

Spaces of entire functions represented by vector valued Dirichlet series of slow growth

G. S. Srivastava

Indian Institute of Technology Roorkee
Department of Mathematics
Roorkee, India
email: girssfma@iitr.ernet.in

Archna Sharma

Indian Institute of Technology Roorkee
Department of Mathematics
Roorkee, India
email: gs91490@gmail.com

Abstract. Spaces of all entire functions f represented by vector valued Dirichlet series and having slow growth have been considered. These are endowed with a certain topology under which they become a Frechet space. On this space the form of linear continuous transformations is characterized. Proper bases have also been characterized in terms of growth parameters.

1 Introduction

Let

$$f(s) = \sum_{n=1}^{\infty} \alpha_n e^{s\lambda_n}, \ s = \sigma + it \ (\sigma, t \ \mathrm{are \ real \ variables}), \eqno(1)$$

where $\{a_n\}$ is a sequence of complex numbers and the sequence $\{\lambda_n\}$ satisfies the conditions $0 < \lambda_1 < \lambda_2 < \lambda_3 \ldots < \lambda_n \ldots, \lambda_n \to \infty$ as $n \to \infty$ and

$$\lim_{n\to\infty}\sup\,\frac{n}{\lambda_n}=D<\infty, \hspace{1cm} (2)$$

$$\lim_{n\to\infty} \sup(\lambda_{n+1} - \lambda_n) = h > 0, \tag{3}$$

2010 Mathematics Subject Classification: 30D15, 46A35

and

$$\lim_{n \to \infty} \sup \frac{\log |a_n|}{\lambda_n} = -\infty. \tag{4}$$

By giving different topologies on the set of entire functions represented by the Dirichlet series, Kamthan and Hussain [2] have studied various properties of this space.

Now let $a_n \in E, n = 1, 2, ...$, where $(E, \| \cdot \|)$ is a complex Banach space and (4) is replaced by the condition

$$\lim_{n \to \infty} \sup \frac{\log \|a_n\|}{\lambda_n} = -\infty.$$
 (5)

Then the series in (1) is called a vector valued Dirichlet series and represents an entire function f(s). In what follows, the series in (1) will represent a Vector valued entire Dirichlet series.

Let for entire functions defined as above by (1) and satisfying (2), (3) and (5),

$$M\left(\sigma,f\right)=M\left(\sigma\right)=\sup_{-\infty< t<\infty}\|f\left(\sigma+it\right)\|.$$

Then $M\left(\sigma\right)$ is called the maximum modulus of $f\left(s\right)$. The order ρ of $f\left(s\right)$ is defined as [1]

$$\rho = \lim_{\sigma \to \infty} \sup \frac{\log \log M(\sigma)}{\sigma}, \qquad 0 \le \rho \le \infty$$
 (6)

Also, for $0 < \rho < \infty$ the type T of f(s) is defined by [1]

$$T = \lim_{\sigma \to \infty} \, \sup \frac{\log M(\sigma)}{e^{\sigma \rho}}, \qquad 0 \le T \le \infty.$$

It was proved by Srivastava [1] that if f(s) is of order ρ ($0 < \rho < \infty$) and (2) holds then f(s) is of type T if and only if

$$T = \lim_{n \to \infty} \sup \frac{\lambda_n}{\rho e} \|\alpha_n\|^{\rho/\lambda_n}.$$

This implies

$$\lim_{n\to\infty} \sup \lambda_n^{1/\rho} \|a_n\|^{1/\lambda_n} = (\mathsf{T}\rho e)^{1/\rho} \,. \tag{7}$$

We now denote by X the set of all vector valued entire functions f(s) given by (1) and satisfying (2), (3) and (5) for which

$$\lim_{\sigma \to \infty} \sup \frac{\log M\left(\sigma\right)}{e^{\sigma \rho}} \leq T < \infty, \qquad 0 < \rho < \infty.$$

Then from (7), we have

$$\lim_{n \to \infty} \sup \lambda_n^{1/\rho} \|a_n\|^{1/\lambda_n} \le (\mathsf{T} \rho e)^{1/\rho} \ . \tag{8}$$

From (8), for arbitrary $\varepsilon > 0$ and all $n > n_0(\varepsilon)$,

$$\|\alpha_n\|.\left[\frac{\lambda_n}{(T+\epsilon)\,e\rho}\right]^{\lambda_n/\rho}<1.$$

Hence, if we put

$$\|f\|_q = \sum_{n \geq 1} \|\alpha_n\| \left[\frac{\lambda_n}{(T+q^{-1})\,e\rho} \right]^{\lambda_n/\rho} \qquad q \geq 1,$$

then $\|f\|_q$ is well defined and for $q_1 \le q_2$, $\|f\|_{q_1} \le \|f\|_{q_2}$. This norm induces a metric topology on X. We define

$$\lambda(f,g) = \sum_{q \ge 1} \frac{1}{2^q} \cdot \frac{\|f - g\|_q}{1 + \|f - g\|_q}$$

We denote the space X with the above metric λ by X_{λ} . Various properties of bases of the space X_{λ} using the growth properties of the entire vector valued Dirichlet series have been obtained in [3]. These results obviously do not hold if the order ρ of the entire function f(s) is zero. In this paper we have introduced a metric on the space of entire function of zero order represented by vector valued Dirichlet series thereby obtaining various properties of this space.

