

DOI: 10.2478/ausm-2021-0031

Some classes of sequence spaces defined by a Musielak-Orlicz function

Sunil K. Sharma

Department of Mathematics, Cluster University of Jammu, Jammu, J&K 180001, India email: sunilksharma42@gmail.com

Abstract. In the present paper we introduce the sequence spaces $c_0\{\mathcal{M}, \Lambda, \mathfrak{p}, \mathfrak{q}\}$, $c\{\mathcal{M}, \Lambda, \mathfrak{p}, \mathfrak{q}\}$ and $l_\infty\{\mathcal{M}, \Lambda, \mathfrak{p}, \mathfrak{q}\}$ defined by a Musielak-Orlicz function $\mathcal{M} = (M_k)$. We study some topological properties and prove some inclusion relations between these spaces.

1 Introduction and preliminaries

An Orlicz function $M:[0,\infty)\to[0,\infty)$ is a continuous, non-decreasing and convex function such that $M(0)=0,\ M(x)>0$ for x>0 and $M(x)\longrightarrow\infty$ as $x\longrightarrow\infty$.

Lindenstrauss and Tzafriri [3] used the idea of Orlicz function to define the following sequence space,

$$\ell_{M} = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_{k}|}{\rho}\right) < \infty \right\}$$

which is called as an Orlicz sequence space. Also ℓ_M is a Banach space with the norm

$$||x||=\inf\bigg\{\rho>0: \sum_{k=1}^\infty M\bigg(\frac{|x_k|}{\rho}\bigg)\leq 1\bigg\}.$$

2010 Mathematics Subject Classification: 40A05, 46A45, 46E30

Key words and phrases: Orlicz function, Musielak-Orlicz function, paranorm space, sequence space

Also, it was shown in [3] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p(p \geq 1)$. The Δ_2 - condition is equivalent to $M(Lx) \leq LM(x)$, for all L with 0 < L < 1. An Orlicz function M can always be represented in the following integral form

$$M(x) = \int_0^x \eta(t) dt$$

where η is known as the kernel of M, is right differentiable for $t \geq 0, \eta(0) = 0, \eta(t) > 0, \eta$ is non-decreasing and $\eta(t) \to \infty$ as $t \to \infty$.

A sequence $\mathcal{M} = (M_k)$ of Orlicz function is called a Musielak-Orlicz function (see [4], [8]). A sequence $\mathcal{N} = (N_k)$ defined by

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\}, \ k = 1, 2, \cdots$$

is called the complementary function of a Musielak-Orlicz function \mathcal{M} . For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $t_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows

$$t_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \ \mathrm{for \ some} \ c > 0 \Big\},$$

$$h_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \ \mathrm{for \ all} \ c > 0 \Big\},$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} M_k(x_k), x = (x_k) \in t_{\mathcal{M}}.$$

We consider $t_{\mathcal{M}}$ equipped with the Luxemburg norm

$$\|x\| = \inf \left\{ k > 0 : I_{\mathcal{M}} \Big(\frac{x}{k} \Big) \leq 1 \right\}$$

or equipped with the Orlicz norm

$$||x||^0=\inf\Big\{\frac{1}{k}\Big(1+I_{\mathcal{M}}(kx)\Big):k>0\Big\}.$$

Let w, l_{∞} , c and c_0 denote the spaces of all, bounded, convergent and null sequences $x=(x_k)$ with complex terms respectively. The zero sequence (0,0,...) is denoted by θ and $p=(p_k)$ is a sequence of strictly positive real numbers. Further the sequence (p_k^{-1}) will be represented by (t_k) .

