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Abstract. In the present paper we give an elementary and illustrative
proof that in E*, the complete surfaces with constant positive curvature
are not isomorphic. It is well-known, if two surfaces in E3 are complete
with the same positive curvature they are global isomorphic. The same
statement is not true in E*, although these surfaces remain global iso-
metric. We will illustrate our proof with some nice examples.

1 Introduction

Many articles [9, 17, 18] presented the techniques of drawing objects in higher
dimension than three, and they also highlighted the educational importance
of them.

The subject of this paper is related to these drawing techniques and we want
to state that the drawings should reflect the fact that the closed, compact,
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smooth surfaces in three dimensions will remain closed, compact and smooth
in four dimensions too.

In the 4-dimensional Euclidean space there is an unsolved problem, namely
whether there exists a complete analytical hyperbolic plane in E*. We know
that there is no surface having this property in E3 (Hilbert theorem), but in E®
6, 10, 15] and in E® [1] it is possible. Thus the question is more exciting in B+
and proving either the existence or the non-existence would be an important
result.

There is another interesting question: what is the graphical image in E*
for a compact, complete analytical surface which has negative constant curva-
ture? Such a surface exists because it was given by Otsuki [13]. The surface
constructed by him in E* has negative curvature but it is not constant. On
the other hand, with the constructed surface Otsuki [12] demonstrated that
there are compact and complete surfaces with negative curvature in E4,

Furthermore, we are studying only the surfaces with positive constant cur-
vature. It is well-known from Cohn-Vossen and Herglotz theorem [3, 8] that
if two surfaces are complete with the same positive curvature, they are global
isomorphic. Our aim is to give an elementary proof that in higher dimension
than three, the complete surfaces with constant positive curvature will not
remain rigid. Here rigid means that a complete surface with constant positive
curvature could not be transformed into itself by one parameter movement.
We also illustrate the proof with some examples using different drawing tech-
niques.

2 The basic idea

It is well-known that a surface of revolution is a surface generated by rotating a
plane curve about an axis. By definition, the axis of the surface of revolution
is a straight line, although the axis of rotation can be imagined as a space
curve. In the latter case we find a generalization of the surface of revolution,
called canal surface. In other words, the canal surface is a surface formed
as the envelope of a family of spheres whose centers lie on a space curve. If
the sphere centers lie on a straight line, the channel surface is a surface of
revolution. For example, the sphere is a special canal surface, whose axis is a
straight line.

In the next part we use a simple mathematical deduction to prove that
complete surfaces with constant positive curvature are not global isomorphic.

Let p(u) = (x(u),y(u)) be a planar curve, parameterized by arc length.
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The corresponding Frenet formulas have the following form:

pu) = e(u),
e(u) = x(un(u),
n'(u) = —k(ule(u),

where the tangent vector for the curve p is e = e(u), the normal vector is
n = n(u) and the binormal vector is b = b(u). We suppose b’(u) = 0, which
means that p is a planar curve. The canal surface of the planar curve p has
the following form:

f(u,v) =p(u) + r(u)(n(u)cos(v) + b(u)sin(v)),

where r(u) is the radius of the spheres from the definition of the canal surface.
According to our aim, we put the condition that the surface has positive
Gaussian curvature. This means that

G(u) =+1 (1)

equation must hold, where G is the curvature of the surface. In order to solve
this equation first we try to calculate the curvature of the canal surface using
the next fundamental forms of it:

() + (1 — k(u)r(w)sin(v))?,

gn =7
g1z = 0,
922 = Tt(u).
Furthermore, if we put the condition k(u) = 0, then we get the Gauss
curvature:
" (u)

G =— . 2
=R )2 @

By replacing the found expression into formula (1), we get the following
equation:
() = —r(w) (1 +r%(w)% (3)

Equation (3) can be solved by integrating elementary, but we are interested
in a result, which gives us the sphere as solution, so we get the next particular

result: r(u) = v2u —u?, where u € [0, 2].
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Furthermore, we repeat the previous sequence of ideas in 4 dimensions, and
we choose a space curve in E3 with this form: p(u) = (x(u),y(u),z(u)). Then
we get by Frenet formulas in E4:

P = eilu),

eilu) = k(wea(u),

eh(u) = —k(uer(u) +t(ules(u),
es(u) = —t(uley,

es(u) = 0,

where {eq, e2, e3, e4) is the Frenet orthonormal basis. The canal surfaces in E4
have the following form:

f(u,v) =plu) +r(u)(ez(u)cos(v) + eg(u)sin(v))

The Gauss fundamental forms for the surface f are the following equations:

g = 2w+ 1+ 2w (uwcos(v),
g12 0,
.

g22 =

(u).

Furthermore, we put the condition that the torsion of the space curve has
null value. This means that the space curve is a plane curve. By continuing
the calculations, we get the curvature formula (2) for the surface and we are
again interested in those solutions of equation (1), which give us complete
surfaces.

