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Abstract. Spaces of all entire functions f represented by vector val-
ued Dirichlet series and having slow growth have been considered. These
are endowed with a certain topology under which they become a Frechet
space. On this space the form of linear continuous transformations is char-
acterized. Proper bases have also been characterized in terms of growth
parameters.

1 Introduction

Let

f(s) =

∞∑

n=1

ane
sλn , s = σ+ it (σ, t are real variables), (1)

where {an} is a sequence of complex numbers and the sequence {λn} satisfies
the conditions 0 < λ1 < λ2 < λ3 . . . < λn . . . , λn → ∞ as n→ ∞ and

lim
n→∞

sup
n

λn
= D <∞, (2)

lim
n→∞

sup(λn+1 − λn) = h > 0, (3)
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and

lim
n→∞

sup
log |an|

λn
= −∞. (4)

By giving different topologies on the set of entire functions represented by the
Dirichlet series, Kamthan and Hussain [2] have studied various properties of
this space.
Now let an ∈ E, n = 1, 2, . . . , where (E, ∥ · ∥) is a complex Banach space

and (4) is replaced by the condition

lim
n→∞

sup
log ||an||

λn
= −∞. (5)

Then the series in (1) is called a vector valued Dirichlet series and represents
an entire function f (s). In what follows, the series in (1) will represent a Vector
valued entire Dirichlet series.
Let for entire functions defined as above by (1) and satisfying (2), (3) and

(5),
M (σ, f) = M (σ) = sup

−∞<t<∞
||f (σ+ it) ||.

Then M (σ) is called the maximum modulus of f (s) . The order ρ of f (s) is
defined as [1]

ρ = lim
σ→∞

sup
log logM(σ)

σ
, 0 ≤ ρ ≤ ∞ (6)

Also, for 0 < ρ <∞ the type T of f (s) is defined by [1]

T = lim
σ→∞

sup
logM(σ)

eσρ
, 0 ≤ T ≤ ∞.

It was proved by Srivastava [1] that if f (s) is of order ρ (0 < ρ <∞) and (2)
holds then f (s) is of type T if and only if

T = lim
n→∞

sup
λn

ρe
||an||

ρ/λn .

This implies

lim
n→∞

sup λ
1/ρ
n ||an||

1/λn = (Tρe)1/ρ . (7)

We now denote by X the set of all vector valued entire functions f (s) given by
(1) and satisfying (2), (3) and (5) for which

lim
σ→∞

sup
logM (σ)

eσρ
≤ T <∞, 0 < ρ <∞.



156 G. S. Srivastava, A. Sharma

Then from (7), we have

lim
n→∞

sup λ
1/ρ
n ||an||

1/λn ≤ (Tρe)1/ρ . (8)

From (8), for arbitrary ε > 0 and all n > n0 (ε),

||an||.

[

λn

(T + ε) eρ

]λn/ρ

< 1.

Hence, if we put

||f||q =
∑

n≥1

||an||

[

λn

(T + q−1) eρ

]λn/ρ

q ≥ 1,

then ||f||q is well defined and for q1 ≤ q2, ||f||q1 ≤ ||f||q2 . This norm induces a
metric topology on X. We define

λ (f, g) =
∑

q≥1

1

2q
·

||f− g||q

1+ ||f− g||q

We denote the space X with the above metric λ by Xλ. Various properties of
bases of the space Xλ using the growth properties of the entire vector valued
Dirichlet series have been obtained in [3]. These results obviously do not hold if
the order ρ of the entire function f (s) is zero. In this paper we have introduced
a metric on the space of entire function of zero order represented by vector
valued Dirichlet series thereby obtaining various properties of this space.

2 Main results

The vector valued entire function f (s) represented by (1), for which order ρ
defined by (6) is equal to zero, we define the logarithmic order ρ∗ by

ρ∗ = lim
σ→∞

sup
log logM(σ)

logσ
, 1 ≤ ρ∗ ≤ ∞.