Mursaleen and Noman [6] introduced the notion of λ -convergent and λ -bounded sequences as follows :

Let $\lambda = (\lambda_k)_{k=1}^{\infty}$ be a strictly increasing sequence of positive real numbers tending to infinity i.e.

$$0<\lambda_0<\lambda_1<\cdots \ {\rm and}\ \lambda_k\to\infty \ {\rm as}\ k\to\infty$$

and said that a sequence $x=(x_k)\in w$ is λ -convergent to the number L, called the λ -limit of x if $\Lambda_m(x) \longrightarrow L$ as $m \to \infty$, where

$$\lambda_{\mathfrak{m}}(x) = \frac{1}{\lambda_{\mathfrak{m}}} \sum_{k=1}^{\mathfrak{m}} (\lambda_k - \lambda_{k-1}) x_k.$$

The sequence $x = (x_k) \in w$ is λ -bounded if $\sup_{\mathfrak{m}} |\Lambda_{\mathfrak{m}}(x)| < \infty$. It is well known [6] that if $\lim_{\mathfrak{m}} x_{\mathfrak{m}} = \mathfrak{a}$ in the ordinary sense of convergence, then

$$\lim_{m} \left(\frac{1}{\lambda_m} \left(\sum_{k=1}^{m} (\lambda_k - \lambda_{k-1}) |x_k - \alpha| \right) = 0.$$

This implies that

$$\lim_{m} |\Lambda_m(x) - \alpha| = \lim_{m} \left| \frac{1}{\lambda_m} \sum_{k=1}^{m} (\lambda_k - \lambda_{k-1}) (x_k - \alpha) \right| = 0$$

which yields that $\lim_{m} \Lambda_{m}(x) = a$ and hence $x = (x_{k}) \in w$ is λ -convergent to a.

Let X be a linear metric space. A function $p: X \to \mathbb{R}$ is called paranorm, if

- 1. $p(x) \ge 0$ for all $x \in X$,
- 2. p(-x) = p(x) for all $x \in X$,
- $3. \ p(x+y) \leq p(x) + p(y) \ \mathrm{for \ all} \ x,y \in X,$
- 4. if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [14],

Theorem 10.4.2, pp. 183). For more details about sequence spaces (see [1], [2], [5], [7], [9], [10], [11], [12], [13]) and references therein.

Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function and $\mathfrak{p} = (\mathfrak{p}_k)$ be a bounded sequence of positive real numbers and let (X, \mathfrak{q}) be a seminormed space seminormed by \mathfrak{q} . In the present paper, we define the following sequence spaces:

$$\begin{split} c_0 \{\mathcal{M}, \Lambda, p, q\} &= \left\{ x = (x_k) \in w : \left[M_k \bigg(\frac{q \left(\Lambda_k(x) \right)}{\rho} \bigg) \right]^{p_k} t_k \to 0, \ \, \mathrm{as} \ \, k \to \infty, \\ & \mathrm{for \ some} \ \, \rho > 0 \right\}, \\ c \{\mathcal{M}, \Lambda, p, q\} &= \left\{ x = (x_k) \in w : \left[M_k \bigg(\frac{q \left(\Lambda_k(x) \right)}{\rho} \bigg) \right]^{p_k} t_k \to 0, \ \, \mathrm{as} \ \, k \to \infty, \\ & \mathrm{for \ some} \ \, L \in X \ \, \mathrm{and \ for \ some} \ \, \rho > 0 \right\} \end{split}$$

and

$$\begin{split} l_{\infty}\!\{\mathcal{M},\Lambda,p,q\} &= \bigg\{ x = (x_k) \in w : \sup_{k} \bigg[M_k \bigg(\frac{q \big(\Lambda_k(x) \big)}{\rho} \bigg) \bigg]^{p_k} t_k < \infty, \\ & \text{for some } \; \rho > 0 \bigg\}. \end{split}$$

