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Scattered subwords and composition of
natural numbers
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Informatics, Targu Mureg Informatics, Targu Mures
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Abstract. Special scattered subwords in which the length of the gaps
are bounded by two natural numbers are considered. For rainbow words
the number of such scattered subwords is equal to the number of special
restricted compositions of natural numbers in which the components are
natural numbers from a given interval. Linear algorithms to compute
such numbers are given. We also introduce the concepts of generalized
scattered subword (duplex-subword) and generalized composition.

1 Introduction

We define a special scattered subword [5] as a generalization of the d-subword
[2] and supper-d-subword [4].

Definition 1 Let n, di < do and s be positive natural numbers, and let
u=2x1T2...2, € X" be a word over an alphabet ¥.. A word v = x;, x4, . .. X;,,
where

i1 > 1,

dlgij+1—ij§d2, forjzl,?,...,s—l,

is <M,
is a (di,dy)-subword of length s of u.
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For example, in the word aabcade the subwords abd, ace,ad are (2,4)-sub-
words.

Definition 2 The number of different (di,ds)-subwords of a word w is the
(d1, dy)-complexity of w.

The (1, d)-complexity was studied in [2] and [3], the (d, n)-complexity in [4],
while the (dy, d2)-complexity in [5].

2 Computing the (d;, dy)-complexity by digraphs

The graph method was defined for the general case of scattered subwords in
[5], and for this particular case can be used as follows to compute the (dy, d2)-
complexity of a rainbow word.

Let G = (V, E) be a digraph attached to the rainbow word ajas . ..a, and
positive integers dy < ds, where

V= {al,ag, . ,an},

E={(aj,a;)|di <j—i<dy,i=1,2,...,n,5=1,2,...,n}.

The adjacency matrix A = (azj) 1 of the digraph is defined by:

1,n

i=1,2,....n,j=1,2,....n

Y

Qi = 1> lfdlgj—lng,
71 0, otherwise,

To compute the (di,ds)-complexity we use a Floyd-Warshall-type algorithm
[5]:

FW(A,n)

1 W+ A

2 fork<+ 1ton

3 dofori<«+ 1ton

4 do for j < 1ton

5 do wj; < wi;j + wirwg;
6 return W

If R=1+ W, where I is the unity matrix, then the (di, ds)-complexity is:

n dl,dg ZZTU

i=1 j=1
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Figure 1: Graph for n =7,d; = 2,dy = 4.

Example 3 For digraph in Figure 1 we have the following adjacency matriz:

b

I
OO OO o oo
O OO O o oo
(el NoNoNal
SO OO O~
SO OO = =
SO OO === O
OO R M= OO

The above algoithm give us the matriz W, and by completing with 1’s on the
first diagonal we obtain the corresponding matriz R:

00112 24 10112 2 4
000112 2 010112 2
000011 2 001 011 2
W=100020011/], R=]10001011
000 O0O0O01 00 001O0T1
0 00O0O0OO 0O 000 O0O0OT1FQ O
00 0O0O0OO0OOQO 0000O0TO0T1

The complexity K(7;2,4) = 30 (the sum of all entries of the matrix R). The
corresponding (2,4 )-subwords are:

{a} {ac} {ad} {ace,ae} {adf,acf} {aeg,aceg,adg,acg}
{b} {bd} {be} {bdf,bf} {beg,bdg}

{c} {ce} {cf} {ceg,cg}t

{d} {df} {dg}

{e} {eg}

{f}

{g}.
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Figure 2: Graph for n =8,d; = 3,ds = 7.

The Floyd—Warshall-type algorithm combined with the Latin square method
can be used to obtain all nontrivial (with length at least 2) (di, d2)-subwords
of a given rainbow word ajas . .. a, of length n [5]. Let us consider a matrix .4
with entries A;; which are sets of words. Initially this entries are defined as:

{ {aja;}, ifdy <j—i<dy,
Az‘j =

0, otherwise, or 1 4 T J ) 4y , N

If A and B are sets of words, AB is the set of concatenation of each word from
A with each word from B:

AB:{ab}aeA,bEB}.