2 Main results

The vector valued entire function f(s) represented by (1), for which order ρ defined by (6) is equal to zero, we define the logarithmic order ρ^* by

$$\rho^* = \lim_{\sigma \to \infty} \, \sup \frac{\log \log M(\sigma)}{\log \sigma} \,, \qquad 1 \, \leq \rho^* \leq \infty.$$

For $1<\rho^*<\infty$ the logarithmic type T^* is defined by

$$\mathsf{T}^* = \lim_{\sigma \to \infty} \, \sup \frac{\log \mathsf{M}(\sigma)}{\sigma^{\rho^*}}, \qquad 0 \le \mathsf{T}^* \le \infty.$$

In [4] the authors have established that f(s) is of logarithmic order ρ^* , $1 < \rho^* < \infty$, and logarithmic type T^* , $0 < T^* < \infty$, if and only if

$$\lim_{n\to\infty}\sup\frac{\lambda_n\varphi(\lambda_n)}{\log\|\alpha_n\|^{-1}}=\frac{\rho^*}{(\rho^*-1)}(\rho^*T^*)^{1/(\rho^*-1)}, \tag{9}$$

where $\phi(t)$ is the unique solution of the equation $t = \sigma^{\rho^*} - 1$. The above formula can be proved on the same lines as for ordinary Dirichlet series in [5]. Let Y denote the set of all entire functions f(s) given by (1) and satisfying (2), (3) and (5), for which

$$\lim_{\sigma \to \infty} \, \sup \frac{\log M(\sigma)}{\sigma^\rho} \leq T^* < \infty, \qquad 0 < \rho^* < \infty.$$

Then from (9) we have

$$\lim_{n \to \infty} \sup \frac{\lambda_n \phi(\lambda_n)}{\log ||a_n||^{-1}} \le \frac{\rho^*}{(\rho^* - 1)} (\rho^* T^*)^{1/(\rho^* - 1)}, \tag{10}$$

where $\varphi(\lambda_n)=\lambda_n^{1/\rho^*-1}.$ From (10), for arbitrary $\epsilon>0$ and all $n>n_0\left(\epsilon\right),$

$$\|a_n\| \le \exp\left[-\frac{\lambda_n \phi(\lambda_n)}{\left\{K \cdot \rho^* (\mathsf{T}^* + \varepsilon)\right\}^{1/(\rho^* - 1)}}\right],$$
 (11)

where $K = {\rho^*/(\rho^*-1)}^{(\rho^*-1)}$ be a constant. For each $f \in Y$, we define the norm

$$\|f\|_{\alpha} = \sum_{n \geq 1} \|\alpha_n\| \exp\left[\frac{\lambda_n \varphi(\lambda_n)}{\left\{K \cdot \rho^*(T^* + \alpha^{-1})\right\}^{1/(\rho^* - 1)}}\right]\,, \qquad \alpha \geq 1$$

then $||f||_{\alpha}$ is well defined and for $\alpha_1 \leq \alpha_2$, $||f||_{\alpha_1} \leq ||f||_{\alpha_2}$. This norm induces a metric topology on Y defined by

$$d\left(f,g\right) = \sum_{\alpha=1}^{\infty} \frac{1}{2^{\alpha}} \cdot \frac{\|f-g\|_{\alpha}}{1 + \|f-g\|_{\alpha}}.$$

We denote the space Y with the above metric d by Y_d . Now we prove

Theorem 1 The space Y_d is a Frechet space.

Proof. Here, Y_d is a normed linear metric space. For showing that Y_d is a Frechet space, we need to show that Y_d is complete. Hence, let $\{f_p\}$ be a Cauchy sequence in Y_d . Therefore, for any given $\epsilon>0$ there exists an integer $n_0=n_0\left(\epsilon\right)$ such that

$$d(f_p, f_q) < \epsilon \ \forall \ p, q > n_0.$$

Hence $\|f_p - f_q\|_{\alpha} < \epsilon \ \forall \ p, q > n_0, \ \alpha \ge 1$.

Denoting by $f_p(s) = \sum_{n=1}^{\infty} a_n^{(p)} e^{s \cdot \lambda_n}$, $f_q(s) = \sum_{n=1}^{\infty} a_n^{(q)} e^{s \cdot \lambda_n}$, we have therefore

$$\sum_{n=1}^{\infty} \|\boldsymbol{\alpha}_{n}^{(p)} - \boldsymbol{\alpha}_{n}^{(q)}\| \cdot \exp\left[\frac{\lambda_{n} \varphi(\lambda_{n})}{\left\{K \cdot \rho^{*} (\mathsf{T}^{*} + \boldsymbol{\alpha}^{-1})\right\}^{1/(\rho^{*} - 1)}}\right] < \epsilon \tag{12}$$

for all $p,q>n_0,~\alpha\geq 1.$ Since $\lambda_n\to\infty$ as $n\to\infty,$ therefore we have $\|a_n^{(p)}-a_n^{(q)}\|<\epsilon~\forall p,q\geq n_0,$ and $n=1,2,\ldots,$ i.e. for each fixed $n=1,2,\ldots,$ $\left\{a_n^{(p)}\right\}$ is a Cauchy sequence in the Banach space E.