If we take $p = (p_k) = 1$, we have

$$\begin{split} c_0 \{\mathcal{M}, \Lambda, q\} &= \left\{ x = (x_k) \in w : \left[M_k \left(\frac{q \left(\Lambda_k(x) \right)}{\rho} \right) \right] \to 0, \ \, \mathrm{as} \ \, k \to \infty, \\ & \mathrm{for \ some} \ \, \rho > 0 \right\}, \\ c \{\mathcal{M}, \Lambda, q\} &= \left\{ x = (x_k) \in w : \left[M_k \left(\frac{q \left(\Lambda_k(x) - L \right)}{\rho} \right) \right] \to 0, \ \, \mathrm{as} \ \, k \to \infty, \\ & \mathrm{for \ some} \ \, L \in X \ \, \mathrm{and \ for \ some} \ \, \rho > 0 \right\} \end{split}$$

and

$$l_{\infty}\{\mathcal{M},\Lambda,q\} = \bigg\{x = (x_k) \in w : \sup_k \left\lceil M_k \bigg(\frac{q\big(\Lambda_k(x)\big)}{\rho}\bigg) \right\rceil < \infty, \text{ for some } \rho > 0 \bigg\}.$$

The following inequality will be used throughout the paper. If $0 \le p_k \le \sup p_k = K, \ D = \max(1,2^{K-1})$ then

$$|a_k + b_k|^{p_k} \le D\{|a_k|^{p_k} + |b_k|^{p_k}\} \tag{1}$$

 $\mathrm{for}\ \mathrm{all}\ k\ \mathrm{and}\ \alpha_k, b_k \in \mathbb{C}.\ \mathrm{Also}\ |\alpha|^{p_k} \leq \max(1, |\alpha|^K)\ \mathrm{for}\ \mathrm{all}\ \alpha \in \mathbb{C}.$

The main aim of this paper is to study some toplogical properties and prove some inclusion relation between these spaces.

2 Main results

 $\rightarrow 0$ as $k \rightarrow \infty$.

Theorem 1 If $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function and $\mathfrak{p} = (\mathfrak{p}_k)$ be a bounded sequence of positive real numbers, then the spaces $c_0\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$, $c\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$ and $l_\infty\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$ are linear spaces over the field of complex numbers \mathbb{C} .

Proof. Let $x = (x_k)$, $y = (y_k) \in c\{\mathcal{M}, \Lambda, p, q\}$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive real numbers ρ_1 and ρ_2 such that

$$\left\lceil M_k \bigg(\frac{q \big(\Lambda_k(x) - L \big)}{\rho_1} \bigg) \right\rceil^{p_k} t_k \to 0, \ \mathrm{as} \ k \to \infty$$

and

$$\left\lceil M_k \bigg(\frac{q \big(\Lambda_k(y) - L \big)}{\rho_2} \bigg) \right\rceil^{p_k} t_k \to 0, \ \mathrm{as} \ k \to \infty.$$

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since (M_k) is non-decreasing and convex by using inequality (1.1), we have

$$\begin{split} & \left[M_k \bigg(\frac{q \big((\alpha \Lambda_k(x) + \beta \Lambda_k(y)) - 2L \big)}{\rho_3} \bigg) \right]^{p_k} t_k \\ & \leq & \left[M_k \bigg(\frac{q \big(\alpha \Lambda_k(x) - L \big)}{\rho_3} + \frac{q \big(\beta \Lambda_k(y) - L \big)}{\rho_3} \bigg) \right]^{p_k} t_k \\ & \leq & D \frac{1}{2^{p_k}} \bigg[M_k \bigg(\frac{q \big(\Lambda_k(x) - L \big)}{\rho_1} \bigg) \bigg]^{p_k} t_k + D \frac{1}{2^{p_k}} \bigg[M_k \bigg(\frac{q \big(\Lambda_k(y) - L \big)}{\rho_2} \bigg) \bigg]^{p_k} t_k \\ & \leq & D \bigg[M_k \bigg(\frac{q \big(\Lambda_k(x) - L \big)}{\rho_1} \bigg) \bigg]^{p_k} t_k + D \bigg[M_k \bigg(\frac{q \big(\Lambda_k(y) - L \big)}{\rho_2} \bigg) \bigg]^{p_k} t_k \end{split}$$

Thus, $\alpha x + \beta y \in c\{\mathcal{M}, \Lambda, p, q\}$. Hence $c\{\mathcal{M}, \Lambda, p, q\}$ is a linear space. Similarly, we can prove $c_0\{\mathcal{M}, \Lambda, p, q\}$ and $l_\infty\{\mathcal{M}, \Lambda, p, q\}$ are linear spaces over the field of complex numbers \mathbb{C} .