If s = s182...8p is a word, let us denote by s the word obtained from s by
erasing the first character: 's = sgs3...s,. Let us denote by ’Aij the set A;;
in which we erase from each element the first character. In this case ‘A is a
matrix with elements 'A;;.

Starting with the matrix A defined as before, the algorithm to obtain all
nontrivial (dy,ds)-subwords is the following [5]:

FW-LATIN(A, n)

1 W+ A

2 for k< 1ton

3 dofori+ 1ton

4 do for j < 1ton

5 do if Wy, # 0 and Wy; # 0

6 then Wij — Wij U Wik /ij
7 return W
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The set of (dy, d2)-subwords is U Wij.
3,5€{1,2,....,n}

Example 4 For the digraph in Figure 2, when n = 8, dy = 3,ds = 7, the
initial matriz A is:

0 0 0 {ad} {ae} {af} {ag} {ah}
O 0 0 0  {ver {bf} {bg} {bh}
/I /I 0 {cf} {cg} {ch}
o0 0 0 0 0 {dg} {dh}
o0 0 0 0 0 0 {eh}
o 00 0 0 0 0 0
o0 0 0 0 0 0 0
o 00 0 0 0 0 0

The result of the algorithm is:

0 0 0 {ad} {ae} {af} {ag,adg} {ah,adh,aeh}
00 0 0 {ve} {bf} {bg} {bh, beh}
o0 0 0 0 A{cf} {cg} {ch}
000 0 0 0 {dg} {dh}
o0 0 0 0 0 0 {eh}
000 0 0 0 0 0

o0 0 0 0 0 0 0
000 0 0 0 0 0

3 Linear algorithm for the (d;, d;)-complexity

In this section linear algorithms to obtain (di, d2)-complexity and (dy,ds)-
subwords of rainbow words are given.

The following dynamic programming algorithm COMPLEXITY computes the
(d1, dg2)-complexity of rainbow word ajas . . . a,. The element x; (i = 1,2,...,n)
of the array X stores the number of (dj, d2)-subwords ending in letter a;. Let-
ter a; can be added to all (di,ds)-subwords ending in letters from interval
a; —dy ...a; — do (assuming that this interval exists). Consequently, value z;
can be computed as the sum of values x; —dy, ..., z; — dg. (lines 4, 5, 6) Since
letter a; itself is considered as a (dj, d2)-subword, element x; is initialized with
1 (line 3). The (d1, d2)-complexity of a rainbow word of length n is the sum of
values z; (1 =1,2,...,n) (lines 1 and 7).
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COMPLEXITY (n, d;, d2)

1 k+0

2 fori<+ 1ton

3 do z; + 1

4 for j«—i1—dy toi—d;

5 doif 7 >0

6 then z; < z; + z;
7 k‘(—k‘—{—l‘z

8 return X k

Time complexity of this algorithm is ©(n), because the inner loop is executed
n(dy — dy + 1) times.

The following algorithm generates the (di,ds)-subwords of rainbow word
ayas . ..ay. Bidimensional array (of strings) Y stores the generated (di,ds)-
subwords. Array y; has z; element and stores the (dj, ds)-subwords ending in
letter a;. Operation s ol (line 8) means that letter [ is added to the end of
string s.

SUBWORDS(n, d1,d2, A, X)

1 fori+1ton

2 dOyﬂ(—CLi

3 p+1

4 for j«—i1—dy toi—d;

5 doif 7 >0

6 then for £ < 1 to z;

7 dop+p+1

8 Yip < Yjk © G
9 returnY

The inner loop is executed n(dy — d; + 1) max x; times, so this is a pseudo-
K3

linear algorithm.

4 Generalized scattered subwords

Definition 1 can be generalized for rainbow words as we choose letters not only
going ahead in the word, but back too at every step.

Definition 5 Let n, di < do and s be positive natural numbers, and let
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U= T1x2...Ty € X" be a rainbow word over an alphabet . A rainbow word
V= T4 Tiy - - - Ty, Where

11 > 1,

dlglij+1—z’j]§d2, fOT’jZl,Q,...,S—l,

is < n,
is a duplex (dy,ds)-subword of length s of u.