For 1 < ρ∗ <∞ the logarithmic type T∗ is defined by

T∗ = lim
σ→∞

sup
logM(σ)

σρ
∗

, 0 ≤ T∗ ≤ ∞.
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In [4] the authors have established that f(s) is of logarithmic order ρ∗, 1 <
ρ∗ <∞, and logarithmic type T∗, 0 < T∗ <∞, if and only if

lim
n→∞

sup
λnφ(λn)

log ||an||−1
=

ρ∗

(ρ∗ − 1)
(ρ∗T∗)1/(ρ

∗−1), (9)

where φ(t)is the unique solution of the equation t = σρ
∗

−1. The above formula
can be proved on the same lines as for ordinary Dirichlet series in [5]. Let Y
denote the set of all entire functions f (s) given by (1) and satisfying (2), (3)
and (5), for which

lim
σ→∞

sup
logM(σ)

σρ
≤ T∗ <∞, 0 < ρ∗ <∞.

Then from (9) we have

lim
n→∞

sup
λnφ(λn)

log ||an||−1
≤

ρ∗

(ρ∗ − 1)
(ρ∗T∗)1/(ρ

∗−1) , (10)

where φ(λn) = λ
1/ρ∗−1
n . From (10), for arbitrary ε > 0 and all n > n0 (ε),

||an|| ≤ exp

[

−
λnφ(λn)

{K · ρ∗(T∗ + ε)}1/(ρ
∗−1)

]

, (11)

where K = {ρ∗/(ρ∗ − 1)}(ρ
∗−1) be a constant. For each f ∈ Y, we define the

norm

||f||α =
∑

n≥1

||an|| exp

[

λnφ(λn)

{K · ρ∗(T∗ + α−1)}
1/(ρ∗−1)

]

, α ≥ 1

then ||f||α is well defined and for α1 ≤ α2, ||f||α1
≤ ||f||α2

. This norm induces a
metric topology on Y defined by

d (f, g) =

∞∑

α=1

1

2α
·

||f− g||α

1+ ||f− g||α
.

We denote the space Y with the above metric d by Yd. Now we prove

Theorem 1 The space Yd is a Frechet space.
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Proof. Here, Yd is a normed linear metric space. For showing that Yd is a
Frechet space, we need to show that Yd is complete. Hence, let {fp} be a
Cauchy sequence in Yd. Therefore, for any given ε > 0 there exists an integer
n0 = n0 (ε) such that

d(fp, fq) < ε ∀ p, q > n0.

Hence ||fp − fq||α < ε ∀ p, q > n0, α ≥ 1.

Denoting by fp (s) =
∑

∞

n=1 a
(p)
n e

s·λn , fq (s) =
∑

∞

n=1 a
(q)
n e

s·λn , we have therefore

∞∑

n=1

||a
(p)
n − a

(q)
n || · exp

[

λnφ(λn)

{K · ρ∗(T∗ + α−1)}
1/(ρ∗−1)

]

< ε (12)

for all p, q > n0, α ≥ 1. Since λn → ∞ as n → ∞, therefore we have

||a
(p)
n − a

(q)
n || < ε ∀p, q ≥ n0, and n = 1, 2, . . . , i.e. for each fixed n = 1, 2, . . . ,{

a
(p)
n

}
is a Cauchy sequence in the Banach space E.

Hence there exists a sequence {an} ⊆ E such that

lim
p→∞

a
(p)
n = an, n ≥ 1.

Now letting q→ ∞ in (12), we have for p ≥ n0,

∞∑

n=1

||a
(p)
n − an|| · exp

[

λnφ(λn)

{K · ρ∗(T∗ + α−1)}
1/(ρ∗−1)

]

< ε (13)

Taking p = n0, we get for a fixed α in (12)

||an|| exp

[

λnφ(λn)

{K · ρ∗(T∗ + α−1)}
1/(ρ∗−1)

]

<

||a
(n0)
n || exp

[

λnφ(λn)

{K · ρ∗(T∗ + α−1)}
1/(ρ∗−1)

]

+ ε

Now f(n0) =
∑

∞

n=1 a
(n0)
n es.λn ∈ Yd, hence the condition (11) is satisfied. For

arbitrary α < β, we have, ||a
(n0)
n || < exp

[

−λnφ(λn)

