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Abstract. In the paper [10] we analyzed how it is possible to approxi-
mate spatial points which mark real methane probes. The origin of the
discussed problem is the modelling of real geological reserve calculating.
In most of the cases the specialists consider that the contact points of
borings to the envelope surface are stationary points. In this paper we
will study an interesting feature of the Shepard’s interpolation method
in m dimensional space, where the control points are stationary and the
interpolation function is continuous derivable. Using this interpolation in
the real three dimensional space, we will show that the envelope surface
may be approximated with this interpolation function.
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1 Introduction

In the paper [10] we analyzed how it is possible to approximate spatial points
which mark real methane probes. The origin of the discussed problem is the
modelling of real geological reserve calculating ([5], [8]).

There are given planar, spatial or m dimensional points and we are looking
for a smooth hypersurface which could interpolate so that these points are
stationary.

The classical methods are the Lagrange interpolation method and Gauss’
least square method. Both of them have applicable features but there are also
disadvantages. The Lagrange interpolation method may fluctuate between
two points while with the Gauss method we must choose the desired hiper-
surface in advance. None of them is natural because the points provide the
only piece of information that we have. There is no rule which could describe
the mathematical instruments that we must use with the interpolation and
approximation methods. Therefore in most of the cases people choose poly-
nomials of 1, 2, 3, ..., n degrees because they can solve them more easily. Thus
the modern graphical computing evolved and it has the most flexible methods
such as the Bezier curves and the B-splines.

Our task comes from a practical problem: how can we reconstruct the
methane reserve samples provided by the probes? We partially solved this
problem and the results ware published in our paper [10]. Therefore we an-
alyzed the raised question and mathematically rephrased the problem. Thus
we came to the conclusion that we must search for a hypersurface to which
the given points are stationary.

During the the examination of the literature we found out that in the papers
[1], [9] approximation-interpolation methods were presented to terrain models.
This is called the calculating of the arithmetic mean weighted by the inverse

of distance interpolation function (4).
We have tested and compared the Shepard’s interpolation method ([2], [3],

[6], [7], [4], [11]) given by the functions (5), (7) in two and three dimensions:
arithmetic mean weighted by the distance approximation (1), with the arith-

metic mean weighted by the square of the distance approximation (2), with
Lagrange interpolation (3), with the arithmetic mean weighted by the inverse

of distance interpolation (4). These comparisons we summarized in Figure 1
and Figure 2. These figures show with the enumerated methods the evolu-
tion of the discrete approximation-interpolation in the two respectively three
dimensional space.

We can observe that the first two methods (1), (2) – first two rows from
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Figure 1 and Figure 2 – only approximate the control points and the curve or
surface is determined by these points. The third method (3) – third row from
Figure 1 and Figure 2 – interpolate the control points but these points are not
stationary. The fourth method (4)-fourth row from Figure 1 and Figure 2-
also interpolates, the control points are extremely, but the curve and surface
are not smooth in the control points. In the second section, we will show that
the Shepard’s method (5), (7) – fifth row from Figure 1 and Figure 2 – also
interpolates, the control points are stationary, and the curve and surface are
smooth.

In the m dimensional space different Ai, i = 1, n points are given. We denote
by ri the positional vector of Ai. For every point Ai we assign a zi scalar
value. Let us define the interpolation functions of the enumerated methods in
the following manner:

E1(r) =

n
∑

i=1
dizi

n
∑

i=1
di

; (1)

E2(r) =

n
∑

i=1
d2
i zi

n
∑

i=1
d2
i

; (2)

L(r) =
n
∑

i=1

zi

n
∏

k=1
k 6=i

(r − rk)

n
∏

k=1
k 6=i

dki

; (3)

E3(r) =















n
∑

i=1

zi
di

n
∑

i=1

1

di

, if r 6= ri,

zi, if r = ri,

(4)

where di is the length of the vector r − ri and dki is the distance between
points Ak and Ai.
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2 The stationary points of the Shepard’s interpola-

tion

2.1 Curve interpolation in the plane

Theorem 1 Given (xi, yi), i = 1, n points in the real plane where xi 6= xj if

i 6= j. Let us define the G : R → R function where

G(x) =















n
∑

i=1

yi

(x−xi)
2

n
∑

i=1

1

(x−xi)
2

if x 6= xi,

yi if x = xi.

(5)

The G is continuous derivable and G′(xi) = 0 for all i = 1, n.

The theorem is a particular case of the Theorem 2 in one dimensional space.

2.2 Hypersurface interpolation in the m dimensional space

We can generalize the G function in the m dimensional space.

Theorem 2 Given Ai, i = 1, n different points in the m dimensional space.