It is worth to note that the definition is given only for rainbow words, and
the duplex subwords are rainbow words too.

For example acfbe and beadfc both are duplex (2,4)-subwords of the word
abcdef.

Definition 6 The number of all duplex (dy,ds)-subwords of a word is the
duplex (dy, d2)-complexity of that rainbow word.

We denote the duplex (d;, dz2)-complexity of a rainbow word of length n by
D(n;dy,ds), and let x;, y; and z; be the numbers of subwords starting, ending
and starting or ending in letter a;, respectively. Notice that 0 < do—dy < n—1.
For the minimum cases, dy —d; =0 (dy =dy =d,d=1,...,n — 1) we have
the following recursive formulas (where the sequences X and Y are identical):

2 =1, ifo<i<d
Ty = Xi—q + 1, ifd<i<n
Yi = Yi—d + 1, ifd<i<n

Ui:SUi-Fyi—l.

The duplex complexity D(n;d,d) is
D(n;d,d) = v
i=1

By a simple computation we can obtain the generating functions Fy(z) =

anz”, Ga(z) = Zvnz”, Hy(z) = ZD(n;d, d)z":

n>1 n>1 n>1
B z 21429
Falz) = (1—2)(1—29)’ Gal2) = (1—2)(1— 24)’
1 2(1+ 2¢
Ha(2) = 17—, Cul2) = (1 —(z)% —)zd)'

Based on Proposition 4 in [5] it is easy to prove the following
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Proposition 7 For integers n,d > 1, where n =hd+m, 0 <m < d,
D(n;d,d) = hn+ (h+ 1)m.

The graph method for the case of duplex (dj, d2)-subwords can be defined
as follows. Let G = (V, E)) be a graph (with V the set of vertices, E the set of
edges) attached to the rainbow word ajas...a, and integers dy, d2, where

V= {al,ag, e ,an},

E={{aa;} |di <|j—i|<do,i=1,2,...,n,5=1,2,...,n}.

Using the attached graph, we can prove the following

Proposition 8

n—l1

. D= S =

D(n;1,n 1)—n.zk!.
k=0

Proof. In this case the attached graph is a complete graph on n vertices, and
D(n;1,n — 1) — n is equal to the number of all paths in this graph. In [9]
the sequence A007526 is defined by the formula a,, = n(an_l + 1), and “for
n > 1, a(n) is the number of non-empty sequences with n or fewer terms, each

a distinct element of {1,2,...,n}”. So, a(n) is the sum of the number of all
paths and the number of all vertices. For a, in [9] the following formula is
n—1
1
given too: a, = n! Z ik From this:
k=0
n—1 1
. T N=n'S" =
D(n;1,n 1)—n.§k!. .

The duplex (d1, ds)-complexity of a rainbow word of length n is equal to
the number of paths in the attached graph (NumberO f Paths). The following
modified DFS algorithm (based on [8]) generates all paths in the attached
graph G and prints the corresponding duplex subwords. Global arrays DE-
GREE, PREVIOUS and COLOR have elements indexed from 1 to n. Element
degree; stores the degree of vertex i (corresponding to letter ¢). Arrays PRE-
VIOUS and COLOR are initiated with zero. Element previous; stores the
previous vertex of vertex ¢ on the current path. We use array COLOR to
avoid cycles. Bi-dimensional array NEIGHBOUR  stores the neighbor-lists of
the vertices of graph G. Element neighbor;; stores the k-th neigbour of vertex
i. Procedure DFS(7) prints all distinct paths starting with root-vertex a; (line
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n
dy | do 2 3 4 5 6 7 8 9 10
1 1| 4 9| 16 25 36 49 64 81 100
1 2 15 | 42 | 101 224 469 944 1849 3552
1 3 64 | 227 716 2111 6058 16971 46546
1|4 325 | 1434 5707 21244 76487 273580
1 5 1956 | 10437 50624 | 229541 1000106
1 6 13699 86114 | 495161 2662784
1 7 109600 | 794607 5299996
1 8 986409 8110482
1 9 9864100
2|2 5 8 13 18 25 32 41 50
2 3 16 45 106 225 474 983 2000
2 4 69 264 853 2432 6683 18560
2|5 378 1855 7708 28209 97200
2 16 2497 14832 75865 343674
2 17 19184 | 133497 812746
2 8 167513 1334960
2 9 1635970
313 6 9 12 17 22 27 34
3 | 4 17 36 91 194 389 756
3 5 62 243 912 2783 7390
3| 6 345 1914 9405 37448
3|7 2524 17295 103560
3|8 21901 174694
319 214930
4 | 4 7 10 13 16 21 26
4 15 18 37 64 153 306
4 16 63 186 699 2580
4 |7 290 1559 8832
4 | 8 2075 15794
419 19660
9 | 5 8 11 14 17 20
) 6 19 38 65 100
) 7 64 187 482
) 8 291 1204
5 9 1722
6 | 6 9 12 15 18
6 7 20 39 66
6 | 8 65 188
6 |9 292