{K·ρ∗(T∗+β−1)}
1/(ρ∗−1)

]

for arbitrarily

large n. Hence we have,

||an|| exp

[

λnφ(λn)

{K · ρ∗(T∗ + α−1)}
1/(ρ∗−1)

]

<

exp

[

λnφ(λn)

(K · ρ∗)1/(ρ∗−1)

{
1

(T∗ + α−1)1/(ρ
∗−1)

−
1

(T∗ + β−1)1/(ρ
∗−1)

}]
+ ε
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Since ε > 0 is arbitrary and the first term on the right hand side → 0 as
n → ∞, we find that the sequence {an} satisfies (11) and therefore f(s)
=

∑
∞

n=1 ane
s·λn belongs to Yd. Using (13) again, we have for α=1, 2. . . ,

||fp − f||α < ε.

Hence

d (fp, f) =

∞∑

α=1

1

2α
||fp − f||α

1+ ||fp − f||α
≤

ε

1+ ε

∞∑

α=1

1

2α
< ε.

Since the above inequality holds for allp > n0, we finally get fp → f as p→ ∞
with respect to the metric d, where f ∈ Yd. Hence Yd is complete. This proves
Theorem 1. �

Next we prove

Theorem 2 A continuous linear transformation ψ : Yd → E is of the form

ψ (f) =

∞∑

n=1

anCn

if and only if

|Cn| ≤ A · exp

[

λnφ(λn)

{K · ρ∗(T∗ + α−1)}
1/(ρ∗−1)

]

for all n ≥ 1, α ≥ 1, (14)

where A is a finite, positive number, f = f (s) =
∑

∞

n=1 ane
s·λn and λ1 is

sufficiently large.

Proof. Let ψ : Yd → E be a continuous linear transformation then for any
sequence {fm} ⊆ Yd such that fm → f, we have ψ (fm) → ψ (f) as m → ∞.
Now, let f (s) =

∑
∞

n=1 ane
s.λn where a ′

ns ∈ E satisfy (11). Then f ∈ Yd. Also,

let fk (s) =
∑k
n=1 an e

sλn . Then fk ∈ Yd for k = 1, 2 . . . . Let α be any fixed
positive integer and let 0 < ε < α−1. From (11) we can find an integer m such
that

||an|| < exp

[

−λnφ(λn)

{K · ρ∗(T∗ + ε)}1/(ρ
∗−1)

]

, ∀n > m.
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Then
∥

∥

∥

∥

∥

f−

m∑

n=1

ane
s·λn

∥

∥

∥

∥

∥

α

=

∥

∥

∥

∥

∥

∞∑

n=m+1

ane
s·λn

∥

∥

∥

∥

∥

α

=

∞∑

n=m+1

||an|| exp

[

λnφ(λn)

{K · ρ∗(T∗ + α−1)}
1/(ρ∗−1)

]

<

∞∑

n=m+1

exp

[

λnφ(λn)

(K · ρ∗)1/(ρ∗−1)

{
(T∗ + α−1)−1/(ρ

∗−1) − (T∗ + ε)−1/(ρ
∗−1)

}]
< ε,

for sufficiently large values of m.
Hence

d (f, fm) =

∞∑

α=1

1

2α
||f− fm||α

1+ ||f− fm||α
≤

ε

1+ ε
< ε,

i.e. fm → f as m→ ∞ in Yd. Since ψ is continuous, we have

lim
m→∞

ψ (fm) = ψ (f) .

Let us denote by Cn = ψ
(

es·λn
)

. Then

ψ (fm) =

m∑

n=1

anψ
(

es.λn
)

=

m∑

n=1

anCn.

Also |Cn| = |ψ
(

esλn
)

|. Since ψ is continuous on Yd it is continuous on Y||·||α
for each α = 1, 2, 3 . . . . Hence there exists a positive constant A independent
of α such that

|ψ
(

es.λn
)

| = |Cn| ≤ A||p||α, α ≥ 1

where p (s) = es·λn . Now using the definition of the norm for p (s) , we get

|Cn| ≤ A exp

[

λnφ(λn)

{K · ρ∗(T∗ + α−1)}
1/(ρ∗−1)

]

, n ≥ 1, α ≥ 1.