Theorem 2 $\mathcal{M}=(M_k)$ be a Musielak-Orlicz function and $\mathfrak{p}=(\mathfrak{p}_k)$ be a bounded sequence of positive real numbers, then $l_{\infty}\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$ is a paranormed space with the paranorm defined by

$$g(x) = q(x_1) + \inf\left\{\rho^{\frac{p_k}{H}} : \sup_{k \geq 1} \left\{M_k\bigg(\frac{q\big(\Lambda_k(x)\big)}{\rho}\bigg) t_k^{\frac{1}{p_k}}\right\} \leq 1, \ \rho > \text{Obigg}\},$$

where $H = \max(1, K)$.

Proof. (i) Clearly, $g(x) \ge 0$ for $x = (x_k) \in l_{\infty}\{\mathcal{M}, \Lambda, \mathfrak{p}, \mathfrak{q}\}$. Since $M_k(0) = 0$, we get $g(\theta) = 0$.

(ii) g(-x) = g(x)

(iii) Let $x=(x_k),\ y=(y_k)\in l_\infty\{\mathcal{M},\Lambda,p,q\}$, then there exist $\rho_1,\rho_2>0$ such that

$$\sup_{k>1} \left\{ M_k \left(\frac{q \left(\Lambda_k(x) \right)}{\rho_1} \right) t_k^{\frac{1}{p_k}} \right\} \le 1$$

and

$$\sup_{k\geq 1} \left\{ M_k \bigg(\frac{q\big(\Lambda(y)\big)}{\rho_2} \bigg) t_k^{\frac{1}{p_k}} \right\} \leq 1.$$

Let $\rho = \rho_1 + \rho_2$, then by Minkowski's inequality, we have

$$\begin{split} \sup_{k\geq 1} \left\{ M_k \bigg(\frac{q \big(\Lambda_k(x+y) \big)}{\rho} \bigg) t_k^{\frac{1}{p_k}} \right\} &= \sup_{k\geq 1} \left\{ M_k \bigg(\frac{q \big(\Lambda_k(x+y) \big)}{\rho_1 + \rho_2} \bigg) t_k^{\frac{1}{p_k}} \right\} \\ &\leq \bigg(\frac{\rho_1}{\rho_1 + \rho_2} \bigg) \sup_{k\geq 1} \bigg[M_k \bigg(\frac{q \big(\Lambda_k(x) \big)}{\rho_1} \bigg) t_k^{\frac{1}{p_k}} \bigg] \\ &+ \bigg(\frac{\rho_2}{\rho_1 + \rho_2} \bigg) \sup_{k\geq 1} \bigg[M_k \bigg(\frac{q \big(\Lambda_k(y) \big)}{\rho_2} \bigg) t_k^{\frac{1}{p_k}} \bigg] \\ &\leq 1 \end{split}$$

and thus

$$\begin{split} g(x+y) &= q(x_1+y_1) \\ &+ \inf \left\{ (\rho_1 + \rho_2)^{\frac{p_k}{H}} : \sup_{k \geq 1} \left\{ \! M_k \! \left(\frac{q \left(\Lambda_k(x) + \Lambda_k(y) \right)}{\rho} \right) \! \right\} t_k^{\frac{1}{p_k}} \leq 1, \; \rho > 0 \right\} \\ &\leq q(x_1) + \inf \left\{ (\rho_1)^{\frac{p_k}{H}} : \sup_{k \geq 1} \left\{ \! M_k \! \left(\frac{q \left(\Lambda_k(x) \right)}{\rho_1} \right) \right\} t_k^{\frac{1}{p_k}} \leq 1, \; \rho > 0 \right\} \\ &+ q(y_1) + \inf \left\{ (\rho_2)^{\frac{p_k}{H}} : \sup_{k \geq 1} \left\{ \! M_k \! \left(\frac{q \left(\Lambda_k(y) \right)}{\rho_2} \right) \right\} t_k^{\frac{1}{p_k}} \leq 1, \; \rho > 0 \right\} \end{split}$$

