

DOI: 10.2478/ausm-2019-0008

Sharp bounds of Fekete-Szegő functional for quasi-subordination class

Shashi Kant

Department of Mathematics, Government Dungar College Bikaner, India email: drskant.2007@yahoo.com Prem Pratap Vyas

Department of Mathematics, Government Dungar College Bikaner, India

email: prempratapvyas@gmail.com

Abstract. In the present paper, we introduce a certain subclass $\mathcal{K}_q(\lambda,\gamma,h)$ of analytic functions by means of a quasi-subordination. Sharp bounds of the Fekete-Szegő functional for functions belonging to the class $\mathcal{K}_q(\lambda,\gamma,h)$ are obtained. The results presented in the paper give improved versions for the certain subclasses involving the quasi-subordination and majorization.

1 Introduction and definitions

Let \mathcal{A} denote the family of normalized functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1}$$

which are analytic in the open unit disk $\mathbb{U} = \{z : |z| < 1\}$. If $f \in \mathcal{A}$ satisfies $f(z_1) \neq f(z_2)$ for any $z_1 \in \mathbb{U}$ and $z_2 \in \mathbb{U}$ with $z_1 \neq z_2$, then f is said to be univalent in \mathbb{U} and denoted by $f \in \mathcal{S}$.

Key words and phrases: univalent functions, subordination, quasi-subordination, Fekete-Szegő coefficients

²⁰¹⁰ Mathematics Subject Classification: 30C45

Let g and f be two analytic functions in \mathbb{U} then function g is said to be subordinate to f if there exists an analytic function w in the unit disk \mathbb{U} with w(0) = 0 and |w(z)| < 1 such that

$$g(z) = f(w(z)) \quad (z \in \mathbb{U}).$$

We denote this subordination by $g \prec f$. In particular, if the f is univalent in \mathbb{U} , the above subordination is equivalent to g(0) = f(0) and $f(\mathbb{U}) \subset g(\mathbb{U})$. Further, function g is said to be quasi-subordinate [18] to f in the unit disk \mathbb{U} if there exist the functions w (with constant coefficient zero) and ϕ which are analytic and bounded by one in the unit disk \mathbb{U} such that

$$g(z) = \phi(z)f(w(z))$$

and this is equivalent to

$$\frac{g(z)}{\phi(z)} \prec f(z) \quad (z \in \mathbb{U}).$$

We denote this quasi-subordination by $g \prec_q f$. It is observed that if $\varphi(z) = 1$ $(z \in \mathbb{U})$, then the quasi-subordination \prec_q become the usual subordination \prec_q and for the function w(z) = z $(z \in \mathbb{U})$, the quasi-subordination \prec_q become the majorization ' \ll '. In this case

$$\mathbf{g}(\mathbf{z}) = \mathbf{\varphi}(\mathbf{z}) \mathbf{f}(\mathbf{w}(\mathbf{z})) \ \Rightarrow \mathbf{g}(\mathbf{z}) \ll \mathbf{f}(\mathbf{z}), \ \ (\mathbf{z} \in \mathbb{U}).$$

Some typical problems in geometric function theory are to study functionals made up of combinations of the coefficients of f. In 1933, Fekete and Szegő [5] obtained a sharp bound of the functional $\lambda \alpha_2^2 - \alpha_3$, with real $\lambda (0 \le \lambda \le 1)$ for a univalent function f. Since then, the problem of finding the sharp bounds for this functional of any compact family of functions $f \in \mathcal{A}$ with any complex λ is known as the classical Fekete-Szegő problem or inequality. Lawrence Zalcman posed a conjecture in 1960 that the coefficients of \mathcal{S} satisfy the sharp inequality

$$|\alpha_n^2 - \alpha_{2n-1}| \leq (n-1)^2, \ n \geq 2.$$

More general versions of Zalcman conjecture have also been considered ([4, 12, 13, 14]) for the functional such as

$$\lambda \alpha_n^2 - \alpha_{2n-1} \text{ and } \lambda \alpha_m \alpha_n - \alpha_{m+n-1}$$

for certain positive value of λ . These functionals can be seen as generalizations of the Fekete-Szegő functional $\lambda a_2^2 - a_3$. Several authors including [1]–[4], [9]–[15], [17, 20] have investigated the Fekete-Szegő and Zalcman functionals for various subclasses of univalent and multivalent functions.