Hence there exists a sequence $\{a_n\} \subseteq E$ such that

$$\lim_{p\to\infty}\alpha_n^{(p)}=\alpha_n,\quad n\geq\,1.$$

Now letting $q \to \infty$ in (12), we have for $p \ge n_0$,

$$\sum_{n=1}^{\infty} \|\boldsymbol{a}_n^{(p)} - \boldsymbol{a}_n\| \cdot \exp\left[\frac{\lambda_n \varphi(\lambda_n)}{\left\{K \cdot \rho^* (T^* + \alpha^{-1})\right\}^{1/(\rho^* - 1)}}\right] < \epsilon \tag{13}$$

Taking $p = n_0$, we get for a fixed α in (12)

$$\begin{split} \|\boldsymbol{\alpha}_n\| \exp\left[\frac{\lambda_n \varphi(\lambda_n)}{\left\{K \cdot \rho^* (T^* + \alpha^{-1})\right\}^{1/(\rho^* - 1)}} \right] < \\ \|\boldsymbol{\alpha}_n^{(n_0)}\| \, \exp\left[\frac{\lambda_n \varphi(\lambda_n)}{\left\{K \cdot \rho^* (T^* + \alpha^{-1})\right\}^{1/(\rho^* - 1)}} \right] + \epsilon \end{split}$$

Now $f^{(n_0)} = \sum_{n=1}^\infty \alpha_n^{(n_0)} e^{s.\lambda_n} \in Y_d$, hence the condition (11) is satisfied. For arbitrary $\alpha < \beta$, we have, $\|\alpha_n^{(n_0)}\| < \exp\left[\frac{-\lambda_n \varphi(\lambda_n)}{\left\{K \cdot \rho^* (T^* + \beta^{-1})\right\}^{1/(\rho^* - 1)}}\right]$ for arbitrarily large n. Hence we have,

$$\begin{split} \|\alpha_n\| & \exp\left[\frac{\lambda_n \varphi(\lambda_n)}{\left\{K \cdot \rho^* (T^* + \alpha^{-1})\right\}^{1/(\rho^* - 1)}}\right] < \\ & \exp\left[\frac{\lambda_n \varphi(\lambda_n)}{(K \cdot \rho^*)^{1/(\rho^* - 1)}} \left\{\frac{1}{(T^* + \alpha^{-1})^{1/(\rho^* - 1)}} - \frac{1}{(T^* + \beta^{-1})^{1/(\rho^* - 1)}}\right\}\right] + \epsilon \end{split}$$

Since $\epsilon > 0$ is arbitrary and the first term on the right hand side $\to 0$ as $n \to \infty$, we find that the sequence $\{a_n\}$ satisfies (11) and therefore $f(s) = \sum_{n=1}^{\infty} a_n e^{s \cdot \lambda_n}$ belongs to Y_d . Using (13) again, we have for $\alpha = 1, 2...$,

$$\|\mathbf{f}_{\mathfrak{p}} - \mathbf{f}\|_{\alpha} < \varepsilon$$
.

Hence

$$d\left(f_p,f\right) = \sum_{\alpha=1}^{\infty} \frac{1}{2^{\alpha}} \frac{\|f_p - f\|_{\alpha}}{1 + \|f_p - f\|_{\alpha}} \leq \frac{\epsilon}{1 + \epsilon} \ \sum_{\alpha=1}^{\infty} \frac{1}{2^{\alpha}} < \epsilon.$$

Since the above inequality holds for all $p > n_0$, we finally get $f_p \to f$ as $p \to \infty$ with respect to the metric d, where $f \in Y_d$. Hence Y_d is complete. This proves Theorem 1.

Next we prove

Theorem 2 A continuous linear transformation $\psi: Y_d \to E$ is of the form

$$\psi\left(f\right)=\sum_{n=1}^{\infty}\alpha_{n}C_{n}$$

if and only if

$$|C_{\mathfrak{n}}| \leq A \cdot \exp\left[\frac{\lambda_{\mathfrak{n}} \varphi(\lambda_{\mathfrak{n}})}{\left\{K \cdot \rho^* (T^* + \alpha^{-1})\right\}^{1/(\rho^* - 1)}}\right] \qquad \text{for all } \mathfrak{n} \geq 1, \alpha \geq 1, \quad (14)$$

where A is a finite, positive number, $f=f(s)=\sum_{n=1}^\infty \alpha_n e^{s\cdot \lambda_n}$ and λ_1 is sufficiently large.

Proof. Let $\psi: Y_d \to E$ be a continuous linear transformation then for any sequence $\{f_m\} \subseteq Y_d$ such that $f_m \to f$, we have $\psi(f_m) \to \psi(f)$ as $m \to \infty$. Now, let $f(s) = \sum_{n=1}^\infty \alpha_n e^{s.\lambda_n}$ where $\alpha'_n s \in E$ satisfy (11). Then $f \in Y_d$. Also, let $f_k(s) = \sum_{n=1}^k \alpha_n e^{s\lambda_n}$. Then $f_k \in Y_d$ for k = 1, 2... Let α be any fixed positive integer and let $0 < \varepsilon < \alpha^{-1}$. From (11) we can find an integer m such that

$$\|\alpha_n\|<\exp\left[\frac{-\lambda_n\varphi(\lambda_n)}{\left\{K\cdot\rho^*(T^*+\epsilon)\right\}^{1/(\rho^*-1)}}\right],\ \forall n>m.$$

Then

$$\begin{split} & \left\| f - \sum_{n=1}^m \alpha_n e^{s \cdot \lambda_n} \right\|_{\alpha} = \left\| \sum_{n=m+1}^\infty \alpha_n e^{s \cdot \lambda_n} \right\|_{\alpha} \\ & = \sum_{n=m+1}^\infty \|\alpha_n\| \exp \left[\frac{\lambda_n \varphi(\lambda_n)}{\left\{ K \cdot \rho^* (T^* + \alpha^{-1}) \right\}^{1/(\rho^*-1)}} \right] \\ & < \sum_{n=m+1}^\infty \exp \left[\frac{\lambda_n \varphi(\lambda_n)}{(K \cdot \rho^*)^{1/(\rho^*-1)}} \left\{ (T^* + \alpha^{-1})^{-1/(\rho^*-1)} - (T^* + \epsilon)^{-1/(\rho^*-1)} \right\} \right] < \epsilon, \end{split}$$

for sufficiently large values of m.

