
Acta Univ. Sapientiae, Mathematica, 11, 1 (2019) 117–130

DOI: 10.2478/ausm-2019-0010

Solving Riemann-Hilbert problems with

meromorphic functions

Dan Kucerovsky
Department of Mathematics,
University of New Brunswick,

Fredericton, NB, Canada
email: dkucerov@unb.ca

Aydin Sarraf
Resson Aerospace Corporation,

Fredericton, NB, Canada
email: aydin.sarraf@resson.com

Abstract. In this paper, we introduce the use of a powerful tool from
theoretical complex analysis, the Blaschke product, for the solution of
Riemann-Hilbert problems. Classically, Riemann-Hilbert problems are
considered for analytic functions. We give a factorization theorem for
meromorphic functions over simply connected nonempty proper open
subsets of the complex plane and use this theorem to solve Riemann-
Hilbert problems where the given data consists of a meromorphic func-
tion.

1 Introduction

Approximation of holomorphic functions of a complex variable by a sequence
of polynomials has a long history [23], some notable theorems in this regard
are the Runge theorem [20], the Mergelyan theorem [19], and the Arakelyan
theorem [2]. A different approach to approximation of a holomorphic function
is to find and truncate an expansion or a factorization.

Since holomorphic functions are complex analytic, they admit Taylor ex-
pansion on an open disk. Furthermore, they admit Fourier expansions on the
unit circle. Over the open unit disk, a holomorphic function can be written
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formally as a series of Blaschke products [9]. Moreover, entire functions can
be factorized by Weierstrass factorization theorem [25]. In this paper, we give
a factorization of meromorphic functions by Blaschke products over simply
connected nonempty proper open subsets of the complex plane and use this
theorem to solve Riemann-Hilbert problems with meromorphic functions.

One of the shortcomings of the classical solutions to Riemann-Hilbert prob-
lems is their dependence on the index of the coefficients and the Hölder conti-
nuity requirement in the application of Sokhotski-Plemelj formula. In [16], we
proposed solutions to overcome these shortcomings. The current work can be
considered as a sequel to [16], focusing on the complex variable case.

This paper is organized as follows. In Section 1, we define the classical
Riemann-Hilbert problem, recall results on Blaschke products and state the
Riemann Mapping Theorem. In Section 2, we use Blaschke products and the
Riemann Mapping Theorem to give factorization theorems for meromorphic
functions of bounded type over simply connected nonempty proper open sub-
sets of the complex plane. In Section 3, we define a Riemann-Hilbert problem
with meromorphic data and give a general solution by employing the results of
Section 2. In Section 4, we give several results for positive definite functions on
absolutely convex subsets of the complex plane. Our main results are Theorem
(3), Theorem (4) , Theorem (7) and their applications which are discussed in
Section 3.

1.1 Riemann-Hilbert problems with analytic functions

The Riemann-Hilbert problem was first introduced by Bernhard Riemann in
connection with the Riemann’s Monodromy problem which later was general-
ized to the Riemann-Hilbert problem by Hilbert [1, A.1.3].

Definition 1 [10, 14.1.] Suppose that we are given a simple smooth closed
contour L dividing the plane of the complex variable into an interior domain
D+ and an exterior domain D−, and two functions of on the contour, G(t)
and g(t) which satisfy the Hölder condition, where G(t) does not vanish. It is
required to find two functions: Φ+(z), analytic in the domain D+; and Φ−(z),
analytic in the domain D−, including z = ∞, which satisfy on the contour L
either the linear relation

Φ+(z) = G(t)Φ−(z)

or

Φ+(z) = G(t)Φ−(z) + g(t)
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The function G(t) will be called the coefficient of the Riemann problem, and
the function g(t) its free (inhomogeneous) term.

The following theorem is of particular importance in the solution of analytic
Riemann-Hilbert problems.

Theorem 1 [10, 13.2, Generalized Liouville’s Theorem] Let the function f(z)
be analytic in the entire complex plane, except at the points a0 = ∞, ak (k :=
1, 2, . . . , n), where it has poles, and suppose that the principal parts of the
expansions of the function f(z) in the vicinities of the poles have the form:
at the point a0

G0(z) = c
0
1z+ c

0
2z
2 + . . .+ c0n0z

n0

at the point ak

G0

(
1

z− ak

)
=

ck1
z− ak

+
ck2

(z− ak)2
+ . . .+

ckmk
(z− ak)mk

.

