(Ω))n. We can rewrite (43) as

− (Lλ̃u,w)((H1
0(Ω))n,((H1

0(Ω)) ′)n) + a(H1
0(Ω))n(u,w) = l(w) (44)

with the sesquilinear form defined by

a(H1
0(Ω))n(u,w) = µ

n∑
j=1

∫
Ω

∇uj∇wj dx+ iλ̃a2
n∑
j=1

∫
Ω

uj wj dx

+ iλ̃θ

n∑
j=1

∫
Ω

ujwje
−λ̃τ dx
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and

(Lλ̃u,w)((H1
0(Ω))n,((H1

0(Ω)) ′)n) =

n∑
j=1

∫
Ω

λ̃2ujwj dx.

Using the compactness of the embedding from L2(Ω) into H−1(Ω) and from
H10(Ω) into L2(Ω) we deduce that the operator Lλ̃ is compact from (L2(Ω))n

into (L2(Ω))n. Consequently, by the Fredholm alternative, proving the exis-
tence of a solution u of (44) reduces to proving that there is not a nontrivial
solution for (44) for l ≡ 0. Indeed if there exists u 6= 0, such that

(Lλu,w)((H1
0(Ω))n,((H1

0(Ω)) ′)n) = a(H1
0(Ω))n(u,w) ∀w ∈ (H10(Ω))n, (45)

then iλ̃ is an eigenvalue of A. Therefore from Lemma 5 we deduce that u = 0.
Now, if λ̃ = 0, the system (41) is reduced to the following system

v = −G1,

−µ∆u− (µ+ λ)∇(div u) + ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+ a2v = G2,

(ξ2 + κ)ψ− z(x, 1)ω(ξ) = G3,
τ−1zρ(x, ρ) = G4.

(46)

Solving system (46) is equivalent to finding u ∈ (H2 ∩H10(Ω))n such that

µ

n∑
j=1

∫
Ω

∇uj∇wj dx+ (µ+ λ)

∫
Ω

(div u)(div w)dx =

n∑
j=1

∫
Ω

g
j
2wj dx

+

(
ζ

∫∞
−∞

ω2(ξ)

ξ2 + κ
dξ+ a2

) n∑
j=1

∫
Ω

g
j
1wj dx

− τζ

∫∞
−∞

ω2(ξ)

ξ2 + κ
dξ

n∑
j=1

∫
Ω

∫ 1
0

g
j
4(x, s)dswj dx

− ζ

n∑
j=1

∫
Ω

wj

∫∞
−∞

ω(ξ)gj3(x, ξ)

ξ2 + κ
dξdx.

(47)

for all w ∈ (H10(Ω))n. Consequently, problem (47) is equivalent to the problem

B(u,w) = L(w), (48)

where the sesquilinear form B : (H10(Ω))n × (H10(Ω))n → IC and the antilinear
form L : (H10(Ω))n → IC are defined by

B(u,w) = µ
n∑
j=1

∫
Ω

∇uj∇wj dx+ (µ+ λ)

∫
Ω

(div u)(div w)dx (49)
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and

L(w) =
n∑
j=1

∫
Ω

g
j
2wj dx+

(
ζ

∫∞
−∞

ω2(ξ)

ξ2 + κ
dξ+ a2

) n∑
j=1

∫
Ω

g
j
1wj dx

− τζ

∫∞
−∞

ω2(ξ)

ξ2 + κ
dξ

n∑
j=1

∫
Ω

∫ 1
0

g
j
4(x, s)dswj dx

− ζ

n∑
j=1

∫
Ω

wj

∫∞
−∞

ω(ξ)gj3(x, ξ)

ξ2 + κ
dξdx.

