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Abstract. In the present paper we introduce the sequence spaces co{ M, A, p, q},
(M, A, p, q} and 1o{M, A,p, q} defined by a Musielak-Orlicz function

M = (My). We study some topological properties and prove some inclu-

sion relations between these spaces.

1 Introduction and preliminaries

An Orlicz function M : [0,00) — [0, 00) is a continuous, non-decreasing and
convex function such that M(0) =0, M(x) > 0 for x > 0 and M(x) — oo as
X — 00.

Lindenstrauss and Tzafriri [3] used the idea of Orlicz function to define the
following sequence space,

e E () <o)

k=1

which is called as an Orlicz sequence space. Also &y is a Banach space with

the norm -
lIx] :inf{p >0: ZM("‘J') < 1}.

k=1
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Also, it was shown in [3] that every Orlicz sequence space {y contains a sub-
space isomorphic to €,(p > 1). The A,- condition is equivalent to M(Lx) <
LM(x), for all L with 0 < L < 1. An Orlicz function M can always be repre-
sented in the following integral form

where 1 is known as the kernel of M, is right differentiable for t > 0,n(0) =
0,n(t) > 0, n is non-decreasing and 1n(t) — oo as t — oo.

A sequence M = (My) of Orlicz function is called a Musielak-Orlicz function
(see [4], [8]). A sequence N = (Ny) defined by

Ni(v) = sup{lvlu — My (u) : u > 0}, k=1,2,---

is called the complementary function of a Musielak-Orlicz function M. For
a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space tag
and its subspace h are defined as follows

ty = {x ew:Iy(cx) < oo for some ¢ > O},

hay = {x ew:Iy(ex) < 0o for all ¢ > O},
where [, is a convex modular defined by
[e.o]
Tm(x) =D M, x = (x) € tar.
k=1

We consider tp equipped with the Luxemburg norm
x| :inf{k>O:IM<%> < 1}

or equipped with the Orlicz norm

Ixl® = inf{%@ + IM(kx)> k> o}.

Let w, ly, ¢ and cg denote the spaces of all, bounded, convergent and null
sequences x = (xy) with complex terms respectively. The zero sequence (0,0,...)
is denoted by 0 and p = (px) is a sequence of strictly positive real numbers.
Further the sequence (‘pg]) will be represented by (ty).
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Mursaleen and Noman [6] introduced the notion of A-convergent and A-
bounded sequences as follows :
Let A = (A¢)2; be a strictly increasing sequence of positive real numbers
tending to infinity i.e.

O<A <A<+ and A, 5 00 as k — o0

and said that a sequence x = (xx) € w is A-convergent to the number L, called
the A-limit of x if An(x) — L as m — oo, where

%Z (A — A1)

m
M k=1

The sequence x = (xx) € w is A-bounded if sup,, [Am(x)| < oo. It is well known
[6] that if limy, X, = a in the ordinary sense of convergence, then

hrﬁn <)\1m<Z(}\k_)\k1)|Xk_ a|) =0

k=1

This implies that

. 1 «
hr{Ln|/\m( )—a|—1 ‘MZ](M—MH(M—G) =0

which yields that limy, A (x) = a and hence x = (xx) € w is A-convergent to
a.
Let X be a linear metric space. A function p : X — R is called paranorm, if

1. p(x) >0 for all x € X,
2. p(—x) =p(x) for all x € X,
3. p(x+y) <plx)+ply) for all x,y € X,

4. if (An) is a sequence of scalars with A, — A as 1 — oo and (x,) is a
sequence of vectors with p(xn —x) — 0 as n — oo, then p(Anxn —Ax) —
0 asn — oo.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and
the pair (X,p) is called a total paranormed space. It is well known that the
metric of any linear metric space is given by some total paranorm (see [14],
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Theorem 10.4.2, pp. 183). For more details about sequence spaces (see [1], [2],
[5], [7], [9], [10], [11], [12], [13]) and references therein.

Let M = (My) be a Musielak-Orlicz function and p = (px) be a bounded
sequence of positive real numbers and let (X, q) be a seminormed space semi-
normed by (. In the present paper, we define the following sequence spaces:

/\ X Px
colM, A\,p,q} = {x = (x) ew: [Mk<q(:())>] ty — 0, as k — oo,
for some p > 0},

M, Ap,q} = {x = (xx) Ew: [Mk(q(/\:(x))ﬂpktk — 0, as k — oo,

for some L € X and for some p > 0}
and
loo{M, Ayp, q} = {X = (xx) Ew: Slip [Mk<q(/\;(x))>rktk < 00,
for some p > 0}.

