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Abstract. In this paper, a general form of the Suzuki type function is
considered on S- metric space, to get a fixed point. Then we show that
our results generalize some old results.

1 Introduction and preliminaries

In 1922, Banach [1] proposed a theorem, which is well-known as Banach‘s
Fixed Point Theorem (or Banach,s Contraction Principle, BCP for short) to
establish the existence of solutions for nonlinear operator equations and inte-
gral equations. Since then, because of simplicity and usefulness, it has become
a very popular tool in solving a variety of problems such as control theory,
economic theory, nonlinear analysis and global analysis. Later, a huge amount
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of literature is witnessed on applications, generalizations and extensions of this
theorem. They are carried out by several authors in different directions, e.g.,
by weakening the hypothesis, using different setups.

Many mathematics problems require one to find a distance between tow or
more objects which is not easy to measure precisely in general. There exist dif-
ferent approaches to obtaining the appropriate concept of a metric structure.
Due to the need to construct a suitable framework to model several distin-
guished problems of practical nature, the study of metric spaces has attracted
and continues to attract the interest of many authors. Over last few decades,
a numbers of generalizations of metric spaces have thus appeared in several
papers, such as 2-metric spaces, G-metric spaces, D∗-metric spaces, partial
metric spaces and cone metric spaces. These generalizations were then used
to extend the scope of the study of fixed point theory. For more discussions of
such generalizations, we refer to [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 20, 21, 22, 23].
Sedghi et al [17] have introduced the notion of an S-metric space and proved
that this notion is a generalization of a G-metric space and a D∗-metric space.
Also, they have proved properties of S-metric spaces and some fixed point
theorems for a self-map on an S-metric space.

The Banach contraction principle is the most powerful tool in the history
of fixed point theory. Boyd and Wong [2] extended the Banach contraction
principle to the nonlinear contraction mappings. We begin by briefly recalling
some basic definitions and results for S-metric spaces that will be needed in
the sequel. For more details please see [1, 14, 18].

Definition 1 [17] Let X be a (nonempty) set, an S-metric on X is a function
S : X3 −→ [0,+∞) that satisfies the following conditions, for each x, y, z, a ∈
X,

(1). S(x, y, z) ≥ 0,
(2). S(x, y, z) = 0 if and only if x = y = z,

(3). S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a),

for all x, y, z, a ∈ X.
The pair (X, S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

Example 1 [15, 18] Let X = Rn and ‖ . ‖ a norm on X, then

S(x, y, z) =‖ y+ z− 2x ‖ + ‖ y− z ‖
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is an S-metric on X.
Let X be a nonempty set, d is ordinary metric on X, then

S(x, y, z) = d(x, z) + d(y, z)

is an S-metric on X. This S-metric is called the usual S-metric on X.

Definition 2 [16] Let (X, S) be an S-metric space.

(i) A sequence {xn} ⊂ X converges to x ∈ X if S(xn, xn, x) → 0 as n→ +∞.
That is, for each ε > 0, there exists n0 ∈ N such that for all n ≥ n0 we
have S(xn, xn, x) < ε. We write xn → x for brevity.

(ii) A sequence {xn} ⊂ X is a Cauchy sequence if S(xn, xn, xm) → 0 as
n,m→ +∞.
That is, for each ε > 0, there exists n0 ∈ N such that for all n,m ≥ n0
we have S(xn, xn, xm) < ε.

(iii) The S-metric space (X, S) is compelet if every Cauchy sequence is a con-
vergent sequence.

Definition 3 [15] Let (X, S) be an S-metric space. For r > 0 and x ∈ X we
define the open ball Bs(x, r) and closed ball Bs[x, r] with center x and radius r
as follows respectively:

Bs(x, r) = {y ∈ X : S(y, y, x) < r},
Bs[x, r] = {y ∈ X : S(x, x, y) ≤ r}.