Hence we get ψ (f) =
∑

∞

n=1 anCn, where the sequence {Cn} satisfies (14).
Conversely, suppose that ψ (f) =

∑
∞

n=1 anCn and C
′
ns satisfy (14). Then for

α ≥ 1,

||ψ (f) || ≤ A

∞∑

n=1

||an|| exp

[

λnφ(λn)

{K · ρ∗(T∗ + α−1)}
1/(ρ∗−1)

]
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i.e. |ψ(f)| ≤ A||f||α α ≥ 1.

Now, since d (f, g) =
∑
α≥1

1
2α · ||f−g||α

1+||f−g||α
, therefore ψ is continuous. This

completes the proof of Theorem 2. �

3 Linear continuous transformations and proper

bases

Following Kamthan and Hussain [2] we give some more definitions. A subspace
X0 of X is said to be spanned by a sequence {αn} ⊆ X if X0 consists of all linear
combinations

∑
∞

n=1 cnαn such that
∑

∞

n=1 cnαn converges in X. A sequence
{αn} ⊆ X which is linearly independent and spans a subspace X0 of X is said
to be a base in X0. In particular, if en ∈ X, en (s) = e

sλn , n ≥ 1, then {en} is
a base in X. A sequence {αn} ⊆ X will be called a ‘proper base’ if it is a base
and it satisfies the condition:
“for all sequences {an} ⊆ E, convergence of

∑
∞

n=1 ||an|| αn in X implies the
convergence of

∑
∞

n=1 anen in X”. As defined above, for f ∈ Y, we put ||f, T∗ +

δ|| =
∑
n≥1 ||an|| exp

[

λnϕ(λn)

{Kρ∗(T∗+δ)}1/(ρ
∗−1)

]

. We now prove

Theorem 3 A necessary and sufficient condition that there exists a contin-
uous linear transformation F : Y → Y with F (en) = αn, n = 1, 2, . . . , where
αn ∈ Y, is that for each δ > 0

lim
n→∞

sup
log ||αn : T∗ + δ||1/λn

ϕ(λn)
≤

(

ρ∗ − 1

ρ∗

)

(ρ∗T∗)−1/ρ
∗−1. (15)

Proof. Let F be a continuous linear transformation from Y into Y with F (en) =
αn, n = 1, 2, . . . Then for any given δ > 0, there exists a δ1 > 0 and a constant
K

′

= K
′

(δ) depending on δ only, such that

||F (en) ; T
∗ + δ|| ≤ K

′

||en; T
∗ + δ1|| ⇒ ||αn; T

∗ + δ||

≤ K
′

exp

{
(ρ∗ − 1)λnϕ(λn)

(T∗ + δ1)
1/ρ∗−1 ((ρ∗)ρ

∗/ρ∗−1
)

}

⇒ log ||αn; T
∗ + δ|| 1/λn

≤ o (1) +
ϕ(λn)(ρ

∗ − 1)

(T∗ + δ1)
1/ρ∗−1 ((ρ∗)ρ

∗/ρ∗−1
)
,

⇒ lim
n→∞

sup
log ||αn; T

∗ + δ||1/λn

ϕ(λn)
≤

(ρ∗ − 1)

ρ∗(ρ∗T∗)1/ρ
∗−1
.



162 G. S. Srivastava, A. Sharma

Conversely, let the sequence {αn} satisfy (15) and let α =
∑

∞

n=1 anen. Then
we have

lim
n→∞

sup
λn φ(λn)

log ||an||−1
≤
ρ∗(ρ∗T)1/ρ

∗−1

(ρ∗ − 1)
.

Hence, given η > 0, there exists N0 = N0 (η), such that

ϕ(λn)

log ||an||−1/λn
≤

ρ∗

(ρ∗ − 1)
{ρ∗(T∗ + η)} 1/ρ

∗−1 ∀n ≥ N0.

Further, for a given η1 > η, from (15), we can find N1 = N1 (η1) such that for
n ≥ N1

log ||αn; T
∗ + δ||1/λn

ϕ(λn)
≤

(

ρ∗ − 1

ρ∗

)

{ρ∗(T∗ + η1)}
−1/(ρ∗−1).