Then the function f(z) is a rational function and is representable by the relation

f(z) = C+G0(z) +

n∑
k=1

Gk(
1

z− ak
).

In particular, if the only singularity of the function f(z) is a pole of order m
at infinity, then f(z) is a polynomial of degree m:

f(z) = c0 + c1z+ . . .+ cmz
m.

1.2 Blaschke products

Definition 2 [11] A Blaschke product is a function of the form

B(z) = eiαzK
∏
n≥1

|zn|

zn

zn − z

1− z̄nz

in which α ∈ R, K ∈ N0, and {z1, z2, . . .} is a sequence (finite or infinite) in
{0 < |z| < 1} that satisfies the Blaschke condition∑

n≥1
(1− |zn|) <∞.
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Finite Blaschke products can be considered as generalizations of polynomials
in the unit disk because of their remarkable similar properties to polynomials
[18, p. 249]. We only mention few of these similarities:

Proposition 1 The following hold:

(i) Let f be analytic in C and suppose that lim
|z|→∞ |f(z)| = ∞ then f is a

polynomial [18, Theorem 3].

(ii) Let f be analytic in D and suppose that lim
|z|→1 |f(z)| = 1 then f is a finite

Blaschke product [18, Theorem 13].

(iii) Let P be a polynomial of degree n with zeros z1, . . . , zn in C. The critical
points of P lie in the convex hull of the set {z1, . . . , zn} [18, Theorem 9].

(iv) Let B be a finite Blaschke product of degree n with zeros z1, . . . , zn in D.
Then B(z) has exactly n − 1 critical points in D and these all lie in the
hyperbolic convex hull 1 of the set {z1, . . . , zn} [18, Theorem 19].

1.3 Riemann Mapping Theorem

We recall the Riemann Mapping Theorem.

Theorem 2 [3, 14.2] For any simply connected domain R( 6= C) and z0 ∈ R,
there exists a unique conformal mapping φ of R onto U such that φ(z0) = 0

and φ′(z0) > 0.

Example 1 The map f(z) = z−i
z+i is a conformal map of the unit disk to the

upper half plane H. In fact, all conformal maps from the upper half plane to
the unit disk take the form eiθ z−β

z−β
where θ ∈ R and β ∈ H [22, Chapter 8,

Exercise 14].

For simple domains such as polygons, one can construct a Riemann map by
using the Schwarz-Christoffel formula. The construction of a Riemann map for
a general simply connected domain has been studied extensively and numerous
algorithms are known rm [13, 6, 5, 8, 7].

1Recall that the Poincaré disk provides a model of the hyperbolic plane in the disk |z| < 1;
we refer to a line in the Poincaré model as a hyperbolic line and to the associated subregions
as hyperbolic half-planes. The hyperbolic convex hull of a point set is the intersection of all
hyperbolic half-planes containing the point set [24].
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2 Factorization of meromorphic functions

In this section, we give some theorems on factorization of meromorphic func-
tions satisfying certain boundedness conditions in terms of (finite or infinite)
Blaschke products.

Lemma 1 Let f : X ⊂ C → C be a holomorphic function where X is a simply
connected bounded open set. If lim

|z|→|a|
|f(z)| 6= 0 for all a ∈ ∂X, then f has finitely

many zeros in X.

Proof. Since f is holomorphic on X, it is continuous on X. Assume that f has
infinitely many zeros. The zero set Z = {zk} of f is bounded; therefore, it has
an accumulation point by the Bolzano-Weierstrass Theorem. The accumula-
tion point of zeros of f does not belong to ∂X because lim

k→∞ |f(zk)| = 0 but

lim
|z|→|a|

|f(z)| 6= 0. Therefore, the accumulation point must belong to X. By the

Identity Theorem, f ≡ 0, on X which is a contradiction. �

Lemma 2 Let f : X ⊂ C → C be holomorphic on X where X is a simply
connected open set. If f has no zeros in X, then there exists a holomorphic
function h on X such that f = eh. Furthermore, if X is bounded, f is continuous
on X, and constant on ∂X then f is constant on X.

