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Abstract. It is known that we can prescribe the lower and upper

asymptotic and logarithmic density of a set of positive integers. The only
limitation is the inequality between asymptotic and logarithmic density.
We generalize this result.

1 Introduction

Denote by N the set of all positive integers, let A C N and let f: N — (0, 0o)
be a weight function. For A C N and n € N denote

Se(A,n)=> fla), Sin)=) fla)

asn a<n
acA
and define
d¢(A) = liminf SilAn) and  d¢(A) =limsup SiAn)
noee Se(n) s Se(1)

the lower and upper f-densities of A, respectively. In the case when d¢(A) =
df(A) we say that A possesses f-density d¢(A).
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Notice that the well-known asymptotic density corresponds to f(n) = 1 and
the logarithmic density corresponds to f(n) = % The concept of weighted
densities was introduced in [7] and [1]. The continuity of densities given by
the weight function n%, o > —1, was studied in [3]. Inequalities between upper
and lower weighted densities for different weight functions were proved in [2].

The independence (within admissible bounds) of the asymptotic and log-
arithmic densities was proved in [6] and [5] showing that for any given real

numbers 0 < o < <y < & < 1 there exists a set A C N such that
Q] = X, Ql (A) - E’a al (A) =Y, a] (A) = 6

We generalize this result. We prove that under some assumptions on the
weighted densities an analogous result holds. In [4], generalized asymptotic
and logarithmic densities over an arithmetical semigroup were considered.
We call a weight function f regular if the corresponding weighted density
fulfills the condition that for arbitrary positive integers a, b we have
d¢(aN+Db) = 1;

(f-density of the terms of arbitrary infinite arithmetical progression with the
same difference are equal). Note that from this condition follows that

© )
; fn)=oco, - lim S )

= 0. (1)

2 Results

The following lemma will be useful

Lemma 1 Let f, g be reqular weight functions. Let B be a subset of positive
integers such that

d¢(B)=0, d¢B)=1 and dg(B) =0.

Then for any 0 < oo < B < v < 6 < 1, rational numbers there exists a set
E C N such that

dg(E) =d¢(E) =7v and d¢(E)=23
and a set H C N with the property
dg(H) = d¢(H) =B and d{H) =«
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Proof. Write v and § as fractions with a common denominator, let y = %

and 6 = % Define

E— él(tN%—i) U (B N (1:§+1 (tN—I—i))).

As dg4(B) =0, therefore

P .
dg(E) = dg(iL:J1 tN+1) ===y
Analogously we get d¢(E) = % =.
Clearly d¢(E) < & = % The case d¢(E) < % yields a contradiction because
1= AN =di( O (BNEN+)+d( U (BN(N+1)) <
1= 1=q
_ _ t X q t—q
< E t -+ —=1.
< d¢( )+df(i:g+1(N+l))<t+ T

In analogous way we can prove the existence of the set H with the prescribed

properties. For o = : and p = % let
S S
H= U (tN+1)~ (Bm (.U (tN—i—i))).
i=1 i=r+1

Note, from the construction of the sets E, H follows H C E. |

Theorem 1 Let f, g be reqular weight functions. Let B be a subset of positive
integers such that

d¢(B) =0, d¢(B)=1 and d4(B)=0.

Let 0 < ax < B <v <8 <1 be given real numbers. Then there exists a set
A C N such that

Proof. On the contrary, we suppose that there exist rational numbers 0 < a <
B <v<b6<1and e > 0 such that at least one of the following inequalities
does not hold.

[de(A) —ad <, 1dg(A) =Bl <e, [dg(A)—vl<e, [de(A)—8<e
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Using the sets H, E defined in the previous lemma we construct a set A such
that
HCACE.

Then clearly
de(A) > dg(H), d

J(A) > dy(H)

and B _ _ _
de(A) < d¢(E), dg(A) < d4(E).

Define the set A by “intertwinning” the sets E and H
o0
A=H Y, Mok, 21l NE,

where ny = 1 and for k = 1,2,... let ni be sufficiently large, such that for
some 1, j between ny_7 and ny the
‘Sf(A»i)
S¢(1)

S g (A» J )
Sg(j)
inequalities hold. Analogously, sufficiently large njy,1 guarantees the inequal-

ities

—oc‘<s and ‘

~B|<e (2)

Sf(A m) S (A 1)

TR <o and 2705 | 3

‘ Sf(m) Sg(l) ( )
for some m, 1. From this we can deduce that (2) and (3) hold for infinitely
many 1i, j, m, | what is a contradiction to our assumption. |

Roughly speaking, the proved theorem says that under some conditions
to prove the existence of a set A with prescribed upper and lower weighted
densities it is sufficient to consider only one, the “worst” case.