Example 2 [15] Let X = R and S(x, y, z) = |y + z − 2x| + |y − z| for all
x, y, z ∈ R. Then

Bs(1, 2) = {y ∈ R : S(y, y, 1) < 2} = {y ∈ R : |y− 1| < 1}
= {y ∈ R : 0 < y < 2} = (0, 2).

Lemma 1 [16] Let (X, S) be an S-metric space. If r > 0 and x ∈ X, then the
ball Bs(x, r) is open subset of X.

Lemma 2 [15, 16, 18] In an S-metric space, we have S(x, x, y) = S(y, y, x).

Proof. By third condition of S-metric, we have

S(x, x, y) ≤ S(x, x, x) + S(x, x, x) + S(y, y, x)
= S(y, y, x)

(1)
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S(y, y, x) ≤ S(y, y, y) + S(y, y, y) + S(x, x, y)
= S(x, x, y),

(2)

hence by (1) and (2), we get S(x, x, y) = S(y, y, x). �

Lemma 3 [18] Let (X, S) be an S-metric space. If sequence {xn} in converges
to x, then x is unique.

Lemma 4 [18] Let (X, S) be an S-metric space. If sequence {xn} in X is con-
verges to x, then {xn} is a Cauchy sequence.

Lemma 5 [15, 16, 18] Let (X, S) be an S-metric space. If there exist se-
quences {xn} and {yn} such that limn→+∞ xn = x and limn→+∞ yn = y, then
limn→+∞ S(xn, xn, yn) = S(x, x, y).
Definition 4 [15, 19] Let X be a (nonempty) set, a b-metric on X is a function
d : X2 −→ [0,+∞) if there exists a real number b ≥ 1 such that the following
conditions hold for all x, y, z ∈ X,

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x),

(3) d(x, z) ≤ b[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

Proposition 1 [16] Let (X, S) be an S-metric space and let

d(x, y) = S(x, x, y),

for all x, y ∈ X. Then we have

(1) d is a b-metric on X;

(2) xn → x in (X, S) if and only if xn → x in (X, d);

(3) {xn} is a Cauchy sequence in (X, S) if and only if {xn} is a Cauchy se-
quence in (X, d).

Definition 5 Let £ be the set of all continuous functions g : [0,∞)4 →
[0,+∞), satisfying the conditions:

(i) g(1, 1, 1, 1) < 1,

(ii) g is subhomogeneous,i.e., g(αx1, αx2, αx3, αx4) ≤ αg(x1, x2, x3, x4),
for all α ≥ 0,
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(iii) if xi, yi ∈ [0,+∞), xi ≤ yi for i = 1, . . . , 4 we have
g(x1, x2, x3, x4) ≤ g(y1, y2, y3, y4).

Example 3 The function g(x1, x2, x3, x4) = kmax{xi}
4
i=0 for k ∈ (0, 1) is in

class £.

Example 4 The function g(x1, x2, x3, x4) = kmax{x1, x2,
x3+x4
2 } for k ∈ (0, 1)

is in class £.

Proposition 2 If g ∈ £ and u, v ∈ [0,+∞] are such that u ≤ g(v, v, v, u),
then u ≤ hv, where h = g(1, 1, 1, 1).

Proof. If v < u, then

u ≤ g(v, v, v, u) ≤ g(u, u, u, u) < ug(1, 1, 1, 1) = hu < u,

which is a contradiction. Thus u ≤ v, which implies

u ≤ g(v, v, v, u) ≤ g(v, v, v, v) < vg(1, 1, 1, 1) = hv.
�

Corollary 1 [15] Let (X, S) be a complete S-metric space and T : X → X a
function such that for, all x, y, z, a ∈ X,

S(Tx, Ty, Tz) ≤ LS(x, y, z),

where L ∈ (0, 1/2). Then there exists a unique point u ∈ X such that Tu = u.

2 Results

Now, we give our main result.