Proof. The first part of the lemma is a standard result and its proof can be
found in [17, XIII, Theorem 2.1]. For the second part, we note that if f has no
zeros in X, then 1

f is holomorphic on X. By the maximum modulus principle,

the maximum of the harmonic function 1
|f(z)| is on the boundary of X. But also

the maximum of the |f| is on the boundary. If |f| is constant on the boundary
then |f(z)| = c for all z ∈ X. �

Theorem 3 Let f : X ⊂ C → C be a meromorphic function where X is a
simply connected bounded open Jordan domain. If lim

|x|→|a|
|f(x)| where a ∈ ∂X

exists and it is not zero or infinity, then

f(φ(z)) = eq(z)
n∏
i=1

zi − z

1− z̄iz

m∏
j=1

p̄j −
1
z

1−
pj
z

where φ : D → X is a Riemann map, q : D → C is a holomorphic function,
{zi}

n
i=1 is the set of zeros and {pj}

m
j=1 is the set of poles of f ◦ φ.
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Proof. By the Riemann mapping theorem, there exists a conformal bijective
map φ : D → X. By Carathéodory’s theorem, there exists a homeomorphism
φ̃ : D̄ → X̄ that extends φ. Therefore, if |z| → |1| then |φ(z)| → |a| where
a ∈ ∂X and hence lim

|z|→1|f(φ(z))| 6= 0,∞. Since g = f ◦ φ : D → C is mero-

morphic, it is the ratio of two holomorphic functions, i.e. g = h
k where h and

k are holomorphic. Since lim
|z|→|1|

|g(z)| 6= 0,∞, we conclude lim
|z|→|1|

|h(z)| 6= 0 and

lim
|z|→|1|

|k(z)| 6= 0. By Lemma (1), h and k have finitely many zeros in D, denoted

by {zi}
n
i=1 and {pj}

m
j=1 respectively.

The function hn := h
Bh

where Bh(z) =
∏n
i=1

zi−z
1−z̄iz

, is holomorphic in D
and has no zeros in D. By Lemma (2), there exists a holomorphic function
qh such that hn = eqh . Therefore, h = eqhBh and we can proceed similarly
to prove k = eqkBk. Hence, g = eqh−qk BhBk . Since B̄k(

1
z̄ ) = 1

Bk(z)
, we have

g(z) = eq(z)Bh(z)B̄k(
1
z̄ ) where q(z) = qh(z) − qk(z). �

Definition 3 A function defined on a simply connected open subset X of the
complex plane is said to be of bounded type if it is equal to the ratio of two
analytic functions bounded in X. The class of all such functions is called the
Nevanlinna class for X.

Lemma 3 [22, p. 156] If f is holomorphic in the unit disk, bounded and not
identically zero, and z1, z2, . . . , zn, . . . are its zeros (|zk| < 1), then∑

n

(1− |zn|) <∞.
Lemma 4 [14, p. 64] Let {αn} be a sequence of non-zeros complex numbers
in the open unit disc D. A necessary and sufficient condition that the infinite
product

B(z) =

∞∏
n=1

[
ᾱn

|αn|

(αn − z)

(1− ᾱnz)

]
should converge uniformly on compact subsets of the unit disc is that∞∑
n=1

(1 − |αn|) < ∞. When this condition is satisfied, the product defines an

inner function whose zeros are exactly α1, α2, . . .

We now obtain a factorization theorem that has useful applications to the
Riemann-Hilbert problem. This is discussed further in Section 3.
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Theorem 4 Let f : X ⊂ C → C be a meromorphic function where X is a
simply connected open set. If f is of bounded type then

f(φ(z)) = zr−sq(z)

∞∏
i=1

z̄i
|zi|

zi − z

1− z̄iz

∞∏
j=1

|pj|

pj

p̄j −
1
z

1−
pj
z

where φ : D → X is a Riemann map, r, s ∈ N0, q is a bounded holomorphic
function without zeros, {zi} is the set of zeros and {pj} is the set of poles of
f ◦ φ.