Hence

$$d\left(f,f_{m}\right) = \sum_{\alpha=1}^{\infty} \frac{1}{2^{\alpha}} \frac{\|f-f_{m}\|_{\alpha}}{1+\|f-f_{m}\|_{\alpha}} \leq \frac{\epsilon}{1+\epsilon} < \epsilon,$$

i.e. $f_m \to f$ as $m \to \infty$ in Y_d . Since ψ is continuous, we have

$$\lim_{m\to\infty}\psi\left(f_{m}\right)=\psi\left(f\right).$$

Let us denote by $C_n = \psi(e^{s \cdot \lambda_n})$. Then

$$\psi\left(f_{\mathfrak{m}}\right)=\sum_{n=1}^{\mathfrak{m}}a_{n}\psi\left(e^{s.\lambda_{n}}\right)=\sum_{n=1}^{\mathfrak{m}}a_{n}C_{n}.$$

Also $|C_n| = |\psi\left(e^{s\lambda_n}\right)|$. Since ψ is continuous on Y_d it is continuous on $Y_{\|\cdot\|_\alpha}$ for each $\alpha=1,2,3...$. Hence there exists a positive constant A independent of α such that

$$|\psi\left(e^{s.\lambda_n}\right)| = |C_n| \le A||p||_{\alpha}, \qquad \alpha \ge 1$$

where $p(s) = e^{s \cdot \lambda_n}$. Now using the definition of the norm for p(s), we get

$$|C_n| \leq A \exp\left[\frac{\lambda_n \varphi(\lambda_n)}{\left\{K \cdot \rho^* (T^* + \alpha^{-1})\right\}^{1/(\rho^* - 1)}}\right], \qquad n \geq 1, \quad \alpha \geq 1.$$

Hence we get $\psi(f) = \sum_{n=1}^{\infty} \alpha_n C_n$, where the sequence $\{C_n\}$ satisfies (14). Conversely, suppose that $\psi(f) = \sum_{n=1}^{\infty} \alpha_n C_n$ and $C'_n s$ satisfy (14). Then for $\alpha \geq 1$,

$$\left\|\psi\left(f\right)\right\| \; \leq \; \; A \sum_{n=1}^{\infty} \left\|\alpha_{n}\right\| \exp\left[\frac{\lambda_{n} \varphi(\lambda_{n})}{\left\{K \cdot \rho^{*}(T^{*} + \alpha^{-1})\right\}^{1/(\rho^{*} - 1)}}\right]$$

i.e. $|\psi(f)| \leq A||f||_{\alpha} \alpha \geq 1$.

Now, since $d(f,g) = \sum_{\alpha \geq 1} \frac{1}{2^{\alpha}} \cdot \frac{\|f-g\|_{\alpha}}{1+\|f-g\|_{\alpha}}$, therefore ψ is continuous. This completes the proof of Theorem 2.

3 Linear continuous transformations and proper bases

Following Kamthan and Hussain [2] we give some more definitions. A subspace X_0 of X is said to be spanned by a sequence $\{\alpha_n\} \subseteq X$ if X_0 consists of all linear combinations $\sum_{n=1}^{\infty} c_n \alpha_n$ such that $\sum_{n=1}^{\infty} c_n \alpha_n$ converges in X. A sequence $\{\alpha_n\} \subseteq X$ which is linearly independent and spans a subspace X_0 of X is said to be a base in X_0 . In particular, if $e_n \in X$, $e_n(s) = e^{s\lambda_n}$, $n \ge 1$, then $\{e_n\}$ is a base in X. A sequence $\{\alpha_n\} \subseteq X$ will be called a 'proper base' if it is a base and it satisfies the condition:

"for all sequences $\{\alpha_n\}\subseteq E,$ convergence of $\sum_{n=1}^\infty \|\alpha_n\|$ α_n in X implies the convergence of $\sum_{n=1}^\infty \alpha_n e_n$ in X". As defined above, for $f\in Y,$ we put $\|f,T^*+\delta\|=\sum_{n\geq 1}\|\alpha_n\|\exp\left[\frac{\lambda_n\phi(\lambda_n)}{(K\rho^*(T^*+\delta))^{1/(\rho^*-1)}}\right].$ We now prove

Theorem 3 A necessary and sufficient condition that there exists a continuous linear transformation $F: Y \to Y$ with $F(e_n) = \alpha_n$, n = 1, 2, ..., where $\alpha_n \in Y$, is that for each $\delta > 0$

$$\lim_{n\to\infty}\sup\frac{\log\|\alpha_n:T^*+\delta\|^{1/\lambda_n}}{\phi(\lambda_n)}\leq \left(\frac{\rho^*-1}{\rho^*}\right)(\rho^*T^*)^{-1/\rho^*-1}. \tag{15}$$

