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Abstract. In the present paper we introduce the sequence spaces c0{M, Λ, p, q},
c{M, Λ, p, q} and l∞{M, Λ, p, q} defined by a Musielak-Orlicz function
M = (Mk). We study some topological properties and prove some inclu-
sion relations between these spaces.

1 Introduction and preliminaries

An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing and
convex function such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as
x −→∞.

Lindenstrauss and Tzafriri [3] used the idea of Orlicz function to define the
following sequence space,

`M =

{
x ∈ w :

∞∑
k=1

M

(
|xk|

ρ

)
<∞}

which is called as an Orlicz sequence space. Also `M is a Banach space with
the norm

||x|| = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|

ρ

)
≤ 1
}
.
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Also, it was shown in [3] that every Orlicz sequence space `M contains a sub-
space isomorphic to `p(p ≥ 1). The ∆2- condition is equivalent to M(Lx) ≤
LM(x), for all L with 0 < L < 1. An Orlicz function M can always be repre-
sented in the following integral form

M(x) =

∫x
0

η(t)dt

where η is known as the kernel of M, is right differentiable for t ≥ 0, η(0) =
0, η(t) > 0, η is non-decreasing and η(t)→∞ as t→∞.

A sequenceM = (Mk) of Orlicz function is called a Musielak-Orlicz function
(see [4], [8]). A sequence N = (Nk) defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz function M. For
a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM
and its subspace hM are defined as follows

tM =
{
x ∈ w : IM(cx) <∞ for some c > 0

}
,

hM =
{
x ∈ w : IM(cx) <∞ for all c > 0

}
,

where IM is a convex modular defined by

IM(x) =

∞∑
k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x|| = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1
k

(
1+ IM(kx)

)
: k > 0

}
.

Let w, l∞, c and c0 denote the spaces of all, bounded, convergent and null
sequences x = (xk) with complex terms respectively. The zero sequence (0,0,...)
is denoted by θ and p = (pk) is a sequence of strictly positive real numbers.
Further the sequence (p−1k ) will be represented by (tk).
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Mursaleen and Noman [6] introduced the notion of λ-convergent and λ-
bounded sequences as follows :
Let λ = (λk)

∞
k=1 be a strictly increasing sequence of positive real numbers

tending to infinity i.e.

0 < λ0 < λ1 < · · · and λk →∞ as k→∞
and said that a sequence x = (xk) ∈ w is λ-convergent to the number L, called
the λ-limit of x if Λm(x) −→ L as m→∞, where

λm(x) =
1

λm

m∑
k=1

(λk − λk−1)xk.

The sequence x = (xk) ∈ w is λ-bounded if supm |Λm(x)| <∞. It is well known
[6] that if limm xm = a in the ordinary sense of convergence, then

lim
m

(
1

λm

( m∑
k=1

(λk − λk−1)|xk − a|

)
= 0.

This implies that

lim
m

|Λm(x) − a| = lim
m

∣∣∣∣ 1λm
m∑
k=1

(λk − λk−1)(xk − a)

∣∣∣∣ = 0
which yields that limmΛm(x) = a and hence x = (xk) ∈ w is λ-convergent to
a.

Let X be a linear metric space. A function p : X→ R is called paranorm, if

1. p(x) ≥ 0 for all x ∈ X,

2. p(−x) = p(x) for all x ∈ X,

3. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a
sequence of vectors with p(xn−x)→ 0 as n→∞, then p(λnxn−λx)→
0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and
the pair (X, p) is called a total paranormed space. It is well known that the
metric of any linear metric space is given by some total paranorm (see [14],
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Theorem 10.4.2, pp. 183). For more details about sequence spaces (see [1], [2],
[5], [7], [9], [10], [11], [12], [13]) and references therein.

Let M = (Mk) be a Musielak-Orlicz function and p = (pk) be a bounded
sequence of positive real numbers and let (X, q) be a seminormed space semi-
normed by q. In the present paper, we define the following sequence spaces:

c0{M, Λ, p, q} =

{
x = (xk) ∈ w :

[
Mk

(
q
(
Λk(x)

)
ρ

)]pk
tk → 0, as k→∞,

for some ρ > 0

}
,

c{M, Λ, p, q} =

{
x = (xk) ∈ w :

[
Mk

(
q
(
Λk(x)

)
ρ

)]pk
tk → 0, as k→∞,

for some L ∈ X and for some ρ > 0

}
and

l∞{M, Λ, p, q} =

{
x = (xk) ∈ w : sup

k

[
Mk

(
q
(
Λk(x)

)
ρ

)]pk
tk <∞,

for some ρ > 0

}
.