Proof. By Riemann mapping theorem, there exists a conformal bijective map
φ : D → X. Since g = f ◦ φ : D → C is meromorphic of bounded type, it’s
the ratio of two bounded holomorphic functions, i.e. g = h

k where h and k
are holomorphic and bounded. The functions h and k can be factorized as
h(z) = zrh1(z) and k(z) = zsk1(z) where h1(0) 6= 0 and k1(0) 6= 0. Let {zi}

and {pj} be the zeros of h1 and k1. By Lemma (3),
∑
i

(1 − |zi|) < ∞ and∑
j

(1− |pj|) <∞. By Lemma (4), the following products are convergent:

Bh1(z) =

∞∏
i=1

[
z̄i
|zi|

(zi − z)

(1− z̄iz)

]

Bk1(z) =

∞∏
j=1

[
p̄j

|pj|

(pj − z)

(1− p̄jz)

]
Hence, we can write h1(z) = u(z)Bh1(z) and k1(z) = v(z)Bk1(z) where

u(z) = h1(z)
Bh1 (z)

and v(z) = k1(z)
Bk1 (z)

are bounded holomorphic functions. Therefore,

f(φ(z)) = zr−s
u(z)

v(z)

Bh1(z)

Bk1(z)
= zr−sq(z)Bh1(z)B̄k1(

1

z̄
)

where q(z) = u(z)
v(z) is a bounded holomorphic function. �

3 Applications in Riemann-Hilbert problems with
meromorphic functions

In engineering, a transfer function is a representation of the relation between
the input and output of a linear time-invariant (LTI) system and it is a primary
tool in classical control engineering. In this section, we employ Theorem (4)
to find the transfer function of a differential system.
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Lemma 5 [4, Theorem 5.1] Suppose f : R → C is continuous, supp(f) ⊂
[M,∞), and has exponential order a, i.e. |f(t)| ≤ Keat for all t ∈ R. Then the
Laplace transform L(f)(z) :=

∫∞
−∞ e−ztf(t)dt is holomorphic in the half plane

{z | <(z) > a}. The derivative is

(L(f))′(z) = −

∫∞
−∞ e−zttf(t)dt

and the Laplace transform satisfies the estimate

|L(f)(z)| ≤ K e
M(a−<(z))

(<(z) − a)
,<(z) > a

Remark 1 If <(z) > a + ε > a and M > 0 where ε > 0 , then |L(f)(z)| ≤
K

εeMε
, i.e. the Laplace transform is bounded.

Lemma 6 [21, Theorem 2.12] Suppose that f(t), f́(t), . . . , f(n−1)(t) are contin-
uous on (0,∞) and of exponential order, while f(n)(t) is piecewise continuous
on [0,∞). Then L(f(n)(t)) = snL(f(t))−sn−1f(0+)−sn−2f́(0+)−. . .−f(n−1)(0+).

Theorem 5 Suppose fk, gk : R → C are continuous, have left bounded sup-
port on the positive real line, and have positive exponential orders ak and bk.
Furthermore, assume that u, y : R → C are n-times continuously differen-
tiable, with nth derivative of exponential order. Then the transfer function of
the following differential system with zero initial conditions, i.e. u(k)(0) = 0,
y(k)(0) = 0,

n∑
k=0

fk(t) ∗
dku(t)

dtk
=

n∑
k=0

gk(t) ∗
dky(t)

dtk

is a meromorphic function of bounded type of the form

T(φ(z)) = zr−sq(z)

∞∏
i=1

z̄i
|zi|

zi − z

1− z̄iz

∞∏
j=1

|pj|

pj

p̄j −
1
z

1−
pj
z

where φ : D → X is defined by φ(z) := 1+(z−α)
1−(z−α) where X = {z ∈ C | <(z) > α},

α = min{ak, bk} + ε, ε > 0 is sufficiently small, r, s ∈ N0, q is a bounded
holomorphic function without zeros, {zi} is the set of zeros and {pj} is the set
of poles of T ◦φ. The transfer function T : X→ C appears as the coefficient of
the Riemann-Hilbert problem Φ+(z) = G(z)Φ−(z) where

G(z) =
T(φ(z))

q(z)
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Φ+(z) = zr
∞∏
i=1

z̄i
|zi|

zi − z

1− z̄iz

and

Φ−(z) = zs
∞∏
j=1

p̄j

|pj|

pj − z

1− p̄jz

Proof. The transfer function is defined as the ratio of the Laplace transform
of the output signal to the Laplace transform of the input signal, i.e. T(s) :=
L(y)(s)
L(u)(s) . If we take Laplace transform of the differential system, apply Lemma

(6), and the properties of Laplace transform with respect to convolution and
addition, we derive the following equation( n∑

k=0

skL(fk)(s)

)
L(u)(s) =

( n∑
k=0

skL(gk)(s)