Proof. Let F be a continuous linear transformation from Y into Y with $F(e_n) = \alpha_n, n = 1, 2, ...$ Then for any given $\delta > 0$, there exists a $\delta_1 > 0$ and a constant $K' = K'(\delta)$ depending on δ only, such that

$$\begin{split} \|F\left(e_{n}\right); T^{*} + \delta \| &\leq K^{'} \|e_{n}; T^{*} + \delta_{1}\| \Rightarrow \|\alpha_{n}; T^{*} + \delta \| \\ &\leq K^{'} \exp\left\{\frac{\left(\rho^{*} - 1\right)\lambda_{n}\phi(\lambda_{n})}{\left(T^{*} + \delta_{1}\right)^{1/\rho^{*} - 1}\left(\left(\rho^{*}\right)^{\rho^{*}/\rho^{*} - 1}\right)}\right\} \\ &\Rightarrow \log \|\alpha_{n}; T^{*} + \delta \|^{1/\lambda_{n}} \\ &\leq o\left(1\right) + \frac{\phi(\lambda_{n})(\rho^{*} - 1)}{\left(T^{*} + \delta_{1}\right)^{1/\rho^{*} - 1}\left(\left(\rho^{*}\right)^{\rho^{*}/\rho^{*} - 1}\right)}, \\ &\Rightarrow \lim_{n \to \infty} \sup \frac{\log \|\alpha_{n}; T^{*} + \delta \|^{1/\lambda_{n}}}{\phi(\lambda_{n})} \leq \frac{(\rho^{*} - 1)}{o^{*}(\rho^{*}T^{*})^{1/\rho^{*} - 1}}. \end{split}$$

Conversely, let the sequence $\{\alpha_n\}$ satisfy (15) and let $\alpha = \sum_{n=1}^{\infty} a_n e_n$. Then we have

$$\lim_{n\to\infty}\sup\frac{\lambda_n\;\varphi(\lambda_n)}{\log\|\alpha_n\|^{-1}}\leq\frac{\rho^*(\rho^*T)^{1/\rho^*-1}}{(\rho^*-1)}\;.$$

Hence, given $\eta > 0$, there exists $N_0 = N_0(\eta)$, such that

$$\frac{\phi(\lambda_n)}{\log \|a_n\|^{-1/\lambda_n}} \leq \frac{\rho^*}{(\rho^*-1)} \; \{\rho^*(T^*+\eta)\}^{\; 1/\rho^*-1} \; \; \forall \, n \geq N_0.$$

Further, for a given $\eta_1 > \eta$, from (15), we can find $N_1 = N_1(\eta_1)$ such that for $n \ge N_1$

$$\frac{\log\|\alpha_n;T^*+\delta\|^{1/\lambda_n}}{\phi(\lambda_n)} \leq \left(\frac{\rho^*-1}{\rho^*}\right) \left\{\rho^*(T^*+\eta_1)\right\}^{-1/(\rho^*-1)}.$$

Choose $n \ge \max(N_0, N_1)$. Then

$$\frac{\log\|\alpha_n;T^*+\delta\|^{1/\lambda_n}}{\log\|\alpha_n\|^{-1/\lambda_n}} \leq \left(\frac{T^*+\eta}{T^*+\eta_1}\right)^{1/(\rho^*-1)}$$

 $\Rightarrow \|\alpha_n\| \ \|\alpha_n; T^* + \delta\| \leq \ \|\alpha_n\|^{1 - (T^* + \eta/T^* + \eta_1)^{1/(\rho^* - 1)}} = \|\alpha_n\|^\beta \ (\mathrm{say})$ where $\beta = 1 - (T^* + \eta/T^* + \eta_1)^{1/(\rho^* - 1)} > 0$. Now from (5) we can easily show that for any arbitrary large number $K > 0, \|\alpha_n\| < e^{-k\lambda_n}$.

Hence we have for all large values of n, $\|a_n\| \|\alpha_n; T^* + \delta\| \le e^{-K\beta\lambda_n}$.

Consequently the series $\sum_{n=1}^{\infty}\|a_n\|\|\alpha_n$; $T^*+\delta\|$ converges for each $\delta>0$. Therefore $\sum_{n=1}^{\infty}\|a_n\|\alpha_n$ converges to an element of Y. For each $\alpha\in Y$, We define $F(\alpha)=\sum_{n=1}^{\infty}a_n\,\alpha_n$. Then $F(e_n)=\alpha_n$. Now, given $\delta>0$, $\exists\,\delta_1>0$ such that

$$\frac{\log ||\alpha_n; T^* + \delta||^{1/\lambda_n}}{\phi(\lambda_n)} \leq \left(\frac{\rho^* - 1}{\rho^*}\right) \left\{\rho^*(T^* + \eta_1)\right\}^{-1/(\rho^* - 1)}$$

for all $n \geq N = N(\delta, \delta_1)$. Hence

$$\Rightarrow \ \|\alpha_n; T^* + \delta\| \leq \ K^{'} \exp\left\{\frac{\left(\rho^* - 1\right)\lambda_n \, \phi(\lambda_n)}{\rho^* \left\{\rho^* \left(T^* + \delta_1\right)\right\}^{1/\rho^* - 1}}\right\}$$

where $K' = K'(\delta)$ and the inequality is true for all n > 0. Now

$$\begin{split} \|F(\alpha);T^*+\delta\| &\leq \sum_{n=1}^{\infty}\|\alpha_n\|\,\|\alpha_n;T^*+\delta\| \\ &\leq K^{'}\sum_{n=1}^{\infty}\|\alpha_n\|\exp\left\{\frac{(\rho^*-1)\lambda_n\phi(\lambda_n)}{\rho^*\{\rho^*\left(T^*+\delta_1\right)\}^{1/\rho^*-1}}\right\} = K^{'}\|\alpha_n;T^*+\delta\|. \end{split}$$

Hence F is continuous. This proves Theorem 3.