Choose n ≥ max(N0,N1). Then

log ||αn; T
∗ + δ||1/λn

log ||an||−1/λn
≤

(

T∗ + η

T∗ + η1

)1/(ρ∗−1)

⇒ ||an|| ||αn; T
∗ + δ|| ≤ ||an||

1−(T∗+η/T∗+η 1)
1/(ρ∗−1)

= ||an||
β (say)

where β = 1− (T∗ + η/T∗ + η1)
1/(ρ∗−1) > 0. Now from (5) we can easily show

that for any arbitrary large number K > 0, ||an|| < e−kλn .
Hence we have for all large values of n, ||an|| ||αn; T

∗ + δ|| ≤ e−Kβλn .
Consequently the series

∑
∞

n=1 ||an|| ||αn; T
∗ + δ|| converges for each δ > 0.

Therefore
∑

∞

n=1 ||an||αn converges to an element of Y. For each α ∈ Y, We
define F(α) =

∑
∞

n=1 an αn .Then F(en) = αn. Now, given δ > 0, ∃ δ1 > 0 such
that

log ||αn; T
∗ + δ||1/λn

ϕ(λn)
≤

(

ρ∗ − 1

ρ∗

)

{ρ∗(T∗ + η1)}
−1/(ρ∗−1)

for all n ≥ N = N(δ, δ1). Hence

⇒ ||αn; T
∗ + δ|| ≤ K

′

exp

{
(ρ∗ − 1) λnϕ(λn)

ρ∗ {ρ∗ (T∗ + δ1)}
1/ρ∗−1

}

where K
′

= K
′

(δ) and the inequality is true for all n > 0. Now

||F(α); T∗ + δ|| ≤
∞∑

n=1

||an|| ||αn; T
∗ + δ||

≤ K
′

∞∑

n=1

||an|| exp

{
(ρ∗ − 1)λnϕ(λn)

ρ∗ {ρ∗ (T∗ + δ1)}
1/ρ∗−1

}

= K
′

||an; T
∗ + δ||.
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Hence F is continuous. This proves Theorem 3. �

We now give some results characterizing the proper bases.

Lemma 1 In the space Yd, the following three conditions are equivalent:

(i) For each δ > 0, lim
n→∞

sup log ||αn;T∗+δ||1/λn

ϕ(λn)
≤

(

ρ∗−1
ρ∗

)

(ρ∗T∗) −1/(ρ
∗−1) .

(ii) For any sequence {an} in E, the convergence of
∑

∞

n=1 anen in Y implies
that lim

n→∞

||an||αn = 0 in Y.

(iii) For any sequence {an} in E, the convergence of
∑

∞

n=1 anen in Y implies
the convergence of

∑
∞

n=1 ||an||αn in Y.

Proof. First suppose that (ii) holds. Then for any sequence {an}
∑

∞

n=1 anen
converges in Y implies that

∑
∞

n=1 ||an||αn converges in Y which in turn implies
that ||an||αn → 0 as n→ ∞. Hence (ii) ⇒ (iii).
Now we assume that (iii) is true but (i) is false. Hence for some δ > 0, there

exists a sequence {nk} of positive integers such that ∀nk , k = 1, 2, . . . ,

log ||αnk
; T∗ + δ||1/λnk

ϕ(λnk
)

>

(

ρ∗ − 1

ρ∗

) {
ρ∗(T∗ +

1

k
)

}
−1/(ρ∗−1).

Define a sequence {an} as follows:

||an|| =

{
∥αn; T

∗ + δ∥−1, n = nk

0; n ̸= nk
(16)

Then, we have for all large values of k,

ϕ(λnk
)

log ||ank
||−1/λnk

=
ϕ(λnk

)

log ||αnk
; T∗ + δ||1/λnk

<

(

ρ∗

ρ∗ − 1

) {
ρ∗(T∗ +

1

k
)

}
1/(ρ∗−1).