Throughout this paper it is assumed that functions φ and h are analytic in \mathbb{U} . Also let

$$\phi(z) = A_0 + A_1 z + A_2 z^2 + \dots \quad (|\phi(z)| \le 1, \ z \in \mathbb{U})$$
 (2)

and

$$h(z) = 1 + B_1 z + B_2 z^2 + \cdots$$
 $(B_1 \in \mathbb{R}^+).$ (3)

Motivated by earlier works in ([6], [7], [15], [17], [19]) on quasi-subordination, we introduce here the following subclass of analytic functions:

Definition 1 For $0 \le \lambda \le 1$ and $\gamma \in \mathbb{C} \setminus \{0\}$, a function $f \in \mathcal{A}$ given by (1) is said to be in the class $\mathcal{K}_q(\lambda, \gamma, h)$ if the following condition are satisfied:

$$\frac{1}{\gamma} \left(\frac{z f'(z) + z^2 f''(z)}{(1 - \lambda)z + \lambda z f'(z)} - 1 \right) \prec_{q} (h(z) - 1), \tag{4}$$

where h is given by (3) and $z \in \mathbb{U}$.

It follows that a function f is in the class $\mathcal{K}_q(\lambda, \gamma, h)$ if and only if there exists an analytic function φ with $|\varphi(z)| \leq 1$, in \mathbb{U} such that

$$\frac{\frac{1}{\gamma} \left(\frac{zf'(z) + z^2 f''(z)}{(1 - \lambda)z + \lambda z f'(z)} - 1 \right)}{\Phi(z)} \prec (h(z) - 1)$$

where h is given by (3) and $z \in \mathbb{U}$.

If we set $\phi(z) \equiv 1$ $(z \in \mathbb{U})$, then the class $\mathcal{K}_q(\lambda, \gamma, h)$ is denoted by $\mathcal{K}(\lambda, \gamma, h)$ satisfying the condition that

$$1 + \frac{1}{\gamma} \left(\frac{z f'(z) + z^2 f''(z)}{(1 - \lambda)z + \lambda z f'(z)} - 1 \right) \prec h(z) \ (z \in \mathbb{U}).$$

In the present paper, we find sharp bounds on the Fekete-Szegő functional for functions belonging in the class $\mathcal{K}_q(\lambda,\gamma,h)$. Several known and new consequences of these results are also pointed out. In order to derive our main results, we have to recall here the following well-known lemma:

Let Ω be class of analytic functions of the form

$$w(z) = w_1 z + w_2 z^2 + \cdots \tag{5}$$

in the unit disk \mathbb{U} satisfying the condition |w(z)| < 1.

Lemma 1 ([8], p.10) If $w \in \Omega$, then for any complex number ν :

$$|w_1| \le 1, |w_2 - vw_1^2| \le 1 + (|v| - 1)|w_1^2| \le \max\{1, |v|\}.$$

The result is sharp for the functions w(z) = z or $w(z) = z^2$.

2 Main results

Theorem 1 Let $0 \le \lambda \le 1$ and $\gamma \in \mathbb{C} \setminus \{0\}$. If $f \in \mathcal{A}$ of the form (1) belonging to the class $\mathcal{K}_q(\lambda, \gamma, h)$, then

$$|a_2| \le \frac{|\gamma|B_1}{2(2-\lambda)} \tag{6}$$

and for any $\nu \in \mathbb{C}$

$$|a_3 - \nu a_2^2| \le \frac{|\gamma|B_1}{3(3-\lambda)} \max\left\{1, \left|\frac{B_2}{B_1} - QB_1\right|\right\},\tag{7}$$

where

$$Q = \gamma \left(\frac{3\nu(3-\lambda)}{4(2-\lambda)^2} - \frac{\lambda}{2-\lambda} \right). \tag{8}$$

The results are sharp.