We now give some results characterizing the proper bases.

Lemma 1 In the space Y_d, the following three conditions are equivalent:

- (i) For each $\delta > 0$, $\lim_{n \to \infty} \sup \frac{\log \|\alpha_n; T^* + \delta\|^{1/\lambda_n}}{\varphi(\lambda_n)} \le \left(\frac{\rho^* 1}{\rho^*}\right) (\rho^* T^*)^{-1/(\rho^* 1)}$. (ii) For any sequence $\{\alpha_n\}$ in E, the convergence of $\sum_{n=1}^{\infty} \alpha_n e_n$ in Y implies
- (ii) For any sequence $\{a_n\}$ in E, the convergence of $\sum_{n=1}^{\infty} a_n e_n$ in Y implies that $\lim_{n\to\infty} \|a_n\| \alpha_n = 0$ in Y.
- (iii) For any sequence $\{a_n\}$ in E, the convergence of $\sum_{n=1}^{\infty} a_n e_n$ in Y implies the convergence of $\sum_{n=1}^{\infty} \|a_n\| \alpha_n$ in Y.

Proof. First suppose that (ii) holds. Then for any sequence $\{a_n\}$ $\sum_{n=1}^{\infty} a_n e_n$ converges in Y implies that $\sum_{n=1}^{\infty} \|a_n\| \alpha_n$ converges in Y which in turn implies that $\|a_n\|\alpha_n \to 0$ as $n \to \infty$. Hence (ii) \Rightarrow (iii).

Now we assume that (iii) is true but (i) is false. Hence for some $\delta > 0$, there exists a sequence $\{n_k\}$ of positive integers such that $\forall n_k, k = 1, 2, \ldots$,

$$\frac{\log\|\alpha_{n_k};T^*+\delta\|^{1/\lambda_{n_k}}}{\phi(\lambda_{n_k})}>\left(\frac{\rho^*-1}{\rho^*}\right)\,\left\{\rho^*(T^*+\frac{1}{k})\right\}^{-1/(\rho^*-1)}.$$

Define a sequence $\{a_n\}$ as follows:

$$\|a_n\| = \begin{cases} \|\alpha_n; T^* + \delta\|^{-1}, & n = n_k \\ 0; & n \neq n_k \end{cases}$$
 (16)

Then, we have for all large values of k,

$$\frac{\phi(\lambda_{n_k})}{\log\|\alpha_{n_k}\|^{-1/\lambda_{n_k}}} = \frac{\phi(\lambda_{n_k})}{\log\|\alpha_{n_k}; T^* + \delta\|^{1/\lambda_{n_k}}} < \left(\frac{\rho^*}{\rho^* - 1}\right) \, \left\{\rho^*(T^* + \frac{1}{k})\right\}^{1/(\rho^* - 1)}.$$

Hence,

$$\lim_{k\to\infty}\sup\frac{\phi(\lambda_{n_k})}{\log\|\alpha_{n_k}\|^{-1/\lambda_{n_k}}}\leq \left(\frac{\rho^*}{\rho^*-1}\right)\,(\rho^*T^*)^{1/(\rho^*-1)}.$$

Thus $\{a_n\}$ defined by (16) satisfies the condition

$$\lim_{n\to\infty}\sup\frac{\phi(\lambda_n)}{\log\|\alpha_n\|^{-1/\lambda_n}}\leq \left(\frac{\rho^*}{\rho^*-1}\right)\,(\rho^*T^*)^{\,1/(\rho^*-1)}$$

which in view of Theorem 1 above is equivalent to the condition that $\sum a_n e_n$ converges in Y. Hence by (iii), $\lim_{n\to\infty} \|a_n\| \alpha_n = 0$. However

$$\|\,\|\alpha_{n_k}\|\alpha_{n_k};T^*+\delta\|\ =\ \|\alpha_{n_k}\|\cdot\|\alpha_{n_k};T^*+\delta\|\ =1.$$

Hence $\lim_{n\to\infty} \|a_n\|\alpha_n \neq 0$ in $Y(\rho^*, T^*, \delta)$. This is a contradiction. Hence (iii) \Rightarrow (i). In the course of proof of Theorem 3 above, we have already proved that (i) \Rightarrow (ii). Thus the proof of Lemma 1 is complete.

Next we prove

Lemma 2 The following three properties are equivalent:

- (a) For all sequences $\{a_n\}$ in E, $\lim_{n\to\infty} a_n\alpha_n=0$ in Y implies that $\sum_{n=1}^\infty a_ne_n$ converges in Y.
- (b) For all sequences $\{a_n\}$ in E, the convergence of $\sum_{n=1}^{\infty} \|a_n\| \alpha_n$ in Y implies the convergence of $\sum_{n=1}^{\infty} a_n e_n$.

the convergence of
$$\sum_{n=1}^{\infty} a_n e_n$$
.
(c) $\lim_{\delta \to 0} \left\{ \lim_{n \to \infty} \inf \frac{\log \|\alpha_n; T^* + \delta\|^{1/\lambda_n}}{\varphi(\lambda_n)} \right\} \ge \left(\frac{\rho^* - 1}{\rho^*} \right) (\rho^* T^*)^{-1/(\rho^* - 1)}$.