Hence,

lim
k→∞

sup
ϕ(λnk

)

log ||ank
||−1/λnk

≤

(

ρ∗

ρ∗ − 1

)

(ρ∗T∗) 1/(ρ
∗−1).

Thus {an} defined by (16) satisfies the condition

lim
n→∞

sup
ϕ(λn)

log ||an||−1/λn
≤

(

ρ∗

ρ∗ − 1

)

(ρ∗T∗) 1/(ρ
∗−1)

which in view of Theorem 1 above is equivalent to the condition that
∑
anen

converges in Y. Hence by (iii), lim
n→∞

||an||αn = 0. However

∥ ||ank
||αnk

; T∗ + δ∥ = ||ank
|| · ||αnk

; T∗ + δ|| = 1.
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Hence lim
n→∞

||an||αn ̸= 0 in Y(ρ∗, T∗, δ). This is a contradiction. Hence (iii)⇒(i).

In the course of proof of Theorem 3 above, we have already proved that
(i)⇒(ii). Thus the proof of Lemma 1 is complete. �

Next we prove

Lemma 2 The following three properties are equivalent:
(a) For all sequences {an} in E, lim

n→∞

anαn = 0 in Y implies that
∑

∞

n=1 anen

converges in Y.
(b) For all sequences {an} in E, the convergence of

∑
∞

n=1 ||an||αn in Y implies
the convergence of

∑
∞

n=1 anen.

(c) lim
δ→0

{
lim
n→∞

inf log ||αn;T∗+δ||1/λn

ϕ(λn)

}
≥

(

ρ∗−1
ρ∗

)

(ρ∗T∗) −1/(ρ
∗−1).

Proof. Obviously (a)⇒ (b). We now prove that (b)⇒ (c). To prove this, we
suppose that (b) holds but (c) does not hold. Hence

lim
δ→0

{

lim
n→∞

inf
log ||αn; T

∗ + δ||1/λn

ϕ(λn)

}

<

(

ρ∗ − 1

ρ∗

)

(ρ∗T∗)−1/(ρ
∗−1).

Since log ∥αn; T + δ∥ increases as δ decreases, this implies that for each δ > 0,

{

lim
n→∞

inf
log ||αn; T

∗ + δ||1/λn

ϕ(λn)

}

<

(

ρ∗ − 1

ρ∗

)

(ρ∗T∗)−1/(ρ
∗−1).

Hence, if η > 0 be a fixed small positive number, then for each r > 0, we can
find a positive number nr such that ∀r, we have nr+1 > nr and

lim
n→∞

inf
log ||αnr ; T

∗ + r−1|| 1/λnr

ϕ(λn)
<

(

ρ∗ − 1

ρ∗

)

{ρ∗(T∗ + η) }−1/(ρ
∗−1) (17)

Now we choose a positive number η1 < η, and define a sequence {an} as

||an|| =






(

T∗+η1
T∗+η

)λn
exp

{
−
(

ρ∗−1
ρ∗

)

λnϕ(λn)

{ρ∗(T∗+η) }1/(ρ
∗−1)

}
, n = nr

0, n ̸= nr

.

Then, for any δ > 0

∞∑

n=1

||an|| · ||αn; T
∗ + δ|| =

∞∑

r=1

||anr || · ||αnr ; T
∗ + δ||. (18)
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For any given δ > 0, we omit from the above series those finite number of
terms, which correspond to those number nr for which 1/r is greater than δ.
The remainder of the series in (18) is dominated by

∑
∞

r=1 ||anr ||· ||αnr ; T
∗+r−1||.

Now by (17) and (18), we find that

∞∑

r=1

||anr || · ||αnr ; T
∗ + r−1||

≤

∞∑

r=1

{

exp

{

−

(

ρ∗ − 1

ρ∗

)

λnrϕ(λnr)

{ρ∗(T∗ + η) }1/(ρ
∗−1)

}
(

T∗ + η1

T∗ + η

)λnr

}

× exp

{
(

ρ∗ − 1

ρ∗

)

λnrϕ(λnr)

{ρ∗(T∗ + η) }1/(ρ
∗−1)

}

≤

∞∑

r=1

(

T∗ + η1

T∗ + η

)λnr

.