The calculations reflect the fact that the curvature for these surfaces is
independent of the form of the planar curve in E4, which is the axis of the
surface. In other words, the axes of the canal surface can be chosen in many
ways, hence there is an infinite number of surfaces with positive constant
curvatures. To summarize our results, we state the following theorem:

Theorem 1 For each surface of revolution with positive constant curvature
in E3 there are corresponding infinite number of canal surfaces with positive
constant curvature in E*,

These results have a geometric interpretation, too. For example, let us
consider the 3-dimensional sphere. It is well-known that we get it from the
rotation of the circle around its diameter. If we take the sphere by its north and
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Figure 1: The Otsuki sphere.

south pole and if we “bend” the rotation axis towards the fourth dimension, the
surface will still have a constant curvature which is reflected in the calculations,
but we get spheres which will not be isomorphic in the 4-dimensional space.
If the shape of the rotation axis is a quarter of the asteroid then we get the
famous sphere of Otsuki [11] (see Fig. 1) represented by the (4)—(7) equations:

alwy) = ey, (4)
olwy) = st (5)
x3(u,v) = sin(u)cos(v), (6)
x4(u,v) = sin(u)sin(v), (7)

where u € [0, 7], v € [0, 27].
Furthermore, we give three other examples of complete surfaces with con-
stant positive curvature in E%:

Example 1
x1(u,v) = x7(u) =2arcsin(u/2) + V4 —u?,
x2(u,v) = x2(u) = V2/ 2+ wu—v2In(1 +u+ /(2u+u?),
x3(u,v) = u(2 —u)sinv,
x4(uw,v) = u(2—u)cosv, wuecl0,2,vel0?2n.
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(a) (b)

Figure 2: Drawings for Example 1: (a) Intersection with a hyperplane. (b)
Axonometric mapping from E# into E2.

Example 2

x1(w,v) = x7(u) =sinu,

xo(uw,v) = x2(u) =cosu,

x3(w,v) = u(l—u)sinv,

x4(uw,v) = yu(l—u)cosv, uel0,1],vel02na.
Example 3

x1(u,v) = x7(u) =2sin(u/2),

x2(w,v) = x2(u) = 2cos(u/2),

x3(w,v) = u(2—u)sinv,

x4(u,v) = yu(2—u)cosv, uel0,2],velo,2n.

3 The used drawing techniques

We have drawn two kinds of figures using MATLAB programming language.
The first type of drawings are intersections in E* with a hyperplane. This
means that we omit one of the four coordinates from the surface representation,
and after that we apply an axonometry by mapping the three-dimensional
figure onto the plane (see Fig. 1(a), 2(a), 3(a), 4(a)).
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Axonometric mapping from E# into EZ.

(a)

Figure 3: Drawings for Example 2:
Axonometric mapping from E* into E2.
Figure 4: Drawings for Example 3:
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The second type of figures are axonometric mappings from E* into E? (see
Fig. 1(b), 2(b), 3(b), 4(b)). The transformation has the following form:

(u,v)

X\ _(an a2 a;z ap x2(u,v)

Y az az a3 ax x3(w,v) |7
(w,v)

where the rank of the transformation matrix [aij]oxs is equal to 2. These
kinds of mapping techniques were studied by Szabé [17, 18], and he proved
that the objects can be also represented in R™, both in axonometric and
perspective way. These mappings keep their straight lines and proportion in
case of axonometry and in case of perspective, they keep their straight lines
and cross-ratio.

On the other hand, Stiefel [16] showed that in E* the Pohlke’s theorem (i.e.
the axonometric image of a shape is similar to the parallel projection of the
shape) is not valid. Nevertheless, some properties remain valid. For example
the close parameter lines on the surfaces in E* are transformed into closed
curves as you can see in the figures.

4 Conclusions

In this paper we considered constant positive curvature surfaces from the 4-
dimensional Euclidean space. Many surfaces with constant positive curvature
have the interesting property that they are not global isomorphic in E4, while
in E3 the same property is not true. We have proved this property mathemat-
ically and also illustrated with some nice examples.

References

[1] D. Blanusa, Uber die Einbettung hyperbolischer Raume in euklidische
Raume, Monatsh. Math., 59, 3 (1955) 217-229. = 126

[2] S. Brian, X. Frederico, Efimov’s theorem in dimension greater than two,
Invent. Math., 90, 3 (1987) 443-450.

[3] S. Cohn-Vossen, The isometric deformability of surfaces in the large, Uspehi
Mat. Nauk, 1,1 (1936), 33-76 (in Russian). = 126


http://www.springerlink.com/content/1436-5081/
http://www.springerlink.com/content/1432-1297/
http://en.wikipedia.org/wiki/Stephan_Cohn-Vossen

Some notes on drawing four dimensional surfaces 133

[4] N. V. Efimov, Generation of singularities on surfaces of negative curvature,
Mat. Sb. (N.S.), 64 (1964) 286-320.