Proof. Let $f \in \mathcal{K}_q(\lambda, \gamma, h)$. In view of Definition 1, there exist then Schwarz functions w and an analytic function ϕ such that

$$\frac{1}{\gamma} \left(\frac{z f'(z) + z^2 f''(z)}{(1 - \lambda)z + \lambda z f'(z)} - 1 \right) = \phi(z) (h(w(z)) - 1) \quad (z \in \mathbb{U}). \tag{9}$$

Series expansions for f and its successive derivatives from (1) gives us

$$\frac{1}{\gamma} \left(\frac{zf'(z) + z^2f''(z)}{(1-\lambda)z + \lambda zf'(z)} - 1 \right) = \frac{1}{\gamma} \left[2(2-\lambda)a_2z + \left(3(3-\lambda)a_3 - 4\lambda(2-\lambda)a_2^2\right)z^2 + \dots \right]. \tag{10}$$

Similarly from (2), (3) and (5), we obtain

$$h(w(z)) - 1 = B_1w_1z + (B_1w_2 + B_2w_1^2)z^2 + \cdots$$

and

$$\phi(z)(h(w(z)) - 1) = A_0 B_1 w_1 z + [A_1 B_1 w_1 + A_0 (B_1 w_2 + B_2 w_1^2)] z^2 + \cdots (11)$$

Equating (10) and (11) in view of (9) and comparing the coefficients of z and z^2 , we get

$$a_2 = \frac{\gamma A_0 B_1 w_1}{2(2 - \lambda)} \tag{12}$$

and

$$a_3 = \frac{\gamma B_1}{3(3-\lambda)} \left[A_1 w_1 + A_0 \{ w_2 + \left(\frac{\gamma \lambda A_0 B_1}{2-\lambda} + \frac{B_2}{B_1} \right) w_1^2 \} \right].$$
 (13)

Thus, for any $\nu \in \mathbb{C}$, we have

$$a_3 - \nu a_2^2 = \frac{\gamma B_1}{3(3-\lambda)} \left[A_1 w_1 + \left(w_2 + \frac{B_2}{B_1} w_1^2 \right) A_0 - \left(\frac{3(3-\lambda)\gamma}{4(2-\lambda)^2} \nu - \frac{\gamma \lambda}{2-\lambda} \right) B_1 A_0^2 w_1^2 \right]$$

$$= \frac{\gamma B_1}{3(3-\lambda)} \left[A_1 w_1 + \left(w_2 + \frac{B_2}{B_1} w_1^2 \right) A_0 - Q B_1 A_0^2 w_1^2 \right], \tag{14}$$

where Q is given by (8).

Since $\phi(z) = A_0 + A_1 z + A_2 z^2 + \cdots$ is analytic and bounded by one in \mathbb{U} , therefore we have (see [16], p 172)

$$|A_0| \le 1$$
 and $A_1 = (1 - A_0^2)y$ $(y \le 1)$. (15)

From (14) and (15), we obtain

$$a_3 - \nu a_2^2 = \frac{\gamma B_1}{3(3-\lambda)} \left[yw_1 + \left(w_2 + \frac{B_2}{B_1} w_1^2 \right) A_0 - \left(B_1 Q w_1^2 + y w_1 \right) A_0^2 \right]. \tag{16}$$

If $A_0=0$ in (16), we at once get

$$|\alpha_3 - \nu \alpha_2^2| \le \frac{|\gamma| B_1}{3(3-\lambda)}.\tag{17}$$

But if $A_0 \neq 0$, let us then suppose that

$$G(A_0) = yw_1 + \left(w_2 + \frac{B_2}{B_1}w_1^2\right)A_0 - \left(B_1Qw_1^2 + yw_1\right)A_0^2$$

which is a quadratic polynomial in A_0 and hence analytic in $|A_0| \leq 1$ and maximum value of $|G(A_0)|$ is attained at $A_0 = e^{i\theta}$ ($0 \leq \theta < 2\pi$), we find that

$$\begin{split} \max &|G(A_0)| &= \max_{0 \leq \theta < 2\pi} &|G(e^{\iota \theta})| = |G(1)| \\ &= \left| w_2 - \left(QB_1 - \frac{B_2}{B_1}\right) w_1^2 \right|. \end{split}$$