If we take p = (pk) = 1, we have

c0{M, Λ, q} =

{
x = (xk) ∈ w :

[
Mk

(
q
(
Λk(x)

)
ρ

)]→ 0, as k→∞,
for some ρ > 0

}
,

c{M, Λ, q} =

{
x = (xk) ∈ w :

[
Mk

(
q
(
Λk(x) − L

)
ρ

)]→ 0, as k→∞,
for some L ∈ X and for some ρ > 0

}
and

l∞{M, Λ, q} =

{
x = (xk) ∈ w : sup

k

[
Mk

(
q
(
Λk(x)

)
ρ

)]
<∞, for some ρ > 0

}
.

The following inequality will be used throughout the paper. If 0 ≤ pk ≤
suppk = K, D = max(1, 2K−1) then

|ak + bk|
pk ≤ D{|ak|

pk + |bk|
pk} (1)
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for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|K) for all a ∈ C.
The main aim of this paper is to study some toplogical properties and prove

some inclusion relation between these spaces.

2 Main results

Theorem 1 If M = (Mk) be a Musielak-Orlicz function and p = (pk) be
a bounded sequence of positive real numbers, then the spaces c0{M, Λ, p, q},
c{M, Λ, p, q} and l∞{M, Λ, p, q} are linear spaces over the field of complex
numbers C.

Proof. Let x = (xk), y = (yk) ∈ c{M, Λ, p, q} and α,β ∈ C. Then there exist
positive real numbers ρ1 and ρ2 such that[

Mk

(
q
(
Λk(x) − L

)
ρ1

)]pk
tk → 0, as k→∞

and [
Mk

(
q
(
Λk(y) − L

)
ρ2

)]pk
tk → 0, as k→∞.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since (Mk) is non-decreasing and convex by
using inequality (1.1), we have[
Mk

(
q
(
(αΛk(x) + βΛk(y)) − 2L

)
ρ3

)]pk
tk

≤
[
Mk

(
q
(
αΛk(x) − L

)
ρ3

+
q
(
βΛk(y) − L

)
ρ3

)]pk
tk

≤ D
1

2pk

[
Mk

(
q
(
Λk(x) − L

)
ρ1

)]pk
tk +D

1

2pk

[
Mk

(
q
(
Λk(y) − L

)
ρ2

)]pk
tk

≤ D

[
Mk

(
q
(
Λk(x) − L

)
ρ1

)]pk
tk +D

[
Mk

(
q
(
Λk(y) − L

)
ρ2

)]pk
tk→ 0 as k→∞.

Thus, αx+βy ∈ c{M, Λ, p, q}. Hence c{M, Λ, p, q} is a linear space. Similarly,
we can prove c0{M, Λ, p, q} and l∞{M, Λ, p, q} are linear spaces over the field
of complex numbers C. �
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Theorem 2 M = (Mk) be a Musielak-Orlicz function and p = (pk) be a
bounded sequence of positive real numbers, then l∞{M, Λ, p, q} is a paranormed
space with the paranorm defined by

g(x) = q(x1) + inf

{
ρ

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(x))

ρ

)
tk

1
pk

}
≤ 1, ρ > 0bigg},

where H = max(1, K).

Proof. (i) Clearly, g(x) ≥ 0 for x = (xk) ∈ l∞{M, Λ, p, q}. Since Mk(0) = 0,
we get g(θ) = 0.
(ii) g(−x) = g(x)
(iii) Let x = (xk), y = (yk) ∈ l∞{M, Λ, p, q}, then there exist ρ1, ρ2 > 0 such
that

sup
k≥1

{
Mk

(
q
(
Λk(x)

)
ρ1

)
tk

1
pk

}
≤ 1

and

sup
k≥1

{
Mk

(
q
(
Λ(y)

)
ρ2

)
tk

1
pk

}
≤ 1.

Let ρ = ρ1 + ρ2, then by Minkowski’s inequality, we have

sup
k≥1

{
Mk

(
q
(
Λk(x+ y)

)
ρ

)
tk

1
pk

}
= sup
k≥1

{
Mk

(
q
(
Λk(x+ y)

)
ρ1 + ρ2

)
tk

1
pk

}
≤

(
ρ1

ρ1 + ρ2

)
sup
k≥1

[
Mk

(
q
(
Λk(x)

)
ρ1

)
tk

1
pk

]
+

(
ρ2

ρ1 + ρ2

)
sup
k≥1

[
Mk

(
q
(
Λk(y)

)
ρ2

)
tk

1
pk

]
≤ 1

and thus

g(x+ y) = q(x1 + y1)

+ inf

{
(ρ1 + ρ2)