$$\leq g(x) + g(y)$$

(iv) Finally, we prove that the scalar multiplication is continuous. Let μ be any complex number. By definition,

$$\begin{split} g(\mu x) &= q(\mu x_1) + \inf \left\{ \rho^{\frac{p_k}{H}} : \sup_{k \geq 1} \left\{ M_k \bigg(\frac{q \big(\mu \Lambda_k(x) \big)}{\rho} \bigg) \right\} t_k^{\frac{1}{p_k}} \leq 1, \quad \rho > 0 \right\} \\ &= |\mu| q(x_1) + \inf \left\{ (|\lambda| r)^{\frac{p_k}{H}} : \sup_{k \geq 1} \left\{ M_k \bigg(\frac{q \big(\Lambda_k(x) \big)}{r} \bigg) \right\} t_k^{\frac{1}{p_k}} \leq 1, \quad r > 0 \right\}, \end{split}$$

where $r = \frac{\rho}{|u|}$. Hence $l_{\infty}\{\mathcal{M}, \Lambda, p, q\}$ is a paranormed space.

Theorem 3 For any Musielak-Orlicz function $\mathcal{M}=(M_k)$ and $\mathfrak{p}=(\mathfrak{p}_k)\in \mathfrak{l}_{\infty}$, then the spaces $c_0\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$, $c\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$ and $\mathfrak{l}_{\infty}\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$ are complete paranormed spaces paranormed by \mathfrak{g} .

Proof. Suppose (x^n) is a Cauchy sequence in $l_{\infty}\{\mathcal{M}, \Lambda, \mathfrak{p}, \mathfrak{q}\}$, where $x^n = (x_k^n)_{k=1}^{\infty}$ for all $n \in \mathbb{N}$. So that $g(x^i - x^j) \to 0$ as $i, j \to \infty$. Suppose $\epsilon > 0$ is given and let s and x_0 be such that $\frac{\epsilon}{sx_0} > 0$ and $M_k(\frac{sx_0}{2}) \ge \sup_{k>1} (\mathfrak{p}_k)^{t_k}$. Since

 $g(x^i-x^j)\to 0,$ as $i,j\to \infty$ which means that there exists $n_0\in\mathbb{N}$ such that

$$g(x^i-x^j)<\frac{\varepsilon}{sx_0},\ \, {\rm for\ \, all}\ \, i,j\geq n_0.$$

This gives $g(x_1^i - x_1^j) < \frac{\epsilon}{sx_0}$ and

$$\inf \left\{ \rho^{\frac{p_k}{H}} : \sup_{k \ge 1} \left\{ M_k \left(\frac{q \left(\Lambda_k(x^i - x^j) \right)}{\rho} \right) t_k^{\frac{1}{p_k}} \right\} \le 1, \rho > 0 \right\} < \frac{\varepsilon}{s x_0}. \tag{2}$$

It shows that (x_1^i) is a Cauchy sequence in X. Therefore (x_1^i) is convergent in X because X is complete. Suppose $\lim_{i\to\infty}x_1^i=x_1$ then $\lim_{j\to\infty}g(x_1^i-x_1^j)<\frac{\varepsilon}{sx_0}$, we get

$$g(x_1^i - x_1) < \frac{\epsilon}{sx_0}$$
.