Proof. Obviously (a) \Rightarrow (b). We now prove that (b) \Rightarrow (c). To prove this, we suppose that (b) holds but (c) does not hold. Hence

$$\lim_{\delta \to 0} \left\{ \lim_{n \to \infty} \inf \frac{\log \|\alpha_n; T^* + \delta\|^{1/\lambda_n}}{\phi(\lambda_n)} \right\} < \left(\frac{\rho^* - 1}{\rho^*} \right) \left(\rho^* T^* \right)^{-1/(\rho^* - 1)}.$$

Since $\log \|\alpha_n; T + \delta\|$ increases as δ decreases, this implies that for each $\delta > 0$,

$$\left\{ \lim_{n \to \infty} \inf \frac{\log \|\alpha_n; T^* + \delta\|^{1/\lambda_n}}{\phi(\lambda_n)} \right\} < \left(\frac{\rho^* - 1}{\rho^*} \right) \left(\rho^* T^* \right)^{-1/(\rho^* - 1)}.$$

Hence, if $\eta > 0$ be a fixed small positive number, then for each r > 0, we can find a positive number n_r such that $\forall r$, we have $n_{r+1} > n_r$ and

$$\lim_{n \to \infty} \inf \frac{\log \|\alpha_{n_r}; T^* + r^{-1}\|^{1/\lambda_{n_r}}}{\phi(\lambda_n)} < \left(\frac{\rho^* - 1}{\rho^*}\right) \left\{\rho^* (T^* + \eta)\right\}^{-1/(\rho^* - 1)} \tag{17}$$

Now we choose a positive number $\eta_1 < \eta$, and define a sequence $\{a_n\}$ as

$$\|\boldsymbol{a}_n\| = \left\{ \begin{pmatrix} \frac{T^* + \eta_1}{T^* + \eta} \end{pmatrix}^{\lambda_n} \exp\left\{ - \left(\frac{\rho^* - 1}{\rho^*}\right) \frac{\lambda_n \phi(\lambda_n)}{\{\rho^* (T^* + \eta)\}^{1/(\rho^* - 1)}} \right\}, & n = n_r \\ 0, & n \neq n_r \end{pmatrix}.$$

Then, for any $\delta > 0$

$$\sum_{n=1}^{\infty}\|\alpha_n\|\cdot\|\alpha_n; T^*+\delta\| = \sum_{r=1}^{\infty}\|\alpha_{n_r}\|\cdot\|\alpha_{n_r}; T^*+\delta\|. \tag{18}$$

For any given $\delta > 0$, we omit from the above series those finite number of terms, which correspond to those number \mathfrak{n}_r for which 1/r is greater than δ . The remainder of the series in (18) is dominated by $\sum_{r=1}^{\infty} \|a_{\mathfrak{n}_r}\| \cdot \|\alpha_{\mathfrak{n}_r}; T^* + r^{-1}\|$. Now by (17) and (18), we find that

$$\begin{split} &\sum_{r=1}^{\infty} \|\boldsymbol{\alpha}_{n_r}\| \cdot \|\boldsymbol{\alpha}_{n_r}; T^* + r^{-1}\| \\ &\leq \sum_{r=1}^{\infty} \left\{ \exp\left\{ -\left(\frac{\rho^* - 1}{\rho^*}\right) \frac{\lambda_{n_r} \phi(\lambda_{n_r})}{\left\{\rho^* (T^* + \eta)\right\}^{1/(\rho^* - 1)}} \right\} \left(\frac{T^* + \eta_1}{T^* + \eta}\right)^{\lambda_{n_r}} \right\} \\ &\times \exp\left\{ \left(\frac{\rho^* - 1}{\rho^*}\right) \frac{\lambda_{n_r} \phi(\lambda_{n_r})}{\left\{\rho^* (T^* + \eta)\right\}^{1/(\rho^* - 1)}} \right\} \leq \sum_{r=1}^{\infty} \left(\frac{T^* + \eta_1}{T^* + \eta}\right)^{\lambda_{n_r}}. \end{split}$$

Since $\eta_1 < \eta$, therefore the above series on the right hand side is convergent. For this sequence $\{a_n\}$, $\sum_{n=1}^{\infty} \|a_n\| \alpha_n$ converges in $Y(\rho^*, T^*, \delta)$ for each $\delta > 0$ and hence converges in Y.

But we have,

$$\lim_{n\to\infty}\sup\frac{\phi(\lambda_n)}{\log\|\alpha_n\|^{-1/\lambda_n}}=\left(\frac{\rho^*}{\rho^*-1}\right)\left\{\rho^*(T^*+\eta)\right\}^{1/(\rho^*-1)}$$

which contradicts (10). This proves (b) \Rightarrow (c).