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(x) +Λk(y)

)
ρ

)}
tk

1
pk ≤ 1, ρ > 0

}
≤ q(x1) + inf

{
(ρ1)

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(x)

)
ρ1

)}
tk

1
pk ≤ 1, ρ > 0

}
+ q(y1) + inf

{
(ρ2)

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(y)

)
ρ2

)}
tk

1
pk ≤ 1, ρ > 0

}
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≤ g(x) + g(y)

(iv) Finally, we prove that the scalar multiplication is continuous. Let µ be
any complex number. By definition,

g(µx) = q(µx1) + inf

{
ρ

pk
H : sup

k≥1

{
Mk

(
q
(
µΛk(x)

)
ρ

)}
tk

1
pk ≤ 1, ρ > 0

}
= |µ|q(x1) + inf

{
(|λ|r)

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(x)

)
r

)}
tk

1
pk ≤ 1, r > 0

}
,

where r = ρ
|µ|

. Hence l∞{M, Λ, p, q} is a paranormed space. �

Theorem 3 For any Musielak-Orlicz functionM = (Mk) and p = (pk) ∈ l∞,
then the spaces c0{M, Λ, p, q}, c{M, Λ, p, q} and l∞{M, Λ, p, q} are complete
paranormed spaces paranormed by g.

Proof. Suppose (xn) is a Cauchy sequence in l∞{M, Λ, p, q}, where xn =
(xnk )

∞
k=1 for all n ∈ N. So that g(xi − xj) → 0 as i, j → ∞. Suppose ε > 0 is

given and let s and x0 be such that ε
sx0

> 0 and Mk

(
sx0
2

)
≥ sup

k≥1
(pk)

tk . Since

g(xi − xj)→ 0, as i, j→∞ which means that there exists n0 ∈ N such that

g(xi − xj) <
ε

sx0
, for all i, j ≥ n0.

This gives g(xi1 − x
j
1) <

ε
sx0

and

inf

{
ρ

pk
H : sup

k≥1

{
Mk

(
q
(
Λk(x

i − xj)
)

ρ

)
tk

1
pk

}
≤ 1, ρ > 0

}
<

ε

sx0
. (2)

It shows that (xi1) is a Cauchy sequence in X. Therefore (xi1) is convergent in

X because X is complete. Suppose lim
i→∞ xi1 = x1 then lim

j→∞g(xi1 − xj1) < ε

sx0
, we

get

g(xi1 − x1) <
ε

sx0
.

Thus, we have

Mk

(
q
(
Λk(x

i − xj)
)

g(xi − xj)

)
tk

1
pk ≤ 1.

This implies that

Mk

(
q
(
Λk(x

i − xj)
)

g(xi − xj)

)
≤ (pk)

tk ≤Mk(
sx0
2

)
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and thus

q(Λk(x
i − xj)) <

sx0
2
.
ε

sx0
<
ε

2

which shows that (Λk(x
i)) is a Cauchy sequence in X for all k ∈ N. Therefore,

(Λk(x
i)) converges in X. Suppose lim

i→∞Λk(xi) = y for all k ∈ N. Also, we

have lim
i→∞Λk(xi2) = y1 − x1. On repeating the same procedure, we obtain

lim
i→∞Λk(xik+1) = yk−xk for all k ∈ N. Therefore by continuity of (Mk), we get

lim
j→∞ sup

k≥1
Mk

(
q
(
Λk(x

i − xj)
)

ρ

)
t

1
pk

k ≤ 1,

so that

sup
k≥1

Mk

(
q
(
Λk(x

i − xj)
)

ρ

)
t

1
pk

k ≤ 1.

Let i ≥ n0 and taking infimum of each ρ’s, we have

g(xi − x) < ε.

So (xi − x) ∈ l∞{M, Λ, p, q}. Hence x = xi − (xi − x) ∈ l∞{M, Λ, p, q}, since
l∞{M, Λ, p, q} is a linear space. Hence, l∞{M, Λ, p, q} is a complete para-
normed space. Similarly, we can prove the spaces c0{M, Λ, p, q} and c{M, Λ, p, q}

are complete paranormed spaces. �

Theorem 4 If 0 < pk ≤ rk <∞ for each k, then

Z{M, Λ, p, q} ⊆ Z{M, Λ, r, q}

for Z = c0 and c.

Proof. Let x = (xk) ∈ c{M, Λ, p, q}. Then there exists some ρ > 0 and L ∈ X
such that

Mk

(
q
(
Λk(x) − L

)
ρ

)pk
tk → 0 as k→∞.