Therefore, it follows from (16) that

$$|a_3 - \nu a_2^2| \le \frac{|\gamma|B_1}{3(3-\lambda)} \left| w_2 - \left(QB_1 - \frac{B_2}{B_1} \right) w_1^2 \right|,$$
 (18)

which on using Lemma 1, shows that

$$|\alpha_3 - \nu \alpha_2^2| \leq \frac{|\gamma|B_1}{3(3-\lambda)} \max\left\{1, \left|\frac{B_2}{B_1} - QB_1\right|\right\},$$

and this last above inequality together with (17) establish the results. The result are sharps for the function f given by

$$1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2f''(z)}{(1 - \lambda)z + \lambda zf'(z)} - 1 \right) = h(z),$$

$$1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2f''(z)}{(1 - \lambda)z + \lambda zf'(z)} - 1 \right) = h(z^2)$$

and

$$1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2f''(z)}{(1 - \lambda)z + \lambda zf'(z)} - 1 \right) = z(h(z) - 1).$$

This completes the proof of Theorem 1.

For $\lambda = 0$ the Theorem 1 reduces to following corollary:

Corollary 1 If $f \in A$ of the form (1) satisfies

$$\frac{1}{\gamma}(f^{'}(z)+zf^{''}(z)-1)\prec_{\mathfrak{q}}(\mathfrak{h}(z)-1) \qquad (z\in\mathbb{U},\;\gamma\in\mathbb{C}\backslash\{0\}),$$

then

$$|a_2| \leq \frac{|\gamma|B_1}{4}$$

and for some $\nu \in \mathbb{C}$

$$|\alpha_3-\nu\alpha_2^2|\leq \frac{|\gamma|B_1}{9}\max\bigg\{1,\left|\frac{B_2}{B_1}-\frac{9\nu|\gamma|B_1}{16}\right|\bigg\}.$$

The results are sharp.

Remark 1 In Corollary 1, if we set $\phi \equiv 1$, then above result match with the result given in [3].

Remark 2 For $\phi \equiv 1$, $\gamma = \lambda = 1$, Theorem 1 reduces to an improved result of given in [15].

The next theorem gives the result based on majorization.

Theorem 2 Let $0 \le \lambda \le 1$ and $\gamma \in \mathbb{C} \setminus \{0\}$. If $f \in \mathcal{A}$ of the form (1) satisfies

$$\frac{1}{\gamma} \left(\frac{zf'(z) + z^2f''(z)}{(1 - \lambda)z + \lambda zf'(z)} - 1 \right) \ll (h(z) - 1) \quad (z \in \mathbb{U}), \tag{19}$$

then

$$|\alpha_2| \leq \frac{|\gamma|B_1}{2(2-\lambda)}$$

and for any $\nu \in \mathbb{C}$

$$|a_3 - \nu a_2^2| \leq \frac{|\gamma|B_1}{3(3-\lambda)} \max\left\{1, \left|\frac{B_2}{B_1} - QB_1\right|\right\},\,$$

where Q is given by (8). The results are sharp.

Proof. Assume that (19) holds. From the definition of majorization, there exist an analytic function ϕ such that

$$\frac{1}{\gamma} \left(\frac{z f^{'}(z) + z^2 f^{''}(z)}{(1-\lambda)z + \lambda z f^{'}(z)} - 1 \right) = \varphi(z)(h(z) - 1) \quad (z \in \mathbb{U}).$$

Following similar steps as in the proof of Theorem 1, and by setting $w(z) \equiv z$, so that $w_1 = 1, w_n = 0, n \ge 2$, we obtain

$$a_2 = \frac{\gamma A_0 B_1}{2(2-\lambda)}$$

and also we obtain that

$$a_3 - \nu a_2^2 = \frac{\gamma B_1}{3(3-\lambda)} \left[A_1 + \frac{B_2}{B_1} A_0 - Q B_1 A_0^2 \right].$$

On putting the value of A_1 from (15), we obtain

$$a_3 - \nu a_2^2 = \frac{\gamma B_1}{3(3-\lambda)} \left[y + \frac{B_2}{B_1} A_0 - (QB_1 + y) A_0^2 \right].$$
 (20)