Table 1: Duplex (di, d2)-complexity for rainbow words of length n
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3). Procedure PRINTCURENTPATHTO(7) prints the currently generated path
from the current root-vertex to vertex a; (line 8).

DUPLEXSUBWORDS()

1 NumberO fPaths + 0
fori < 1ton

do DFS(i)
PRINT (NumberO f Paths)

=W N

DFS(i)

1 color; + 1

2 for k < 1 to degree;

3 do j < neighbor;y

4 if color; =0

5 then previous; < i

6 DFS(j)

7 NumberOfPaths < NumberO fPaths + 1
8 PRINTCURRENTPATHTO(7)

9 color; + 0

10 previous; < 0

PRINTCURRENTPATHTO(7))

1 if previous; < 0
2 then PRINTCURRENTPATHT O(previous;)
3 PRINT(a;)

5 (di,dy)-complexity and (d,ds)-compositions

Compositions [1, 6, 7] are partitions in which the order of the summands
(components) does matter. A (dy, d2)-composition is a restricted composition
in which the components are natural numbers from the interval [d;, ds].

For example, for the word abede fg the (2,4)-subwords, which begin in a and
end in g are: aeg, aceg, adg, acg, which correspond to the following compo-
sitions in which the components are the distances between the letters in the
original word:

6=4+2=24+2+2=3+3=2+4.
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In general, if aja;, ---a;,an+1 is a (dq,dz)-subword of the rainbow word
aiasz - - - any1, then this subword corresponds to a composition:

’n:(il—1)—i—(ig—i1)+...+(is—is_l)—i-(n—i-l—is).

Let us consider the following (2,4)-subwords: ajasar, ajasasaz, ajasay, and
ayasay of the word ajasagasasagay. Then the corresponding (2,4)-compositions
are

6=4+2=2+2+2=3+3=2+4.

So, each (dy,dy)-subword of a rainbow word of length n + 1, which begins
by the first, and ends by the last letter of the rainbow word, corresponds to a
(d1, dg)-composition of n.

By a simple reasoning we can obtain a formula between the (d;, d2)-comple-
xity and (dy, d2)-compositions. Let us denote the (di, d2)-composition of n by
C(n;dy,ds).

Proposition 9 Ifn > 1, then
n—1
K(n;di,dg) =n+ Y iC(n—isdy, dy)
i=1
Example 10 Ifn =7, d; =2 and dy = 4, then K(7;2,4) = 30.
C(6;2,4) =4, because 6 =2+24+2=2+4=3+3=4+2.

)
C(5;2,4) =2, because 5 =2+ 3 =3+ 2.
C(4;2,4) = 2, because 4 =2+ 2 = 4.
C(3;2,4) =1, because 3 = 3.
C(2;2,4) =1, because 3 = 2.
C(1;2,4) =0,

and K(7;2,4) =7+1-4+2-243-244-1+5-1+6-0=30.

Similarly, if we extend the compositions to the case when instead of the
natural numbers, we consider nonzero integers, a relation with the duplex
subwords can be given.

Definition 11 A generalized composition of a natural number is one way
of writing this number as an ordered sum of nonzero integers, such that all par-
tial sums' are positive and different. If the absolute value of the summands are
from an interval [dy, ds], we call this a generalized (d;,ds)-compositions.

k
Partial sums are E Si.