Thus, we have

$$M_k\bigg(\frac{q\big(\Lambda_k(x^i-x^j)\big)}{g(x^i-x^j)}\bigg)t_k^{\frac{1}{p_k}}\leq 1.$$

This implies that

$$M_k \left(\frac{q \left(\Lambda_k(x^i - x^j) \right)}{g(x^i - x^j)} \right) \le (p_k)^{t_k} \le M_k \left(\frac{s x_0}{2} \right)$$

and thus

$$q(\Lambda_k(x^i-x^j))<\frac{sx_0}{2}.\frac{\varepsilon}{sx_0}<\frac{\varepsilon}{2}$$

which shows that $(\Lambda_k(x^i))$ is a Cauchy sequence in X for all $k \in \mathbb{N}$. Therefore, $(\Lambda_k(x^i))$ converges in X. Suppose $\lim_{i \to \infty} \Lambda_k(x^i) = y$ for all $k \in \mathbb{N}$. Also, we have $\lim_{i \to \infty} \Lambda_k(x_2^i) = y_1 - x_1$. On repeating the same procedure, we obtain $\lim_{i \to \infty} \Lambda_k(x_{k+1}^i) = y_k - x_k$ for all $k \in \mathbb{N}$. Therefore by continuity of (M_k) , we get

$$\lim_{j\to\infty}\sup_{k>1}M_k\bigg(\frac{q\big(\Lambda_k(x^i-x^j)\big)}{\rho}\bigg)t_k^{\frac{1}{p_k}}\leq 1,$$

so that

$$\sup_{k>1} M_k \bigg(\frac{q\big(\Lambda_k(x^{\mathfrak{i}}-x^{\mathfrak{j}})\big)}{\rho} \bigg) t_k^{\frac{1}{p_k}} \leq 1.$$

Let $i \ge n_0$ and taking infimum of each ρ 's, we have

$$g(x^i - x) < \epsilon$$
.

So $(x^i-x) \in l_{\infty}\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$. Hence $x=x^i-(x^i-x) \in l_{\infty}\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$, since $l_{\infty}\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$ is a linear space. Hence, $l_{\infty}\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$ is a complete paranormed space. Similarly, we can prove the spaces $c_0\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$ and $c\{\mathcal{M},\Lambda,\mathfrak{p},\mathfrak{q}\}$ are complete paranormed spaces.

Theorem 4 If $0 < p_k \le r_k < \infty$ for each k, then

$$Z{M, \Lambda, p, q} \subseteq Z{M, \Lambda, r, q}$$

for $Z = c_0$ and c.

Proof. Let $x=(x_k)\in c\{\mathcal{M},\Lambda,p,q\}$. Then there exists some $\rho>0$ and $L\in X$ such that

$$M_k\bigg(\frac{q\big(\Lambda_k(x)-L\big)}{\rho}\bigg)^{p_k}t_k\to 0\ {\rm as}\ k\to\infty.$$

This implies that

$$M_k\left(\frac{q(\Lambda_k(x)-L)}{\rho}\right)<\varepsilon, \ (0<\varepsilon<1)$$

for sufficiently large k. Hence we get

$$M_k \bigg(\frac{q \big(\Lambda_k(x) - L \big)}{\rho} \bigg)^{r_k} t_k \ \leq \ M_k \bigg(\frac{q \big(\Lambda_k(x) - L \big)}{\rho} \bigg)^{p_k} t_k \to 0 \ \mathrm{as} \ k \to \infty.$$

This implies that $x=(x_k)\in c\{\mathcal{M},\Lambda,r,q\}$. This completes the proof. Similarly, we can prove for the case $Z=c_0$.

Theorem 5 Suppose $\mathcal{M}' = (M'_k)$ and $\mathcal{M}'' = (M''_k)$ are Musielak-Orlicz functions satisfying the Δ_2 -condition then we have the following results:

