
Acta Univ. Sapientiae, Informatica 10, 2 (2018) 183–217

DOI: 10.2478/ausi-2018-0010

Sampling k-partite graphs with a given

degree sequence

Koko K. Kayibi
Department of Mathematics, University

of Bristol, United Kingdom
email: kokokayibi@yahoo.co.uk

U. Samee
Department of Mathematics, Islamia
College for Science and Commerce,

Srinagar, India
email: drumatulsamee@gmail.com

Shariefuddin Pirzada
University of Kashmir, Srinagar, India

email:
pirzadasd@kashmiruniversity.ac.in

Muhammad Ali Khan
Department of Mathematics and
Computer Science, University of

Lethbridge, Canada
email: ma.khan@uleth.ca

Abstract. The authors in the paper [15] presented an algorithm that
generates uniformly all the bipartite realizations and the other algorithm
that generates uniformly all the simple bipartite realizations whenever
A is a bipartite degree sequence of a simple graph. The running time of
both algorithms is O(m), where m = 1

2

∑n

i=1
a

i
. Let A = (A

1
: A

2
: ... :

A
k
) be a k-partite degree sequence of a simple graph, where A

i
has n

i

entries such that
∑
n

i
= n. In the present article, we give a generalized

algorithm that generates uniformly all the k-partite realizations of A
and another algorithm that generates uniformly all the simple k-partite
realizations of A. The running time of both algorithms is O(m), where
m = 1

2

∑n

i=1
a

i
.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C07, 65C05
Key words and phrases: Degree sequence, contraction of a degree sequence, degree se-
quence bipartition, contraction of a graph, deletion of a graph, ecological occurrence matrix

183

https://www.researchgate.net/profile/Koko_Kayibi
mailto:kokokayibi@yahoo.co.uk
https://scholar.google.co.in/citations?user=abI3YscAAAAJ&hl=en
mailto:drumatulsamee@gmail.com
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.kashmiruniversity.net/
mailto:pirzadasd@kashmiruniversity.ac.in
http://directory.uleth.ca/users/ma.khan
mailto:ma.khan@uleth.ca

184 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

1 Introduction

A k-partite graph G is a graph whose vertex set, denoted by V(G), can be
partitioned into k parts, V

1
(G), V

2
(G), ..., V

k
(G), such that two vertices in the

same part are not adjacent. That is, if E(G) denotes the edge set of G and
e = (v

i
, v

j
) ∈ E(G), then v

i
∈ Vs(G) and v

j
∈ Vr(G) such that s 6= r. An edge

e ∈ E(G) is said to be a multiple edge if there is another edge f incident to the
same vertices. Following Matroid Theory terminology, we say that e and f are
parallel. A simple k-partite graph is a k-partite graph with no multiple edges
and loops. The degree of a vertex v

i
, denoted by a

i
, is defined as the number

of edges incident to v
i

with a loop contributing twice to the degree of v
i
. The

degree sequence of a graph G is formed by listing the degrees of vertices of
G. If A = (a

1
, a

2
, ..., an) is a sequence of integers and G is a k-partite graph

that has A as its degree sequence, we say that G is a realization of A, and
such a sequence of integers is called a k-partite degree sequence. Thus entries of
A can be partitioned as A

1
, A

2
, ..., A

k
, where A

i
denotes the degree sequence

of the part V
i
(G). In the sequel, we denote a k-partite degree sequence A as

(A
1
: A

2
: ... : A

k
) and the sequence (A

1
: A

2
: ... : A

k
) is called a k-partition

of A.

Observation 1 An easy observation used in the sequel is that, if A = (A
1
:

A
2
: ... : A

k
) is a k-partite degree sequence having n entries, and A

i
has n

i

entries, then the following is true.
1. n

1
+ n

2
+ ...+ n

k
= n

2. For every i such that 1 ≤ i ≤ k, the maximal entry of A
i

is less or equal
to

∑
j 6=i
n

j
.

The Degree Sequence Problem is to find some or all graphs with a given
degree sequence [20]. More detailed analysis of the Degree Sequence Prob-
lem and its relevance can be found in [18]. Several algorithms are known
to construct random realizations of degree sequences and each one of them
has its strengths and limitations. Most of these algorithms can be fitted in
two categories: MonteCarlo Markov chains methods based on edge-swappings
[5, 8, 9, 10, 11, 13, 14, 16, 17] and random matching methods [1, 2, 3, 4, 21].
In particular, algorithms proposed in [1, 3, 7] are based on inserting edges
sequentially according to some probability scheme. The basic ideas of the al-
gorithm presented in the present paper have already been used successfully
to sample uniformly all the simple realizations of a bipartite degree sequence
in [15]. Those basic ideas may be seen as implementing a ”dual sequential

Sampling k-partite graphs with a given degree sequence 185

method”, as it inserts sequentially vertices instead of edges. For other unde-
fined notations and terminology in graph theory, the readers are referred to
[19].