This implies that

Mk

(
q
(
Λk(x) − L

)
ρ

)
< ε, (0 < ε < 1)
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for sufficiently large k. Hence we get

Mk

(
q
(
Λk(x) − L

)
ρ

)rk
tk ≤ Mk

(
q
(
Λk(x) − L

)
ρ

)pk
tk → 0 as k→∞.

This implies that x = (xk) ∈ c{M, Λ, r, q}. This completes the proof. Similarly,
we can prove for the case Z = c0. �

Theorem 5 SupposeM ′ = (M ′k) andM ′′ = (M ′′k ) are Musielak-Orlicz func-
tions satisfying the ∆2-condition then we have the following results:

(i) if (pk) ∈ l∞ then Z{M ′, Λ, p, q} ⊆ Z{M ′′ ◦ M ′, Λ, p, q} for Z = c, c0
and l∞.

(ii) Z{M ′, Λ, p, q} ∩ Z{M ′′, Λ, p, q} ⊆ Z{M ′ +M ′′, Λ, p, q} for Z = c, c0
and l∞.

Proof. If x = (xk) ∈ c0{M, Λ, p, q} then there exists some ρ > 0 such that{
M ′k

(
q
(
Λk(x)

)
ρ

)}pk
tk → 0 as k→∞.

Suppose

yk =M
′
k

(
q
(
Λk(x)

)
ρ

)
for all k ∈ N.

Choose δ > 0 be such that 0 < δ < 1, then for yk ≥ δ we have yk <
yk
δ < 1+

yk
δ .

Now (M ′′k ) satisfies ∆2-condition so that there exists J ≥ 1 such that

M ′′k (yk) <
Jyk
2δ
M ′′k (2) +

Jyk
2δ
M ′′k (2) =

Jyk
δ
M ′′k (2).

We obtain[
(M ′′k ◦M ′k)

(
q
(
Λk(x)

)
ρ

)]pk
tk =

[
M ′′k

{
M ′k

(
q
(
Λk(x)

)
ρ

)}]pk
tk =

[
M ′′k (yk)

]pk
tk

≤ max

{
sup
k

(
[M ′′k (1)]

pk

)
, sup
k

(
[kM ′′k (2)δ

−1]pk
)}

[yk]
pktk → 0, as k→∞.

Similarly, we can prove the other cases.
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(ii) Suppose x = (xk) ∈ c0{M
′
k, Λ, p, q} ∩ c0{M ′′k , Λ, p, q}, then there exist

ρ1, ρ2 > 0 such that{(
M ′k

(
q
(
Λk(x)

)
ρ1

))pk
tk

} → 0, as k→∞
and {(

M ′′k

(
q
(
Λk(x)

)
ρ2

))pk
tk

} → 0, as k→∞.
Let ρ = max{ρ1, ρ2}. The remaining proof follows from the inequality{[

(M ′k +M
′′
k )

(
q
(
Λk(x)

)
ρ

)]pk
tk

}
≤ D
{[
M ′k

(
q
(
Λk(x)

)
ρ1

)]pk
tk

+

[
M ′′k

(
q
(
Λk(x)

)
ρ2

)]pk
tk

}
.

Hence c0{M
′
k, Λ, p, q} ∩ c0{M ′′k , Λ, p, q} ⊆ c0{M ′k +M ′′k , Λ, p, q}. Similarly we

can prove the other cases. �

Theorem 6 (i) If 0 < inf pk ≤ pk < 1, then l∞{M, Λ, p, q} ⊂ l∞{M, Λ, q}.

(ii) If 1 ≤ pk ≤ suppk <∞, then l∞{M, Λ, q} ⊂ l∞{M, Λ, p, q}.

Proof. (i) Let x = (xk) ∈ l∞{M, Λ, p, q}. Since 0 < inf pk ≤ 1, we have

sup
k

{[
Mk

(
q
(
Λk(x)

)
ρ2

)]}
≤ sup

k

{[
Mk

(
q
(
Λk(x)

)
ρ2

)]pk
tk

}
and hence x = (xk) ∈ l∞{M, Λ, q}.
(ii) Let pk ≥ 1 for each k and sup

k
pk < ∞. Let x = (xk) ∈ l∞{M, Λ, q}, then

for each ε, 0 < ε < 1, there exists a positive integer n0 ∈ N such that

sup
k

{
Mk

(
q
(
Λk(x)

)
ρ

)}
≤ ε < 1.

This implies that

sup
k

{[
Mk

(
q
(
Λk(x)

)
ρ

)]pk
tk

}
≤ sup

k

{
Mk

(
q
(
Λk(x)

)
ρ

)}
.

Thus x = (xk) ∈ l∞{M, Λ, p, q} and this completes the proof. �
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