[5] W. Henke, Isometrische Immersion des n-dim. hyperbolischen Raumes Hy,
in B3, Manuscripta Math., 34, 2-3 (1981) 265-278.

[6] W. Henke, Isometric immersion of n-dim. hyperbolic spaces into (4n-3)-
dim. standard spheres and hyperbolic spaces, Math. Ann., 258, 3 (1982)
341-348. = 126

[7] W. Henke, W. Nettekoven, The hyperbolic n-space as a graph in Euclidean
(6én — 6) space, Manuscripta Math., 59, 1 (1987) 13-20.

8] G. Herglotz, Uber die Starrheit der Eiflachen, Abh. Math. Sem. Univ.
Hamburg 15, 1 (1943) 127-129. = 126

9] Z. Kovécs, L. Kozma, Assimilation of mathematical knowledge using
Maple, Teaching Mathematics and Computer Science 1, 2 (2003) 321-331.
= 125

[10] R. Oldh-Gél: The n-dimensional hyperbolic spaces in E*3, Publ. Math.
Debrecen, 46, 3—4 (1995) 205-213. = 126

[11] T. Otsuki, Surfaces in the 4-dimensional euclidean space isometric to a
sphere, Kodai Math. Sem. Rep., 18, 2 (1966) 101-115. = 129

[12] T. Otsuki, On the total curvature of surfaces in Euclidean spaces, Japan.
J. Math., 35 (1966) 61-71. = 126

[13] T. Otsuki, A construction of closed surfaces of negative curvature in E?,
Math. J. Okayama Univ., 3, 2 (1954) 95-108. = 126

[14] A. Ros, Compact hypersurfaces with constant scalar curvature and a
congruence theorem, J. Differential Geom., 27, 2 (1988) 215-223.

[15] E. R. Rozendorn, A realization of the metric ds? = du? + f2(u) dv?
in five-dimensional Euclidean space, Akad. Nauk Armjan. SSR Dokl., 30
(1960) 197-199 (in Russian). = 126

[16] E. Stiefel, Zum Satz von Pohlke, Comment. Math. Helv., 10, 1 (1937)
208-225. = 132


http://www.springerlink.com/content/101570/
http://www.springerlink.com/content/1432-1807/
http://www.springerlink.com/content/101570/
http://www.springerlink.com/content/0025-5858/
http://zeus.nyf.hu/~kovacsz/
http://www.math.klte.hu/~kozma/
http://tmcs.math.klte.hu/Editorial_Board/editorial.html
http://www.csik.sapientia.ro/ghkar/oktatok/olahgalrobert.html
http://www.math.klte.hu/publi/contents.php?szam=40
http://genealogy.math.ndsu.nodak.edu/id.php?id=127394
http://genealogy.math.ndsu.nodak.edu/id.php?id=127394
http://genealogy.math.ndsu.nodak.edu/id.php?id=127394
http://www.math.okayama-u.ac.jp/mjou/
http://projecteuclid.org/DPubS?
http://en.wikipedia.org/wiki/Eduard_Stiefel
http://www.ems-ph.org/journals/all_issues.php?issn=0010-2571

134 R. Olah-Gal, L. Pal

[17] J. Szabd, Die Verallgemeinerung des Eckhartschen Einschneiderfahrens
auf den n-dimensionalen Fall, Publ. Math. Debrecen, 15 (1968) 181-187.
= 125, 132

[18] J. Szabd, On the axonometrical projection in the computer graphics, Acta
Math. Acad. Paedagog. Nyiregyhdziensis, 17, 3 (2001) 179-183. = 125, 132

[19] G. Vranceanu, G. G. Vranceanu, Surfaces with positive constant or null
curvature in E*, Rev. Roumaine Math. Pures Appl., 22 (1977) 281-287.

[20] G. Vranceanu, Surfaces de rotation dans E*, Rev. Roumaine Math. Pures
Appl., 22 (1977) 857-862.

Received: February 23, 2009


http://www.inf.unideb.hu/grafika/szabo.htm
http://www.math.klte.hu/publi/contents.php?szam=40
http://www.inf.unideb.hu/grafika/szabo.htm
http://www.emis.de/journals/AMAPN/index.html
http://www.gap-system.org/~history/Biographies/Vranceanu.html
http://csm.ro/reviste/Revue_Mathematique/home_page.html
http://www.gap-system.org/~history/Biographies/Vranceanu.html
http://csm.ro/reviste/Revue_Mathematique/home_page.html

	1 Introduction
	2 The basic idea
	3 The used drawing techniques
	4 Conclusions