Now we prove that $(c)\Rightarrow(a)$. We assume (c) is true but (a) is not true. Then there exists a sequences $\{a_n\}$ of complex numbers for which $||a_n||\alpha_n \to 0$ in Y, but $\sum_{n=1}^{\infty} a_n e_n$ does not converge in Y. This implies that

$$\lim_{n\to\infty}\sup\frac{\phi(\lambda_n)}{\log\|\alpha_n\|^{-1/\lambda_n}}>\left(\frac{\rho^*}{\rho^*-1}\right)\,(\rho^*T^*)^{1/(\rho^*-1)}$$

Hence there exists a positive number ϵ and a sequence $\{n_k\}$ of positive integers such that

$$\frac{\phi(\lambda_n)}{\log\|\alpha_n\|^{-1/\lambda_n}} = \left(\frac{\rho^*}{\rho^*-1}\right) \left\{\rho^*(T^*+\epsilon)\right\}^{1/(\rho^*-1)}, \quad \ \forall n=n_k$$

We choose another positive number $\eta<\epsilon/2$. By assumption we can find a positive number δ i.e. $\delta=\delta\left(\eta\right)$ such that

$$\lim_{n\to\infty}\inf\frac{\log\|\alpha_n,T^*+\delta\|^{1/\lambda_n}}{\phi(\lambda_n)}>\left(\frac{\rho^*-1}{\rho^*}\right)\left\{\rho^*(T^*+\eta)\right\}^{-1/(\rho^*-1)}.$$

Hence there exists $N = N(\eta)$, such that

$$\frac{\log\|\alpha_n,T^*+\delta\|^{1/\lambda_n}}{\phi(\lambda_n)} \geq \left(\frac{\rho^*-1}{\rho^*}\right) \left\{\rho^*(T^*+2\eta)\right\}^{-1/(\rho^*-1)}, \quad \forall n \geq N.$$

Therefore

$$\begin{split} \max \| \, \|\alpha_n\|\alpha_n; T^* + \delta \| &= \max \left\{ \|\alpha_n\| \cdot \|\alpha_n; T^* + \delta \| \right\} \\ &\geq \max \left\{ \|\alpha_{n_k}\| \cdot \|\alpha_{n_k}; T^* + \delta \| \right\} \\ &\geq \exp \left\{ \frac{-\lambda_{n_k} \phi(\lambda_{n_k})(\rho^* - 1)}{\rho^* \left\{ \rho^* (T^* + \epsilon) \right\}^{1/(\rho^* - 1)}} \right\} \\ &\times \exp \left\{ \frac{\lambda_{n_k} \phi(\lambda_{n_k})(\rho^* - 1)}{\rho^* \left\{ \rho^* (T^* + 2n) \right\}^{1/(\rho^* - 1)}} \right\} > 1 \end{split}$$

for $n_k > N$ as $\epsilon > 2\eta$.

Thus $\{\|a_n\| \ \alpha_n\}$ does not tend to zero in $Y(\rho^*, T^*, \delta)$ for the δ chosen above. Hence $\{\|a_n\| \ \alpha_n\}$ does not tend to 0 in Y and this is a contradiction. Thus $(c)\Rightarrow(a)$ is proved. This proves Lemma 2.

Lastly we prove:

Theorem 4 A base $\{\alpha_n\}$ in a closed subspace Y_0 of Y is proper if and only if the conditions (i) and (c) stated above are satisfied.

Proof. Let $\{\alpha_n\}$ be a proper base in a closed subspace Y_0 of Y. Hence for any sequence of complex number $\{\alpha_n\}$ the convergence of $\sum_{n=1}^{\infty} \|\alpha_n\| \alpha_n$ in Y_0 implies the convergence of $\sum_{n=1}^{\infty} \alpha_n e_n$ in Y_0 . Therefore (b) and hence (c) is satisfied. Further the convergence of $\sum_{n=1}^{\infty} \alpha_n e_n$ in Y_0 is equivalent to the condition

$$\lim_{n\to\infty}\sup\frac{\phi(\lambda_n)}{\log\|\alpha_n\|^{-1/\lambda_n}}=\left(\frac{\rho^*}{\rho^*-1}\right)\,(\rho^*T^*)^{1/(\rho^*-1)}.$$

Now let $\alpha = \sum_{n=1}^{\infty} \alpha_n e_n$. Then proceeding as in second part of the proof of Theorem 1, we can prove that $\sum_{n=1}^{\infty} \|a_n\| \alpha_n$ converges to an element of Y_0 and thus (ii) is satisfied. But (ii) is equivalent to (i). Hence necessary part of the theorem is proved.

Conversely, suppose that conditions (i) and (c) are satisfied, with $\{\alpha_n\}$ being a base in a closed subspace Y_0 of Y. Then by Lemma 2, we find that for any sequence $\{\alpha_n\}$ in E, convergence of $\sum_{n=1}^{\infty}\|\alpha_n\|$ α_n in Y_0 implies the convergence of $\sum_{n=1}^{\infty}\alpha_ne_n$ in Y_0 . Therefore $\{\alpha_n\}$ is a proper base of Y_0 . This concludes the proof.

Acknowledgements

The authors are grateful to the referee for his valuable comments and suggestions.

References

- [1] B. L. Srivastava, A study of spaces of certain classes of vector valued Dirichlet series, Thesis, I. I. T Kanpur, 1983.
- [2] P. K. Kamthan and T. Hussain, Spaces of entire functions represented by Dirichlet series, *Collec. Math.*, **19**, 3 (1968), 203–216.
- [3] G. S. Srivastava, A. Sharma, Spaces of entire functions represented by vector valued Dirichlet series, *J. Math. Appl.*, **34**, (2011), 97–107.
- [4] G. S. Srivastava, A. Sharma, On generalized order and generalized type of vector valued Dirichlet series of slow growth, *Int. J. Math. Archive*, **2**, 12 (2011), 2652–2659.
- [5] G. S. Srivastava, A note on the proximate order of entire function represented by Dirichlet series, *Bull. De L'Academie Polonaise des Sciences*, **19**, 3 (1971), 199–202.

Received: February 4, 2012