)
L(y)(s)

Therefore, the transfer function is of the following form

T(s) =
L(y)(s)

L(u)(s)
=

n∑
k=0

skL(fk)(s)

n∑
k=0

skL(gk)(s)

On the domain X = {z ∈ C | <(z) > α}, where α = min{ak, bk} + ε, and
ε > 0 is sufficiently small, the transfer function

T(s) =
L(y)(s)

L(u)(s)
=

n∑
k=0

sk−nL(fk)(s)

n∑
k=0

sk−nL(gk)(s)

is a meromorphic function of bounded type by Lemma (5). It suffices to apply
Theorem (4) to the transfer function T . �

4 Positive definite functions of a complex variable

In this section, we give some results on positive definite functions over abso-
lutely convex subsets of C. It is interesting to see whether one can factorize
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a meromorphic positive definite function; in the sense of Definition (4), such
that all factors are positive definite. Unfortunately, it is difficult to determine
positive definiteness of Blaschke products; even the determination of hermi-
tianness is difficult because it requires finding all the zeros of the equation
B(−z) − B(z) = 0. Nevertheless, we give a theorem (Theorem (7)) that can
simplify the determination of positive definiteness for holomorphic hermitian
functions.

Definition 4 A set X ⊆ C is called absolutely convex if for any points x1, x2
in X and any numbers λ1, λ2 in C satisfying |λ1|+ |λ2| ≤ 1, the sum λ1x1+λ2x2
belongs to X.

If X ⊆ C is absolutely convex then rX is absolutely convex for all r ∈ C.

Definition 5 A function f : X → C is positive definite, where X ⊆ C is
absolutely convex, if

∑n
j,k=1 f(

xj−xk
2 )ξjξ̄k ≥ 0 for every choice of x1, . . . , xn in

X and ξ1, . . . , ξn in C.

If we set ω∗=[ξ̄1, . . . , ξ̄n] and A = [f(
xj−xk
2 )]j,k then we can rewrite the

above condition as ω∗Aω ≥ 0, i.e. A is positive-semidefinite. In the following
proposition, we review some of the properties of positive definite functions.

Proposition 2 If f : X → C is positive definite, where X ⊆ C is absolutely
convex, then the following hold:

(i) f(0) ≥ 0, f(− z
2) = f̄(

z
2), and |f( z2)|

2 ≤ f(0)2.

(ii) If f, g : X→ C are positive definite then fg and c1f+c2g where c1, c2 ∈ N
are positive definite.

(iii) If X = R, f and g are integrable and positive definite then f∗g is positive
definite.

(iv) If X = R, and f is integrable then x2k+1f(x) with k ∈ N is not positive
definite.

(v) If X = R, and f is Cn-differentiable then dnf(x)
dxn is positive definite only

if n = 4k where k ∈ N.

(vi) If X = R, and f is integrable then eiaxf(x) is positive definite.
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Proof. (i) If we set n = 1 in Definition (5) then f(0)|ξ1|
2 ≥ 0 which implies

f(0) ≥ 0. If we set n = 2 and consider the set of points {z, 0} then α =
f(0)2(|ξ1|

2 + |ξ2|
2) + f(− z

2)ξ1ξ̄2 + f(
z
2)ξ2ξ̄1 ≥ 0. Since α = ᾱ, we have f(− z

2) =
f̄( z2). Since the following matrix is positive-semidefinite, its determinant is
nonnegative, i.e. |f( z2)|

2 ≤ f(0)2.

A =

(
f(0) f( z2)
f(−z2 ) f(0)

)
(ii) Since positive linear combination and product of positive definite func-

tions correspond to positive linear combination and Hadamard product of
positive-semidefinite matrices, positive-definiteness is preserved under these
operations.

(iii) By convolution theorem f̂ ∗ g = f̂ ∗ ĝ which is positive by Bochner’s
theorem.

(iv) The Fourier transform of x2k+1f(x) is ( i2π)
2k+1 d

2k+1f̂(ξ)
dξ2k+1

which is purely
imaginary by Bochner’s theorem.

(v) The Fourier transform of dnf(x)
dxn is (2πiξ)nf̂(ξ) which is positive only if

n = 4k, k ∈ N.
(vi) The Fourier transform of eiaxf(x) is f̂(ξ− a

2π). �

Proposition 3 If the Möbius transform f(z) = az+b
cz+d is positive definite and

not identically zero on C ∪ {∞} then a = 0.