We denote by ri the positional vector of Ai. For every point Ai we assign a

zi scalar value. Let us define the function F : R
m → R, where

F (r) =















n
∑

i=1

zi

d2

i
n
∑

i=1

1

d2

i

if r 6= ri,

zi if r = ri,

(6)

where di is the length of the vector r − ri. The F function is continuous

derivable and F ′(ri) = 0 for all i = 1, n.

Proof. From the definition we get:

F (r) =

n
∑

i=1

zi
d2

i

n
∑

i=1

1
d2

i

=

z1

d2

1

+
n
∑

i=2

zi
d2

i

1
d2

1

+
n
∑

i=2

1
d2

i

=

1
d2

1

(

z1 +
n
∑

i=2

(

d1

di

)2
zi

)

1
d2

1

(

1 +
n
∑

i=2

(

d1

di

)2
)

and
lim
r→r1

F (r) = lim
d1→0

F (r) = z1.
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Consequently F is continuous. Furthermore if x is one of the coordinates of
r then

∂F (r)

∂x
=

∂

∂x











n
∑

j=1

zj

d2

j

n
∑

i=1

1
d2

i











=

−
n
∑

i=1

1
d2

i

·
n
∑

j=1

2zj ·(x−xj)

d4

j

+
n
∑

j=1

zj

d2

j

·
n
∑

i=1

2·(x−xi)
d4

i

(

n
∑

i=1

1
d2

i

)2

=

2
n
∑

i=1

n
∑

j=1

(x−xj)(zi−zj)

d4

jd
2

i

(

n
∑

i=1

1
d2

i

)2

If r → r1 then x→ x1, d1 → 0 and

lim
r→r1

∂F (r)

∂x
= 2 · lim

r→r1

n
∑

i=1

[

(x−xj)

d4

j

(

n
∑

i=1

zi−zj
d2

i

)]

(

n
∑

i=1

1
d2

i

)2

= 2 · lim
r→r1

(x−x1)
d4

1

·
n
∑

i=2

zi−z1

d2

i

+
n
∑

j=2

[

(x−xj)

d4

j

(

n
∑

i=1

zi−zj
d2

i

)]

(

n
∑

i=1

1
d2

i

)2

= 2 · lim
r→r1

(x−x1)
d4

1

·
n
∑

i=2

zi−z1

d2

i

(

1
d1

)4
·

(

n
∑

i=1

(

d1

di

)2
)2

+ 2 · lim
r→r1

n
∑

j=2

[

(x−xj)

d4

j

(

z1−zj
d2

1

+
n
∑

i=2

zi−zj
d2

i

)]

(

1
d1

)4
·

(

n
∑

i=1

(

d1

di

)2
)2

= 0.



10 L. Pál, R. Oláh-Gál, Z. Makó

Consequently F is derivable and

F ′(ri) = 0, for all i = 1, n.

¥

2.3 Surface interpolation in the space

There is a special case. If m = 2 we will get the H function in the real space:

H(x, y) =















n
∑

i=1

zi
d2

i
n
∑

i=1

1
d2

i

if x 6= xi or y 6= yi,

zi if x = xi and y = yi,

(7)

where di =

√

(x− xi)
2 + (y − yi)

2 is the euclidean distance and (xi, yi, zi) , i =

1, n are the points we want to interpolate.

3 Conclusions

The F function it is like the (4) but here the weights are the inverse of the
distance’s square. This function has the properties of Lagrange’s interpolation
method and those of the arithmetic mean weighted by the inverse of distance
method, because it interpolates the control points. The F function also has
an important property. It is continuous derivable and the control points are
stationary. We illustrate these features in the fifth row of the Figure 1 and
Figure 2.

Consequently, with the Shepard’s interpolation function we can derive smooth
curves, surfaces and it allows the making of beautiful and aesthetic drawings
in computer graphics.

Furthermore it is an important geological requirement and an empirical fact
that methane and petrol have the shape of a mushroom. They cannot have
a polyhedron like, plicate surface. In most of the cases when people make
borings, first they find the maximum points of the methane. Therefore if
we want to appreciate the volume of the methane we need a surface which
crosses the maximum point and it has the form of a mushroom. On Figure
2 is visible that the Shepard’s function has approximately this form in the
maximum points, but the other functions do not have this feature. Naturally
we have tested this function with higher powers of distance but we didn’t get
better interpolations.
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Figure 1: Approximation-interpolation in two dimension
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Figure 2: Approximation-interpolation in three dimension
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[10] R. Oláh-Gál, L. Pál, Discrete approximation, Proceedings of the 6th Inter-

national Conference on Applied Informatics, Eger, Hungary, (2004) 409–
415

[11] D. Shepard, A two-dimensional function for irregularlly-spaced data, Pro-

ceedings ACM National Conference, (1968) 517–524.

Received: September 23, 2008