- (i) if $(\mathfrak{p}_k) \in l_{\infty}$ then $Z\{\mathcal{M}',\Lambda,\mathfrak{p},\mathfrak{q}\} \subseteq Z\{\mathcal{M}'' \circ \mathcal{M}',\Lambda,\mathfrak{p},\mathfrak{q}\}$ for $Z=c,c_0$ and l_{∞} .
- (ii) $Z\{\mathcal{M}', \Lambda, \mathfrak{p}, \mathfrak{q}\} \cap Z\{\mathcal{M}'', \Lambda, \mathfrak{p}, \mathfrak{q}\} \subseteq Z\{\mathcal{M}' + \mathcal{M}'', \Lambda, \mathfrak{p}, \mathfrak{q}\} \text{ for } Z = c, c_0 \text{ and } l_{\infty}.$

Proof. If $x = (x_k) \in c_0[\mathcal{M}, \Lambda, p, q]$ then there exists some $\rho > 0$ such that

$$\left\{M_k'\bigg(\frac{q\big(\Lambda_k(x)\big)}{\rho}\bigg)\right\}^{p_k}t_k\to 0\ \mathrm{as}\ k\to\infty.$$

Suppose

$$y_k = M_k' \bigg(\frac{q \big(\Lambda_k(x) \big)}{\rho} \bigg) \ \ \mathrm{for \ all} \ \ k \in \mathbb{N}.$$

Choose $\delta>0$ be such that $0<\delta<1$, then for $y_k\geq \delta$ we have $y_k<\frac{y_k}{\delta}<1+\frac{y_k}{\delta}$. Now (M_k'') satisfies Δ_2 -condition so that there exists $J\geq 1$ such that

$$M_k''(y_k)<\frac{Jy_k}{2\delta}M_k''(2)+\frac{Jy_k}{2\delta}M_k''(2)=\frac{Jy_k}{\delta}M_k''(2).$$

We obtain

$$\begin{split} &\left[(M_k''\circ M_k')\left(\frac{q\left(\Lambda_k(x)\right)}{\rho}\right)\right]^{p_k}t_k = \left[M_k''\left\{M_k'\left(\frac{q\left(\Lambda_k(x)\right)}{\rho}\right)\right\}\right]^{p_k}t_k = \left[M_k''(y_k)\right]^{p_k}t_k \\ &\leq \max\left\{\sup_k\left([M_k''(1)]^{p_k}\right), \sup_k\left([kM_k''(2)\delta^{-1}]^{p_k}\right)\right\}[y_k]^{p_k}t_k \to 0, \ \ \mathrm{as} \ \ k \to \infty. \end{split}$$

Similarly, we can prove the other cases.

(ii) Suppose $x=(x_k)\in c_0\{M_k',\Lambda,\mathfrak{p},\mathfrak{q}\}\cap c_0\{M_k'',\Lambda,\mathfrak{p},\mathfrak{q}\}$, then there exist $\rho_1,\ \rho_2>0$ such that

$$\left\{\left(M_k'\!\left(\frac{q\!\left(\Lambda_k(x)\right)}{\rho_1}\right)\right)^{p_k}\!t_k\right\}\to 0,\ \, \mathrm{as}\ \, k\to\infty$$

and

$$\left\{\left(M_k''\!\left(\frac{q\!\left(\Lambda_k(x)\right)}{\rho_2}\right)\right)^{p_k}\!t_k\right\}\to 0,\ \, \mathrm{as}\ \, k\to\infty.$$

Let $\rho = \max\{\rho_1, \rho_2\}$. The remaining proof follows from the inequality

$$\begin{split} \left\{ \left[(M_k' + M_k'') \bigg(\frac{q \big(\Lambda_k(x) \big)}{\rho} \bigg) \right]^{p_k} t_k \right\} &\leq D \bigg\{ \left[M_k' \bigg(\frac{q \big(\Lambda_k(x) \big)}{\rho_1} \bigg) \right]^{p_k} t_k \\ &+ \left[M_k'' \bigg(\frac{q \big(\Lambda_k(x) \big)}{\rho_2} \bigg) \right]^{p_k} t_k \bigg\}. \end{split}$$

Hence $c_0\{M_k',\Lambda,p,q\}\cap c_0\{M_k'',\Lambda,p,q\}\subseteq c_0\{M_k'+M_k'',\Lambda,p,q\}$. Similarly we can prove the other cases.