If we take p = (px) = 1, we have

cof M, A, q} = {x = (xx) Ew: {Mk<q(/\;(x))>] — 0, as k — oo,
for some p > O},

(M A q} = {x: (x) e w: {Mk<q(/\k(z)_l—)>] — 0, as k — oo,

for some L € X and for some p > O}

and
loof M, A, q} = {x = (xx) € w:sup [Mk <q(/\;(x)))] < oo, for some p > O}.
k

The following inequality will be used throughout the paper. If 0 < px <
suppx = K, D = max(1,2%7") then

lax + bi[P* < D{lax[P* + [by[Px} (1)
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for all k and ay, by € C. Also |a|P* < max(1,|al¥) for all a € C.
The main aim of this paper is to study some toplogical properties and prove
some inclusion relation between these spaces.

2 Main results

Theorem 1 If M = (M) be a Musielak-Orlicz function and p = (px) be
a bounded sequence of positive real numbers, then the spaces co{M, A\,p,q},
cAM AP, q} and loo{M,A,p,q} are linear spaces over the field of complex
numbers C.

Proof. Let x = (xx), y = (yx) € c{M,A,p,q} and &, 3 € C. Then there exist
positive real numbers p; and p; such that

[Mk<q(/\k(:)_l—)>]pktk—>0, as k — oo
1

and

|:Mk <q(/\k(‘?)_l_)>:|pktk — 0, as k — oo.
2

Let p; = max(2|alp1, 2|Blp2). Since (My) is non-decreasing and convex by
using inequality (1.1), we have
{ <q((06/\k(x)+[3/\k(y))—2L)>rk
My 0 tr
3

< [Mk<GI((X/\k(X) —L) N Q(B/\k(lj) —L) ﬂpktk

P3 P
_ Pk _ Pk
o () (480
< o (SRLIZDY Ll (D)
1 2

— 0 as k — oo.

Thus, ax+ Py € c{M,A,p, q}. Hence c¢{M, A,p, q} is a linear space. Similarly,
we can prove co{M, A, p, q} and loo{M, A, p, q} are linear spaces over the field
of complex numbers C. g
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Theorem 2 M = (My) be a Musielak-Orlicz function and p = (px) be a
bounded sequence of positive real numbers, then loo{ M, A, p, q} is a paranormed
space with the paranorm defined by

A a1

g(x) = q(x1) + inf {pm‘ : sup {Mk <q<;(x))>tkpk} <1, p > 0Obigg},
k>1

where H = max(1, XK).

Proof. (i) Clearly, g(x) > 0 for x = (xx) € loo{M, A,p, q}. Since My (0) = 0,

we get g(0) =0.

(i) g(—x) = g(x)
(iii) Let x = (xx), Yy = (yx) € loo{M, A, p, q}, then there exist py, p2 > 0 such

that
A a1
sup {Mk<q(k(x>)>tk;k} <1
k>1 P1

sup {Mk(q(/\(y))>tkp1k} < 1.
k>1 P2

Let p = p1 + p2, then by Minkowski’s inequality, we have

sup {Mk<q(/\k(z—i_y))>tkplk} = sup {Mk<q(/\k(x—i_y)))tkp]k}

k>1 k>1 p1+ P2

o1 q(Ax(x)) p‘k]
o <p1 + Pz) i?? [Mk( P1 )tk
N < P2 )Sup [Mk<q(/\k(y))>tkp]k}
P1+ P2/ k>1 P2

1

and

N

IN

and thus

glx+y) = q(x1 +y1)

+ inf {(m + pz)pﬁk I sup {Mk<q(/\k(x);/\k(y))>}tkp]k <71, p> O}
k>1

< q(X1)+in{(pl)‘} : sup {Mk<q(/\k(X))> }tkfjk <1p >0}

k>1 P1

k A 1
T q(y)) +in {(pz)H sup {Mk(q(“(‘-”)) }tkvk <1 p> 0}

k>1 P2

=

o
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<g(x)+gly)

(iv) Finally, we prove that the scalar multiplication is continuous. Let p be
any complex number. By definition,

g(px) :q(um)+1nf{ - Sup{Mk<q(uAk(X))> }tk;k <1, D>0}

k>1 P

— lWq(x1) + in {(Wr)‘ﬂ‘ s {w(W) }tkv‘k <1, s 0},

k>1
where 7 = ﬁ. Hence loo{M, A,p, q} is a paranormed space. O
Theorem 3 For any Musielak-Orlicz function M = (My) andp = (px) € loo,
then the spaces co{ M, A\,p, q}, {M,A\,p, q} and loo{ M, A,p, q} are complete

paranormed spaces paranormed by g.

Proof. Suppose (x") is a Cauchy sequence in loo{M, A,p, q}, where x™ =
(xp)2, for all n € N. So that g(x} —x]) — 0 as 1,j — oo. Suppose € > 0 is
given and let s and xo be such that = > 0 and My (52) > sup(pk)tk. Since

g(x* —x)) — 0, as i,j — oo which means that there exists ny € N such that

glxt =) < % for all i,j > no.