(50)

It is easy to verify that B is continuous and coercive, and L is continuous.
So applying the Lax-Milgram theorem, we deduce that for all w ∈ (H10(Ω))n

problem (48) admits a unique solution u ∈ (H10(Ω))n. Applying the classical
elliptic regularity, it follows from (47) that u ∈ (H2(Ω))n. Therefore, the
operator A is surjective. �

5 Exponential stability

The necessary and suficient conditions for the exponential stability of the C0-
semigroup of contractions on a Hilbert space were obtained by Gearhart [7]
and Huang [9] independently, see also Pruss [15]. We will use the following
result due to Gearhart.

Theorem 5 ([15]- [9]) Let S(t) = eAt be a C0-semigroup of contractions on
Hilbert space H. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ IR} ≡ iIR (51)

and

lim
|β|→∞‖(iβI−A)−1‖L(H) <∞. (52)

Our main result is as follows.

Theorem 6 The semigroup SA(t)t≥0 generated by A is exponentially stable.

Proof. We will need to study the resolvent equation (iλ̃−A)U = G, for λ ∈ IR,
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namely
iλ̃u− v = G1,

iλ̃v− µ∆u− (µ+ λ)∇(div u) + ζ

∫+∞
−∞ ω(ξ)ψ(x, ξ)dξ+ a2v = G2,

iλ̃ψ+ (ξ2 + κ)ψ− z(x, 1)ω(ξ) = G3,

iλ̃z(x, ρ) + τ−1zρ(x, ρ) = G4,

(53)

where G = (G1, G2, G3, G4)
T . Taking inner product in H with U and using

(20) we get
|Re〈AU,U〉| ≤ ‖U‖H‖G‖H. (54)

This implies that
n∑
j=1

∫
Ω

v2j (x)dx,

n∑
j=1

∫
Ω

z2j (x, 1)dx ≤ C‖U‖H‖G‖H. (55)

From (53)3, we obtain

ψ =
z(x, 1)ω(ξ) +G3

iλ̃+ ξ2 + κ
. (56)

Then

‖ψ‖L2(Ω×(−∞,+∞)) ≤
∥∥∥∥ ω(ξ)

iλ̃+ ξ2 + κ

∥∥∥∥
L2(−∞,+∞)

‖z(x, 1)‖L2(Ω)

+

∥∥∥∥ G3

iλ̃+ ξ2 + κ

∥∥∥∥
L2(Ω×(−∞,+∞))

≤
(
2(1− σ)

π

sinσπ
(|̃λ|+ κ)σ−2

) 1
2 ‖z(x, 1)‖L2(Ω)

+

√
2

|̃λ|+ κ
‖G3‖L2(Ω×(−∞,+∞)).

(57)

Similarly, we have

‖ξψ‖L2(Ω×(−∞,+∞)) ≤
∥∥∥∥ ξω(ξ)

iλ̃+ ξ2 + κ

∥∥∥∥
L2(−∞,+∞)

‖z(x, 1)‖L2(Ω)

+

∥∥∥∥ ξG3

iλ̃+ ξ2 + κ

∥∥∥∥
L2(Ω×(−∞,+∞))

≤
(
2σ

π

sinσπ
(|̃λ|+ κ)σ−1

) 1
2 ‖z(x, 1)‖L2(Ω)

+

√
2√

|̃λ|+ κ
‖G3‖L2(Ω×(−∞,+∞)).

(58)
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Let us introduce the following notation

Iu(x) =
n∑
j=1

(
|vj(x)|

2 + µ|∇uj(x)|2
)
+ (µ+ λ)|div u(x)|2

and

Eu =

∫
Ω

Iu(x)dx.

�

Lemma 7 We have that

Eu ≤ c‖G‖2H + c ′‖G‖H‖U‖H. (59)

for positive constants c and c ′.

Proof. Multiplying the equation (53)2 by ū, integrating on Ω we obtain

−

∫
Ω

vj(iλ̃uj)dx+ µ

∫
Ω

|∇uj|2 dx+ (µ+ λ)

∫
Ω

(div u)
∂ūj

∂xj
dx

+ ζ

∫
Ω

ūj

( ∫+∞
−∞ ω(ξ)ψj(x, ξ)dξ

)
dx+ a2

∫
Ω

ūjvj dx =

∫
Ω

ūg
j
2 dx.