Since η1 < η, therefore the above series on the right hand side is convergent.
For this sequence {an} ,

∑
∞

n=1 ||an||αn converges in Y (ρ∗, T∗, δ) for each δ > 0
and hence converges in Y.
But we have,

lim
n→∞

sup
ϕ(λn)

log ||an||−1/λn
=

(

ρ∗

ρ∗ − 1

)

{ρ∗(T∗ + η)}1/(ρ
∗−1)

which contradicts (10). This proves (b) ⇒(c).
Now we prove that (c)⇒(a). We assume (c) is true but (a) is not true. Then

there exists a sequences {an} of complex numbers for which ||an||αn → 0 in Y,
but

∑
∞

n=1 anen does not converge in Y. This implies that

lim
n→∞

sup
ϕ(λn)

log ||an||−1/λn
>

(

ρ∗

ρ∗ − 1

)

(ρ∗T∗)1/(ρ
∗−1)

Hence there exists a positive number ε and a sequence {nk} of positive integers
such that

ϕ(λn)

log ||an||−1/λn
=

(

ρ∗

ρ∗ − 1

)

{ρ∗(T∗ + ε)}1/(ρ
∗−1) , ∀n = nk

We choose another positive number η < ε/2 . By assumption we can find a
positive number δ i.e. δ = δ (η) such that

lim
n→∞

inf
log ||αn, T

∗ + δ||1/λn

ϕ(λn)
>

(

ρ∗ − 1

ρ∗

)

{ρ∗(T∗ + η)}−1/(ρ
∗−1) .
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Hence there exists N = N (η), such that

log ||αn, T
∗ + δ||1/λn

ϕ(λn)
≥

(

ρ∗ − 1

ρ∗

)

{ρ∗(T∗ + 2η)}−1/(ρ
∗−1) , ∀n ≥ N.

Therefore

max ∥ ||an||αn; T
∗ + δ∥ = max {||an|| · ||αn; T

∗ + δ|| }

≥ max {||ank
|| · ||αnk

; T∗ + δ||}

≥ exp

{
−λnk

ϕ(λnk
)(ρ∗ − 1)

ρ∗ {ρ∗(T∗ + ε) }1/(ρ
∗−1)

}

× exp

{
λnk
ϕ(λnk

)(ρ∗ − 1)

ρ∗ {ρ∗(T∗ + 2η) }1/(ρ
∗−1)

}

> 1

for nk > N as ε > 2η.
Thus {||an|| αn} does not tend to zero in Y (ρ∗, T∗, δ) for the δ chosen above.
Hence {||an|| αn} does not tend to 0 in Y and this is a contradiction. Thus
(c)⇒(a) is proved. This proves Lemma 2. �

Lastly we prove:

Theorem 4 A base {αn} in a closed subspace Y0 of Y is proper if and only if
the conditions (i) and (c) stated above are satisfied.

Proof. Let {αn} be a proper base in a closed subspace Y0 of Y. Hence for
any sequence of complex number {an} the convergence of

∑
∞

n=1 ||an||αn in
Y0 implies the convergence of

∑
∞

n=1 anen in Y0. Therefore (b) and hence (c)
is satisfied. Further the convergence of

∑
∞

n=1 anen in Y0 is equivalent to the
condition

lim
n→∞

sup
ϕ(λn)

log ||an||−1/λn
=

(

ρ∗

ρ∗ − 1

)

(ρ∗T∗)1/(ρ
∗−1).

Now let α =
∑

∞

n=1 anen. Then proceeding as in second part of the proof of
Theorem 1, we can prove that

∑
∞

n=1 ||an||αn converges to an element of Y0
and thus (ii) is satisfied. But (ii) is equivalent to (i). Hence necessary part of
the theorem is proved.
Conversely, suppose that conditions (i) and (c) are satisfied, with {αn} being
a base in a closed subspace Y0 of Y. Then by Lemma 2, we find that for any
sequence {an} in E, convergence of

∑
∞

n=1 ||an||αn in Y0 implies the convergence
of

∑
∞

n=1 anen in Y0. Therefore {αn} is a proper base of Y0. This concludes the
proof. �
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