Proof. Assume a 6= 0 then we can set z = 2b
a in the condition f(− z

2) = f̄( z2)
which implies b = 0. Therefore, the condition |f( z2)|

2 ≤ f(0)2 implies that f is
identically zero which is a contradiction. �

Lemma 7 The function f(z) = eia zk−z1−z̄kz
where zk, z ∈ D, and a ∈ R is not

positive definite.

Proof. For the set { ie
−ia

2 , 0} in D, the determinant of the associated matrix A is
|zk|

4−1

4+z̄2ke
−2ia . The numerator of det(A) is negative for zk ∈ D, but the denominator

is not negative for any value of zk ∈ D, and a ∈ R. Therefore, det(A) is not
nonegative for all zk ∈ D, and a ∈ R. �

Theorem 6 A conformal map from D to D is not positive definite.

Proof. A conformal map from D to D is of the form eiak zk−z1−z̄kz
which is not

positive definite by Lemma (7). �
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Lemma 8 [15, Exercise 1.1.8], [12, Lemma 24] For any nontrivial holomorphic
function f : U→ C where U ⊂ Cn is open and connected, U−Z(f) is connected
and dense in U where Z(f) denotes the zero set of f.

Theorem 7 Let X ⊆ C be an absolutely convex simply connected set and
f : X ⊆ C → C be a holomorphic hermitian, i.e. f(−z) = f(z), function. Define
the function Wn(f) : X

n →Mn(C) by Wn(f)(x) = [f(
xj−xk
2 )]j,k. If there exists a

point x ∈ Xn at which Wn(f) is positive definite for all n ∈ N then f is positive
definite on X.

Proof. For simplicity, we denote Wn(f) by g. Since det(g) is a polynomial of f
and f is holomorphic, det(g) is holomorphic. By Lemma (8), S = supp(det(g))
is connected, open and dense in Xn. Since f is hermitian, Spec(g) = {λx ∈ C | λx
is an eigenvalue of g(x), x ∈ Xn} is in R. By definition of S, g is invertible on S.
Therefore, 0 /∈ Spec(g|S). We claim that either Spec(g|S) ⊆ R+ or Spec(g|S) ⊆
R−. Assume otherwise, then there exist x, y ∈ S such that λx ∈ R+ and
λy ∈ R−. Since S is path connected, there exists a path in S that connects x
to y in S. But, there is no path that connects λx to λy because 0 /∈ Spec(g|S)
which gives a contradiction. If there exists a point x0 ∈ Xn for which g is
positive definite, then either x0 ∈ S or x0 is a limit point of S because S is
dense in Xn. In either case, Spec(g|S) ⊆ R+ and by density of S we conclude
Spec(g) ⊆ R+ for all n ∈ N, i.e. f is positive definite on X. �
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[16] Dan Kučerovskỳ, Amir TP Najafabadi, and Aydin Sarraf, On the
riemann-hilbert factorization problem for positive definite functions, Pos-
itivity, 20 (3) (2016), 743–754.

[17] Serge Lang, Complex analysis, volume 103, Springer Science & Business
Media, 2013.

[18] Javad Mashreghi and Emmanuel Fricain, Blaschke products and their
applications, Springer, 2013.



130 D. Kucerovsky, A. Sarraf

[19] S. N. Mergelian, On the representation of functions by series of polyno-
mials on closed sets, Number 85. Amer. Math. Soc., 1953.

[20] Carle Runge, Zur Theorie der eindeutigen analytischen Functionen, Acta
Math., 6 (1) (1885), 229–244.

[21] Joel L. Schiff, The Laplace transform: theory and applications, Springer
Science & Business Media, 2013.

[22] Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton lectures
in analysis, ii, 2003.

[23] Anatoliy Georgievich Vitushkin, Uniform approximations by holomorphic
functions, J. Funct. Anal., 20 (2) (1975), 149–157.

[24] J. L. Walsh, Note on the location of zeros of extremal polynomials in
the non-euclidean plane, Acad. Serbe Sci. Publ. Inst. Math, 4 (1952),
157–160.

[25] Carl Weierstrass, Zur Theorie der eindeutigen analytischen Functionen,
na, 1877.

Received: April 5, 2018