If $A_0=0$ in (20), we at once get

$$|a_3 - \nu a_2^2| \le \frac{|\gamma| B_1}{3(3-\lambda)},\tag{21}$$

But if $A_0 \neq 0$, let us then suppose that

$$T(A_0) = y + \frac{B_2}{B_1}A_0 - (QB_1 + y)A_0^2,$$

which is a quadratic polynomial in A_0 , hence analytic in $|A_0| \le 1$ and maximum value of $|T(A_0)|$ is attained at $A_0 = e^{i\theta}$ ($0 \le \theta < 2\pi$), we find that

$$\max \lvert T(A_0) \rvert = \max_{0 \leq \theta < 2\pi} \lvert T(e^{\iota \theta}) \rvert = \lvert T(1) \rvert \text{.}$$

Hence, from (20), we obtain

$$|\alpha_3 - \nu \alpha_2^2| \leq \frac{|\gamma|B_1}{3(3-\lambda)} \left| QB_1 - \frac{B_2}{B_1} \right|.$$

Thus, the assertion of Theorem 2 follows from this last above inequality together with (21). The results are sharp for the function given by

$$1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2 f''(z)}{(1 - \lambda)z + \lambda z f'(z)} - 1 \right) = h(z),$$

which completes the proof of Theorem 2.

Theorem 3 Let $0 \le \lambda \le 1$ and $\gamma \in \mathbb{C} \setminus \{0\}$. If $f \in \mathcal{A}$ of the form (1) belonging to the class $\mathcal{K}(\lambda, \gamma, h)$, then

$$|\alpha_2| \leq \frac{|\gamma| B_1}{2(2-\lambda)}$$

and for any $\nu\in\mathbb{C}$

$$|\alpha_3 - \nu \alpha_2^2| \leq \frac{|\gamma|B_1}{3(3-\lambda)} \max\left\{1, \left|\frac{B_2}{B_1} - QB_1\right|\right\},\,$$

where Q is given by (8), the results are sharp.

Proof. The proof is similar to Theorem 1, Let $f \in \mathcal{K}(\lambda, \gamma, h)$.

If $\phi(z) = 1$, then $A_0 = 1$, $A_n = 0$ ($n \in \mathbb{N}$). Therefore, in view of (12) and (14) and by application of Lemma 1, we obtain the desired assertion. The results are sharp for the function f given by

$$1 + \frac{1}{\gamma} \left(\frac{zf'(z) + z^2 f''(z)}{(1 - \lambda)z + \lambda z f'(z)} - 1 \right) = h(z),$$

or

$$1 + \frac{1}{\gamma} \left(\frac{z f'(z) + z^2 f''(z)}{(1 - \lambda)z + \lambda z f'(z)} - 1 \right) = h(z^2).$$

Thus, the proof of Theorem 3 is completed.

Now, we determine the bounds on the functional $|a_3 - \nu a_2^2|$ for real ν .

Theorem 4 Let $0 \le \lambda \le 1$. If $f \in \mathcal{A}$ of the form (1) belonging to the class $\mathcal{K}_q(\lambda, \gamma, h)$, then for real ν and γ , we have

$$\begin{split} |\alpha_{3}-\nu\alpha_{2}^{2}| & \leq \left\{ \begin{array}{ll} \frac{|\gamma|B_{1}}{3(3-\lambda)} \left[B_{1}\gamma\left(\frac{\lambda}{2-\lambda}-\frac{3(3-\lambda)}{4(2-\lambda)^{2}}\nu\right)+\frac{B_{2}}{B_{1}}\right] & (\nu \leq \sigma_{1}), \\ \frac{|\gamma|B_{1}}{3(3-\lambda)} & (\sigma_{1} \leq \nu \leq \sigma_{1}+2\rho), \\ -\frac{|\gamma|B_{1}}{3(3-\lambda)} \left[B_{1}\gamma\left(\frac{\lambda}{2-\lambda}-\frac{3(3-\lambda)}{4(2-\lambda)^{2}}\nu\right)+\frac{B_{2}}{B_{1}}\right] & (\nu \geq \sigma_{1}+2\rho), \end{array} \right. \end{split}$$

where

$$\sigma_1 = \frac{4\lambda(2-\lambda)}{3(3-\lambda)} - \frac{4(2-\lambda)^2}{3\gamma(3-\lambda)} \left(\frac{1}{B_1} - \frac{B_2}{B_1^2}\right)$$
 (23)

and

$$\rho = \frac{4(2-\lambda)^2}{3\gamma(3-\lambda)B_1}. (24)$$

Each of the estimates in (22) are sharp.