Lemma 2 If the function f: N — (0, 00) satisfies the conditions

2 ) = oo (4)

n=1
. fm)
nlgrgo S¢(n) 0 (5)

then for the function g defined as
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we have -
> gn)=o0 (7)
n=1
and )
. ogn)
RIS Sg(n) 0 ®)

Proof. We prove only (7), using the fact limy—,00 g(n) = 0 together with (7)
it follows immediately (8).
For arbitrary positive integers m > 1 we have

LI x
2= 2 T i T T

k=n k=n £&=i=1 =T

The proof is completed by showing that for given n and sufficiently large m

ks 1
];g(k) > 5

o0
From (4) we see that ) f(i) = oo, therefore for arbitrary n € N

i=1
m
m > f(k)
. . k=m o
A, ) olk) > Jim Sor =1
k=n Z f(l)
=
and the lemma follows. [ |

Theorem 2 Let the functions f,g : N — (0,00) satisfy the assumptions (4)-
(6). Then there exists a set B C N such that

d¢(B)=0, d¢(B)=1 and dy(B)=0.

Proof. Consider -
B= kU1[lek,T12k+1].

Let nqy = 1. Assume nq,ny,..., N1 are given. We are looking for ny such

that fn) :
n
fi bit >
f(1)—|—f(2)+---—|—f(n)<k—|—1 or arbitrary n > ny, 9)




Sets with prescribed lower and upper weighted densities 97

f(1) +f(2) +- +f(n2kf1) 1
M)+t fng ~ K (10)

g(1)+9g(2)+---+ gna1) 1
o 70D Temm) < K =
g +92)+ - +gnxy) > k% (12)

Moreover, let noxy1 satisfy the inequalities
k—1 f(nge) + f(no+ 1)+ -+ + f(noer1) k

K11 f)+f2) -t fnaen) kil (13)

Inequalities (10)—(13) follow from the prescribed conditions on the functions

f and g.
By (10) we have d¢(B) = 0, by (11) we have dy(B) = 0 and taking into

account (13) we get d¢(B) = 0.
We proceed to show that dg(B) = 0. In virtue of [2], Lemma 2.1 it is

sufficient to consider only the values Sg(? M) We have

Sg(B»nZk—H)
Sg(nZk—H)
g(1) +9(2) +---+gna—1) + glna) + gnax + 1) + - - + g(na 1) -
g(1) +9(2) + -+ g(naxs1)

fnzi)+Hf(max +1)++f(Max 1)
f(1)+f(2)++f(nak—1)

g(M) +g(2)+ -+ g(nau)

1 N g(na) +gnac+ 1) + - + g(nawgr) 1
k 9(D+9(2) + -+ glna) Tk
Using (13) we can show the inequality
fna) + fnak+1) + - - + fna)
f(1) +f(2) + -+ f(na—1)
Using this together with (12) we have
Se(B,mawin) 1, k2

7_1_7 —
Sgna) kK2 Kk

+

< k.

and hence ag(B) =0 and d4(B) = 0 follows. |

It is not hard to show that if a monotone function f satisfies (4)—(5), then
it is regular (see, e.g. [2], Example 2.1). If the function g defined by (6) is
monotonely decreasing, then it is regular, too. We have
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Corollary 1 Let the monotone function f and monotone decreasing function
g satisfy the assumptions (4)—(6). Let 0 < a« < B <y <5 <1 be given real
numbers. Then there exists a set A C N such that

Q'F(A) = X, QQ(A) — B) dg(A) =%, df(A) = 6

Acknowledgement

This research was supported by the grants APW SK-HU-0009-08 and VEGA
Grant no. 1/0753/10.

References

[1] R. Alexander, Density and multiplicative structure of sets of integers, Acta
Arith., 12 (1976), 321-332.

[2] J. Bukor, L. Misik, J. T. Téth, Dependence of densities on a parameter,
Information Sciences, (to appear).

[3] R. Giuliano Antonini, G. Grekos, L. Misik, On weighted densities, Czech.
Math. J., 57 (2007), 947-962.

[4] F. Luca, C. Pomerance, S. Porubsky, Sets with prescribed arithmetic den-
sities, Uniform Distribution Theory, 3 (2008), 67-80.

[5] F. Luca, S. Porubsky, On asymptotic and logarithmic densities, Tatra M.
Math. Publ., 31 (2005), 75-86.

[6] L. Misik, Sets of positive integers with prescribed values of densities, Math.
Slovaca, 52 (2002), 289-296.

[7] H. Rohrbach, B. Volkmann, Verallgemeinerte asymptotische Dichten, J.
Reine Angew. Math., 194 (1955), 195-209.

Received: July 1, 2009; Revised: April 5, 2010