(60)

From (53)1, we have iλ̃uj = vj + g
j
1. Then

−

∫
Ω

|vj|
2 dx+ µ

∫
Ω

|∇uj|2 dx+ (µ+ λ)

∫
Ω

(div u)
∂ūj

∂xj
dx

+ ζ

∫
Ω

ūj

( ∫+∞
−∞ ω(ξ)ψj(x, ξ)dξ

)
dx+ a2

∫
Ω

ūjvj dx

=

∫
Ω

ūjg
j
2 dx+

∫
Ω

vj
¯
g
j
1 dx.

(61)

Hence

−

n∑
j=1

∫
Ω

|vj|
2 dx+ µ

n∑
j=1

∫
Ω

|∇uj|2 dx+ (µ+ λ)

∫
Ω

|div u|2 dx

+ ζ

n∑
j=1

∫
Ω

ūj

( ∫+∞
−∞ ω(ξ)ψj(x, ξ)dξ

)
dx+ a2

n∑
j=1

∫
Ω

ūjvj dx

=

n∑
j=1

∫
Ω

ūjg
j
2 dx+

n∑
j=1

∫
Ω

vj
¯
g
j
1 dx.

(62)
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We can estimate∣∣∣∣∫
Ω

ūj

(∫+∞
−∞ ω(ξ)ψj(x, ξ)dξ

)
dx

∣∣∣∣
≤ ‖uj‖L2(Ω)

(∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

) 1
2
(∫

Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ)|

2 dξdx

) 1
2

≤ ε
2

(∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

)
‖uj‖2L2(Ω) +

1

2ε

∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ)|

2 dξdx

≤ ε
2
C(Ω)

(∫+∞
−∞

ω2(ξ)

ξ2 + κ
dξ

)
‖∇uj‖2L2(Ω) +

1

2ε

∫
Ω

∫+∞
−∞ (ξ2 + κ)|ψj(x, ξ)|

2 dξdx,∣∣∣∣∫
Ω

ūjvj dx

∣∣∣∣ ≤ ‖uj‖L2(Ω)‖vj‖L2(Ω) ≤
ε

2
C(Ω)‖∇uj‖2L2(Ω) +

1

2ε
‖vj‖2L2(Ω),∣∣∣∣∫

Ω

ūjg
j
2 dx

∣∣∣∣ ≤ ε2C(Ω)‖∇uj‖2L2(Ω) +
1

2ε
‖gj2‖

2
L2(Ω),∣∣∣∣∫

Ω

vj
¯
g
j
1 dx

∣∣∣∣ ≤ ε2‖vj‖2L2(Ω) +
1

2ε
‖gj1‖

2
L2(Ω).

Choosing ε small enough, we conclude (59).
Moreover, the equation (53)4 has a unique solution

z(x, ρ) = e−iτλ̃ρz(x, 0) + τe−iτλ̃ρ
∫ρ
0

e−iτλ̃rG4(x, r)

= e−iτλ̃ρv(x) + τe−iτλ̃ρ
∫ρ
0

e−iτλ̃rG4(x, r)dr.

Then
‖z(x, ρ)‖L2(Ω×(0,1)) ≤ ‖v(x)‖L2(Ω) + τ‖G4(x, ρ)‖L2(Ω×(0,1)). (63)

Finally, (57), (59) and (63) imply that

‖U‖H ≤ C‖G‖H

for a positive constant C. The conclusion then follows by applying Theorem
5. �

Remark 2 We can extend the results of this paper to more general measure
density instead of (1), that is ω is an even nonnegative measurable function
such that ∫∞

−∞
ω(ξ)2

1+ ξ2
dξ <∞. (64)
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