Theorem 1 Let (X, S) be a S- metric space and T : X → X be a function.
Suppose that there exist g ∈ £ and α ∈ (0, 1), such that α(h + 2) ≤ 1 where
h = g(1, 1, 1, 1). Suppose also that αS(x, x, Tx) ≤ S(x, y, z) implies

S(Tx, Ty, Tz) ≤ g(S(x, y, z), S(x, x, Tx), S(y, y, Ty), S(z, z, Tz)),

for all x, y, z ∈ X. Then F(T) is non-empty set.



352 M. Shahraki, S. Sedghi, S. M. A. Aleomraninejad, Z. D. Mitrović

Proof. Fix arbitrary x0 ∈ X and let Tx0 = x1. Since

αS(x0, x0, Tx0) < S(x0, x0, x1),

then by the hypothesis of the theorem and condition (iii) Definition 5, respec-
tively, we have

S(x1, x1, Tx1) = S(Tx0, Tx0, Tx1)
≤ g(S(x0, x0, x1), S(x0, x0, Tx0), S(x0, x0, Tx0), S(x1, x1, Tx1))
= g(S(x0, x0, x1), S(x0, x0, x1), S(x0, x0, x1), S(x1, x1, Tx1))

Then, by Proposition 2, we have S(x1, x1, Tx1) ≤ hS(x0, x0, x1).
Now let Tx1 = x2. Since αS(x1, x1, Tx1) < S(x1, x1, x2), by using and the prop-
erties of the function g we have

S(x2, x2, Tx2) = S(Tx1, Tx1, Tx2)
≤ g(S(x1, x1, x2), S(x1, x1, Tx1), S(x1, x1, Tx1), S(x2, x2, Tx2))
= g(S(x1, x1, x2), S(x1, x1, x2), S(x1, x1, x2), S(x2, x2, Tx2)).

Then, by Proposition 2, we have S(x2, x2, Tx2) ≤ hS(x1, x1, x2).
In a similar way, we can let Tx2 = x3. So we have

S(x2, x2, x3) < hS(x1, x1, x2) < h
2S(x0, x0, x1).

By continuing this process, we obtain a sequence {xn}n≥1 in X such that
xn+1 = Txn, which satisfies S(xn, xn, Txn) ≤ hS(xn−1, xn−1, xn) and

S(xn, xn, xn+1) ≤ hnS(x0, x0, x1).

If xm = xm+1 for some m ≥ 1, then
Then T has a fixed point.
Suppose that xn 6= xn+1, for all n ≥ 1. Repeated application of the triangle
inequality implies

S(xn, xn, xn+m) ≤ 2S(xn, xn, xn+1) + S(xn+m, xn+m, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xn+m)

≤ 2S(xn, xn, xn+1) + 2S(xn+1, xn+1, xn+2)
+ S(xn+m, xn+m, xn+2)

≤ 2[S(xn, xn, xn+1) + S(xn+1, xn+1, xn+2)

+ · · ·+ S(xn+m−1, xn+m−1, xn+m)]
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≤ 2

k=m−1∑
k=0

hk+nS(x0, x0, x1) ≤
2hn

1− h
S(x0, x0, x1).

So we get
lim

n→+∞S(xn, xn, xn+m) → 0

and hence {xn}n≥1 is a Cauchy sequence in (X, S). Regarding Definition 2,
{xn}n≥1 is also a Cauchy sequence in (X, S).
Since (X, S) is a complete S- metric space, by Definition 2, (X, S) is also com-
plete.
Thus {xn}n≥1 converges to a limit, say, x ∈ X, that is,

lim
n→+∞S(xn, xn, x) = 0.