Theorem 6 (i) If $0 < \inf p_k \le p_k < 1$, then $l_{\infty}\{\mathcal{M}, \Lambda, p, q\} \subset l_{\infty}\{\mathcal{M}, \Lambda, q\}$. (ii) If $1 \le p_k \le \sup p_k < \infty$, then $l_{\infty}\{\mathcal{M}, \Lambda, q\} \subset l_{\infty}\{\mathcal{M}, \Lambda, p, q\}$.

Proof. (i) Let $x = (x_k) \in l_{\infty}\{\mathcal{M}, \Lambda, p, q\}$. Since $0 < \inf p_k \le 1$, we have

$$\sup_k \left\{ \left[M_k \bigg(\frac{q \big(\Lambda_k(x) \big)}{\rho_2} \bigg) \right] \right\} \leq \sup_k \left\{ \left[M_k \bigg(\frac{q \big(\Lambda_k(x) \big)}{\rho_2} \bigg) \right]^{p_k} t_k \right\}$$

and hence $x = (x_k) \in l_{\infty}\{\mathcal{M}, \Lambda, q\}.$

(ii) Let $p_k \geq 1$ for each k and $\sup_k p_k < \infty$. Let $x = (x_k) \in l_\infty \{\mathcal{M}, \Lambda, q\}$, then for each ϵ , $0 < \epsilon < 1$, there exists a positive integer $n_0 \in \mathbb{N}$ such that

$$\sup_{k} \left\{ M_k \bigg(\frac{q \big(\Lambda_k(x) \big)}{\rho} \bigg) \right\} \leq \varepsilon < 1.$$

This implies that

$$\sup_k \bigg\{ \bigg[M_k \bigg(\frac{q \big(\Lambda_k(x) \big)}{\rho} \bigg) \bigg]^{p_k} t_k \bigg\} \leq \sup_k \bigg\{ M_k \bigg(\frac{q \big(\Lambda_k(x) \big)}{\rho} \bigg) \bigg\}.$$

Thus $x=(x_k)\in l_\infty\{\mathcal{M},\Lambda,p,q\}$ and this completes the proof.

References

- [1] T. Bilgin, Some new difference sequences spaces defined by an Orlicz function, *Filomat*, **17** (2003), 1–8.
- [2] A. Esi, Some new paranormed sequence spaces defined by Orlicz function, International Journal of Science, Environment and Technology, 1 (2012), 49–55.
- [3] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379–390.
- [4] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- [5] M. Mursaleen, Generalized spaces of difference sequences, J. Math. Anal. Appl., 203 (1996), 738–745.
- [6] M. Mursaleen and A. K. Noman, On some new sequence spaces of non absolute type related to the spaces l_p and l_{∞} I, Filomat, 25 (2011), 33–51.
- [7] M. Mursaleen and A. K. Noman, On some new sequence spaces of non absolute type related to the spaces l_p and l_∞ II, *Math. Commun.*, **16** (2011), 383–398.
- [8] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034 (1983).
- [9] K. Raj, A. K. Sharma and S. K. Sharma, A Sequence space defined by Musielak-Orlicz functions, Int. J. Pure Appl. Math., 67 (2011), 475–484.
- [10] K. Raj, S. K. Sharma and A. K. Sharma, Some difference sequence spaces in n-normed spaces defined by Musielak-Orlicz function, Armenian J. Math., 3 (2010), 127–141.
- [11] K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz function, Acta. Univ. Saprientia Math., 3 (2011), 97–109.
- [12] K. Raj and S. K. Sharma, Some multiplier sequence spaces defined by a Musielak-Orlicz function in n-normed spaces, New Zealand J. Math., 42 (2012), 45–56.

- [13] B. C. Tripathy and B. Sarma, Some Some classes of difference paranormed sequence spaces defined by Orlicz function, *Thai J. Math.*, **3** (2005), 209–218.
- [14] A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud. 85 (1984).