This gives g(x} — XJ) < &, and
Ar(xt — %) a2
inf{ppﬁi{:sup{Mk<q(k(XX))>tkPk}§1,p>O}<e (2)
k>1 P $X0

It shows that (x}) is a Cauchy sequence in X. Therefore (x}) is convergent in

. o . L €
X because X is complete. Suppose lim xj = x; then lim g(xj —x}) < —, we
i—o0 j—o0 §$Xo

get
(X —x7) < i
gixq 1 %o
Thus, we have . '
A (xt —x 1
Y LG ) AR
g(xt =)

This implies that

q (/\k(xi - Xj)) N $X0
Mk(g()&—)d)) < (Pk)t < My (—- ) )
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and thus o e .
A (xt — 3 °F =
q(Ax(xt =) < 7 o <2

which shows that (Ax(x!)) is a Cauchy sequence in X for all k € N. Therefore,
(Ax(x')) converges in X. Suppose lim Ay(x') = y for all k € N. Also, we
1—0o0

have lim Ax(x5) = y; — x;. On repeating the same procedure, we obtain
1—00

1lim /\k(xiﬂ) = yx — xx for all k € N. Therefore by continuity of (My), we get
1—00
A (xt — % i
J—00 k>1 P

so that

A (xt —xJ al
sup Mk(q(k(xx)))t{’k < 1.
k>1 p

Let 1 > ny and taking infimum of each p’s, we have

g(xt—x) < e.
So (x! —x) € loo{M, A, p, q}. Hence x = x* — (x! —x) € loo{M, A, P, q}, since
loo{M, A, p, q} is a linear space. Hence, loo{M,A,;p,q} is a complete para-

normed space. Similarly, we can prove the spaces co{ M, A, p, q} and c¢{M, A, p, q}
are complete paranormed spaces. O

Theorem 4 If0 < px <1 < 0 for each k, then
Z{IM, Ay py q} € Z{IM, A1, g}
for Z=cy and c.

Proof. Let x = (x¢) € ¢{M, A,p, q}. Then there exists some p >0 and L € X

such that
A —L)\Px
Mk<q(k(z))> ty 0 as k — oo.

This implies that
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for sufficiently large k. Hence we get
A —L)\™ A —L)\P*
Mk<q(k(z))> te < My <q(k(z))> ty — 0 as k — oo.

This implies that x = (xx) € ¢{M, A, 1, q}. This completes the proof. Similarly,
we can prove for the case Z = cyp. 0

Theorem 5 Suppose M' = (M) and M" = (M}/) are Musielak-Orlicz func-
tions satisfying the Ay-condition then we have the following results:

(i) if (pi) € loo then ZIM',A,p,q) € ZIM” 0 M/, A,p, q} for Z = c,co
and lso.

(i) ZIM, A,y q) N ZIM" Ayp @) € ZIM! + M",A,p, g} for Z = c,co
and ls.

Proof. If x = (xx) € co{M, A, p, q} then there exists some p > 0 such that
A Pk
{ML(W)} ty =0 as k — oo.

Suppose
A
Y = Mﬁ(q(g(x))> for all k € N.

Choose & > 0 be such that 0 < 6 < 1, then for yx > & we have yi < % < 1+%.
Now (M) satisfies Aj-condition so that there exists ] > 1 such that

MY ) < Emp) + Bemp) = Memp ).

25 25 o
We obtain

Pk Pk Px
oo mp (DN = g (PRI = Twag]

< max { sup ([M{JU )]pk>,sup ([kM{J(Z)é_]]pk) }[yk]pktk — 0, as k — oo.
K K

Similarly, we can prove the other cases.
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(ii) Suppose x = (xx) € co{M, A, p,q} N cofM], A, p,q}, then there exist
p1, p2 > 0 such that

(CIECR) AR
() o e

Let p = max{p1, p2}. The remaining proof follows from the inequality

{ [(Mﬁ + M) <q (A;(X)) )]pktk} < D{ [ML (q (Apk](x)) )]pktk
e (5]

Hence co{My, A, p, q} N cofM, A, p, q} C colM; + M/, A, p, q}. Similarly we
can prove the other cases. O

and

Theorem 6 (i) If 0 < infpy < px < 1, then loo{M, A,p, q} C loo{M, A, q}.
(ii) If 1 < pr < suppk < 00, then loo{M, A, q} C loo{M, Ayp, q}.

Proof. (i) Let x = (xx) € loo{M, A, P, q}. Since 0 < inf py < 1, we have

o { (e (5 2 o (5

and hence x = (xy) € loo{ M, A, q}.
(ii) Let px > 1 for each k and sup px < 00. Let x = (xk) € loo{M, A, q}, then
k

for each €, 0 < e < 1, there exists a positive integer ng € N such that

A
Sup{Mk<q(k(X)))} <e<l.
k p
This implies that

I s (25

Thus x = (xk) € loo{M, A, p, q} and this completes the proof. O
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