It is easy to see that limn→∞ S(xn, xn+1, x) = 0. Now, we claim that for each
n ≥ 1 one of the relations

αS(xn, xn, Txn) ≤ S(xn, xn, x)

or
αS(xn+1, xn+1, Txn+1) ≤ S(xn, xn, x)

holds. If for some n ≥ 1 we have

αS(xn, xn, Txn) > S(xn, xn, x) and αS(xn+1, xn+1, Txn+1) > S(xn+1, xn+1, x),

then

S(xn, xn, xn+1) ≤ 2S(xn, xn, x) + S(xn+1, xn+1, x)
< 2αS(xn, xn, Txn) + αS(xn+1, xn+1, Txn+1)
= 2αS(xn, xn, xn+1) + αhS(xn, xn, xn+1).

This results in α(h+ 2) > 1, which contradidts the intial assumption. Hence,
our claim is proved.
Observe that by the assumption of the theorem, we have either

S(Txn, Txn, Tx) ≤ g(S(xn, xn, x), S(Txn, xn, x), S(Txn, xn, x), S(Tx, xn, xn)),

or

S(Txn+1, Txn+1, Tx) ≤ g(S(xn+1, xn+1, x), S(Txn+1, xn+1, x),

S(Txn+1, xn, x), S(Tx, xn+1, xn+1)).
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Therefore, one of the following cases holds.
Case (i). There exists an infinite subset I ⊆ N such that

S(xn+1, xn+1, Tx) = S(Txn, Txn, Tx)
≤ g(S(xn, xn, x), S(Txn, xn, x), S(Txn, xn, x), S(Tx, xn, xn))
= g(S(xn, xn, x), S(xn+1, xn, x), S(xn+1, xn, x), S(Tx, xn, xn)).

for all n ∈ I.
Case (ii). There exists an infinite subset J ⊆ N such that

S(xn+2, xn+2, Tx) = S(Txn+1, Txn+1, Tx)
≤ g(S(xn+1, xn+1, x), S(Txn+1, xn+1, x),

S(Txn+1, xn+1, x), S(Tx, xn+1, xn+1))
= g(S(xn+1, xn+1, x), S(xn+2, xn+1, x),

S(xn+2, xn+1, x), S(Tx, xn+1, xn+1)).

for all n ∈ I. In case (i), taking the limit as n→ +∞ we obtain

S(x, x, Tx) ≤ g(0, 0, 0, S(x, x, Tx))

Now by using Definition 5, Proposition 2, we have S(x, x, Tx) = 0,
and thus x = Tx.
In case(ii), taking the limit as n→ ∞ we obtain

S(x, x, Tx) ≤ g(0, 0, 0, S(x, x, Tx))

Now by using definition 5, propositions 2, we have S(x, x, Tx) = 0,
and thus x = Tx. This completes the proof. �

Corollary 2 Let (X, S) be a S- metric space and T : X → X be a function.
Suppose that there exist g ∈ £ and α ∈ (0, 1), such that α(h + 2) ≤ 1 where
h = g(1, 1, 1, 1). Suppose also that αS(y, y, Ty) ≤ S(x, y, z) implies

S(Tx, Ty, Tz) ≤ g(S(x, y, z), S(x, x, Tx), S(y, y, Ty), S(z, z, Tz))

for all x, y, z ∈ X. Then F(T) is non-empty.

Corollary 3 Let (X, S) be a complete S-metric space and T : X→ X a function
such that for all x, y, z ∈ X,

S(Tx, Ty, Tz) ≤ LS(x, y, z),

where L ∈ (0, 1). Then there exists a unique point u ∈ X such that Tu = u.
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Proof. Let g(x1, x2, x3, x4) = Lx1. �

Corollary 4 Let (X, S) be a complete S-metric space and T : X→ X a function
such that for all x, y, z ∈ X,

S(Tx, Ty, Tz) ≤ Lmax{S(x, y, z), S(x, x, Tx), S(y, y, Ty), S(z, z, Tz)}

where L ∈ (0, 1). Then there exists a unique point u ∈ X such that Tu = u.

Proof. Let g(x1, x2, x3, x4) = Lmax{x1, x2, x3, x4}. �
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