=1
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Example 12 The generalized (2,4)-compositions of 6 are:

24+2-34+243
2+2-3+4-2+3

34+2—-4+3+2
3+2-3+2+42

2+2+2 3+42-3+4
24+3—-44+2+3 3+3
24+3-44+2+2 4-3+2+2-3+4
24+3-2-243+2 4-3+2+3
2+3-2+4+3 4-3+4-3+4
2+4 4-3+4-2+3
3—-24+3-24+4 4-24+3-442+3
3—2+3+2 4-2+3-2+3
3—24+4-3+2+42 4-24+4
3—2+4-3+4 4+ 2.

3+2—-4+3-2+4

If aya;, ---a;,any1 is a duplex (di,ds)-subword of the rainbow word

a1as -« - any1, then this subword corresponds to a generalized (dy, da)-compo-
sition:
n = (il—1)+(i2—i1)+...+(is—i3_1)+(n—i—l—is).

References

[1] S. Heubach, A. Knopfmacher, M. E. Mays, A. Munagi, Inversions in compositions
of integers, Quaest. Math. 34, 2 (2011) 187-202. =234

[2] A. Ivanyi, On the d-complexity of words, Ann. Univ. Sci. Budapest. Sect. Com-
put., 8 (1987) 69-90. =225, 226

[3] Z.Késa, On the d-complexity of strings, Pure Math. Appl., 9, 1-2 (1998) 119-128.
=226

[4] Z. Késa, Super-d-complexity of finite words, 8th Joint Conf. on Math. and Com-
put. Sci., Selected Papers, Komérno, July 14-17, 2010. Novodat, 2011 (eds. H. F.
Pop, A. Bege), pp. 257-266. =225, 226

[5] Z. Késa, On scattered subword complexity, Acta Univ. Sapientiae, Inform. 3, 1
(2011) 127-136. =225, 226, 228, 231

[6] C. Kimberling, Enumeration of paths, compositions of integers, and Fibonacci
numbers, Fibonacci Quart. 39, 5 (2001) 430-435. =234

[7] C. Kimberling, Path-counting and Fibonacci numbers, Fibonacci Quart. 40, 4
(2002) 328-338. =234

[8] R. Sedgewick, Algorithms in C, Part 5: Graph Algorithms, Addison Wesley Pro-
fessional, 3rd ed., 2001. =232

[9] N. J. A. Sloane, The on-line encyclopedia of integer sequences,

http://www.research.att.com/ “njas/sequences/. =232

Received: March 81, 2012 * Revised: November 30, 2012


http://www.math.wvu.edu/~mays/Papers/HeubachKnopfmacherMaysMunag.pdf
http://libra.msra.cn/Journal/7357/quaest-math-quaestiones-mathematicae
http://compalg.elte.hu/tanszek/tony/oktato.php?oktato=tony
http://ac.inf.elte.hu/Vol_008_1987/069.pdf
http://ac.inf.elte.hu/
http://ac.inf.elte.hu/
http://www.ms.sapientia.ro/~kasa
http://homelinux.capitano.unisi.it/~puma/
http://www.ms.sapientia.ro/~kasa
http://www.selyeuni.sk/macs/pdf/MaCS_compsci2010.pdf
http://www.ms.sapientia.ro/~kasa
http://www.acta.sapientia.ro/acta-info/C3-1/info31-6.pdf
http://www.acta.sapientia.ro/acta-info/informatica-main.htm
http://www.fq.math.ca/Scanned/39-5/kimberling.pdf
http://www.fq.math.ca/
http://www.fq.math.ca/Scanned/40-4/kimberling.pdf
http://www.fq.math.ca/
http://www.cs.princeton.edu/~rs/
http://www.informit.com/imprint/index.aspx?st=61085
http://www2.research.att.com/~njas/
http://www.research.att.com/~njas/sequences/

	1 Introduction
	2 Computing the (d1,d2)-complexity by digraphs
	3 Linear algorithm for the (d1,d2)-complexity
	4 Generalized scattered subwords
	5 (d1,d2)-complexity and (d1,d2)-compositions