Proof. For real values of ν and γ the above bounds can be obtained from (7), respectively, under the following cases:

$$B_1Q - \frac{B_2}{B_1} \le -1, \ -1 \le B_1Q - \frac{B_2}{B_1} \le 1 \text{ and } B_1Q - \frac{B_2}{B_1} \ge 1,$$

where Q is given by (8). We also note the following:

(i) When $\nu < \sigma_1$ or $\nu > \sigma_1 + 2\rho$, then the equality holds if and only if $\phi(z) \equiv 1$ and w(z) = z or one of its rotations.

- (ii) When $\sigma_1 < \nu < \sigma_1 + 2\rho$, then the equality holds if and only if $\phi(z) \equiv 1$ and $w(z) = z^2$ or one of its rotations.
- (iii) Equality holds for $\mathbf{v} = \mathbf{\sigma}_1$ if and only if $\mathbf{\phi}(z) \equiv 1$ and $\mathbf{w}(z) = \frac{z(z+\epsilon)}{1+\epsilon z}$ ($0 \le \epsilon \le 1$), or one of its rotations, while for $\mathbf{v} = \mathbf{\sigma}_1 + 2\rho$, the equality holds if and only if $\mathbf{\phi}(z) \equiv 1$ and $\mathbf{w}(z) = -\frac{z(z+\epsilon)}{1+\epsilon z}$ ($0 \le \epsilon \le 1$), or one of its rotations.

The bounds of the functional $a_3 - \nu a_2^2$ for real values of ν and γ for the middle range of the parameter ν can be improved further as follows:

Theorem 5 Let $0 \le \lambda \le 1$. If $f \in \mathcal{A}$ of the form (1) belonging to the class $\mathcal{K}_q(\lambda, \gamma, h)$, then for real ν and γ , we have

$$|\alpha_3 - \nu \alpha_2^2| + (\nu - \sigma_1)|\alpha_2|^2 \le \frac{|\gamma|B_1}{3(3-\lambda)} \quad (\sigma_1 \le \nu \le \sigma_1 + \rho)$$
 (25)

and

$$|a_3 - \nu a_2^2| + (\sigma_1 + 2\rho - \nu)|a_2|^2 \le \frac{|\gamma|B_1}{3(3-\lambda)} \quad (\sigma_1 + \rho \le \nu \le \sigma_1 + 2\rho), \quad (26)$$

where σ_1 and ρ are given by (23) and (24), respectively.

Proof. Let $f \in \mathcal{K}_q(\lambda, \gamma, h)$. For real ν satisfying $\sigma_1 + \rho \leq \nu \leq \sigma_1 + 2\rho$ and using (12) and (18) we get

$$|\alpha_3-\nu\alpha_2^2|+(\nu-\sigma_1)|\alpha_2|^2$$

$$\leq \frac{|\gamma|B_1}{3(3-\lambda)} \Big[|w_2| - \frac{3|\gamma|B_1(3-\lambda)}{4(2-\lambda)^2} (\gamma - \sigma_1 - \rho) |w_1|^2 + \frac{3|\gamma|B_1(3-\lambda)}{4(2-\lambda)^2} (\gamma - \sigma_1) |w_1|^2 \Big].$$

Therefore, by virtue of Lemma 1, we get

$$|\alpha_3 - \nu \alpha_2^2| + (\nu - \sigma_1)|\alpha_2|^2 \le \frac{|\gamma|B_1}{3(3-\lambda)}[1 - |w_1|^2 + |w_1|^2],$$

which yields the assertion (25).

If $\sigma_1 + \rho \le \nu \le \sigma_1 + 2\rho$, then again from (12), (18) and the application of Lemma 1, we have

$$\begin{split} |a_3 - \nu a_2^2| + (\sigma_1 + 2\rho - \nu)|a_2|^2 &\leq \frac{|\gamma|B_1}{3(3-\lambda)} \bigg[|w_2| + \frac{3|\gamma|B_1(3-\lambda)}{4(2-\lambda)^2} (\nu - \sigma_1 - \rho)|w_1|^2 \\ &\quad + \frac{3|\gamma|B_1(3-\lambda)}{4(2-\lambda)^2} (\sigma_1 + 2\rho - \nu)|w_1|^2 \bigg] \\ &\leq \frac{|\gamma|B_1}{3(3-\lambda)} [1 - |w_1|^2 + |w_1|^2], \end{split}$$

which estimates (26).

Conflicts of interest

The authors declare that there are no conflict of interest regarding the publication of this paper.

References

- [1] Y. Abu Muhanna, L. Li, S. Ponnusamy, Extremal problems on the class of convex functions of order -1/2, *Arch. Math. (Basel)*, **103** (6) (2014), 461–471.
- [2] R.M. Ali, V Ravichandran, N. Seenivasagan, Coefficient bounds for p-valent functions, *Appl. Math. Comput.*, **187** (2007), 35–46.
- [3] D. Bansal, Fekete-Szegő Problem for a New Class of Analytic Functions, *Int. J. Math. Math. Sci.*, Article ID **143096** (2011), 5 pages.
- [4] J. E. Brown, A. Tsao, On the Zalcman conjecture for starlike and typically real functions, *Math. Z.*, **191** (1986), 467–474.
- [5] M. Fekete, G. Szegő, Eine Bemerkung Über ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933), 85–89.
- [6] S. P. Goyal, O. Singh, Fekete-Szegő problems and coefficient estimates of quasi-subordination classes, J. Rajasthan Acad. Phys. Sci., 13 (2) (2014), 133–142.
- [7] S. Kant, Coefficients estimate for certain subclasses of bi-univalent functions associated with quasi-subordination, *J. Fract. Calc. Appl.*, **9** (1) (2018), 195–203.
- [8] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, *Proc. Amer. Math. Soc.*, **20** (1969), 8–12.
- [9] W. Koepf, On the Fekete-Szegő problem for close-to-convex functions, *Proc. Amer. Math. Soc.*, **101** (1) (1987), 89–95.
- [10] W. Koepf, On the Fekete-Szegő problem for close-to-convex functions II, Arch. Math. (Basel), 49 (5) (1987), 420–433.

- [11] S. L. Krushkal, Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J., 17 (4) (2010), 663–681.
- [12] L. Li, S. Ponnusamy, On the genralized Zalcman functional $\lambda a_n^2 a_{2n-1}$ in the close-to-convex family, *Proc. Amer. Math. Soc.*, **145**, (2) (2017), 833–846.
- [13] L. Li, S. Ponnusamy, J. Qiao, Generalized Zalcman conjecture for convex functions of order α , Acta Math. Hungar., **150** (1) (2016), 234–246.
- [14] W. Ma, Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., 234 (1999), 328–339.
- [15] M. H. Mohd, M. Darus, Fekete-Szegő problems for quasi-subordination classes, Abstr. Appl. Anal., Article ID 192956 (2012), 14 pages.
- [16] Z. Nehari, Conformal mapping, Dover, New York (1975) (reprinting of the 1952 edition).
- [17] T. Panigrahi, R. K. Raina, Fekete-Szegő coefficient functional for quasisubordination class, Afro. Mat., 28 (5–6) (2017), 707–716.
- [18] M. S. Robertson, Quasi-subordination and coefficient conjuctures, Bull. Amer. Math. Soc., 76 (1970), 1–9.
- [19] P. Sharma, R. K. Raina, On a Sakaguchi type class of analytic functions associated with quasisubordination, *Comment. Math. Univ. St. Pauli*, 64 (1) (2015), 59–70.
- [20] H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegő problem for a subclass of close-to-convex functions, *Complex Var. Theory Appl.*, 44 (2001), 145–163.

Received: June 7, 2018