Indeed, in the theory of the Tutte polynomial, there are two operations,
deletion and contraction, that are dual of each other, see [6] for more details
on this topic. Let G be a graph having n vertices and m edges. The operation
of deleting the edge e = (v

i
, v

j
) from G consists of removing the edge e and

leaving anything else unchanged. The graph thus obtained, denoted by G\e,
is a graph on n vertices and m − 1 edges where h the degrees of both the
vertices v

i
and v

j
go down by 1. The operation of contracting the graph G by

e = (v
i
, v

j
) consists of deleting the edge e and identifying the vertex v

i
and

v
j
. The graph thus obtained, denoted by G/e, is a graph on n − 1 vertices

and m− 1 edges, where the new vertex obtained by identifying v
i

and v
j

has
degree a

i
+a

j
−2. Deletion is said to be the dual of contraction as the incidence

matrix of G\e is orthogonal to the incidence matrix of G∗/e, where G∗ is the
dual of G if G is planar.

IfA is a degree sequence having n entries, it can be easily shown that random
matching methods used in [1, 2, 3, 4, 21] are equivalent to starting from a
known realization G of A, delete all the edges one by one, and keeping track of
the degrees of vertices after each deletion, until one reaches the empty graph
having n vertices. Then, reconstructing a random realization of A consists of
taking the reverse of the deletion. That is, starting from the empty graph on n
vertices, re-insert edges one by one by choosing which edge to insert according
to the degrees of the vertices and some probability scheme depending of the
stage where the algorithm is at, and subject to not getting double edges if
one would like to get simple graphs or not linking two vertices on the same
part if one wants to get bipartite graphs. The algorithm presented in this
paper is based on the dual operation of contraction that is slightly modified
to suit our purpose. It is equivalent to starting from a known realization G
of A, contract all the edges one by one, and keeping track of the vertices
after each contraction, until one reaches the graph on one vertex and 1

2

∑n

1
a

i

loops. Then, reconstructing a random realization of A consists of reversing
the process of contraction. That is, starting from the graph on one vertex
and 1

2

∑n

1
a

i
loops, the algorithm re-inserts vertices one by one by choosing

which vertex to connect to which according to degrees of the vertices and some
probability that depends on the stage of the algorithm.

While algorithms that are based on Markov chains [14, 17] or on reversing
the deletion operation [1, 3] are easy to implement, our algorithm seems more
complex as one has to satisfy not only the degrees of the vertices, but also

186 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

some added graphical structures imposed by the contraction. But this is more
of a bonus than an inconvenience, as apart from the fact the the running time
is even better, the extra structure allows an easier analysis of the algorithm.
Moreover, the internal structure imposed by the contraction operation allows
the algorithm to avoid most of the shortcomings of the previous algorithms.
Indeed, not only the algorithm never restarts, but the algorithm also allows to
sample all bipartite realizations with equal probability, making their approx-
imate counting much easier than by the importance sampling used in [1, 3].
Better still, this technique can be extended, as we do it in the present paper,
to construct k-partite realizations of a k-partite degree sequence A, for k ≥ 3,
where a k-partite degree sequence is defined in a natural way by extending the
definition of a bipartite degree sequence.

This paper is organized as follows. First we define a recursion chain of a
degree sequence, then we present routines for constructing all k-partite real-
izations. These basic routines are then modified to get a uniform distribution
on the set of all k-partite realizations. Then comes the section that presents
criteria to generate simple realizations graphs only. We modify our routines
to new routines that generate all simple k-partite realizations uniformly at
random.

2 Construction of all k-partite realizations of given
degrees

2.1 Recursion chain of degree sequences

Let G be a graph with n vertices and m edges. Throughout we assume that
the vertices of G are labelled v

1
, v

2
, . . . , vn . Let A = (a

1
, . . . , an) be the de-

gree sequence of G, where a
i

denotes the degree of the vertex v
i
. Define an

arithmetic operation on A, called contraction as follows. For an ordered pair
(a

i
, a

j
) of entries a

i
and a

j
of A with i 6= j, the operation of contraction by

(a
i
, a

j
) means changing a

i
to a

i
+ a

j
and deleting the entry a

j
from A. We

write A/(i, j) to denote the new sequence thus obtained. The sequence A/(i, j)
is called the (i, j)-minor or simply a minor of A. The following example illus-
trates the definition given above for a tripartite degree sequence.

Example 2 Let A = (5, 5 : 4, 2 : 3, 3, 2) where a
1
= 5, a

2
= 5, a

3
= 4

and a
4
= 2, a

5
= 3, a

6
= 3, a

7
= 2. We have A/(1, 2) = (10, 4, 2, 3, 3, 2) and

A/(4, 2) = (5, 4, 7, 3, 3, 2).

Sampling k-partite graphs with a given degree sequence 187

Let A be sequence of integers. Then A is said to be graphic if there is
a graph G, not necessarily simple nor k-partite, such that G has A as its
degree sequence. Moreover, it is trivial to observe that a sequence of integers
is graphic if and only if the sum of its entries is even. Further, we have the
following observation.

Theorem 3 A sequence A is graphic if and only if all its minors are graphic.

Proof. Obviously, if A is graphic, then A/(a
i
, a

j
) is graphic as, by definition

of contraction, the sum of its entries is even. Now suppose that A/(a
i
, a

j
) is

graphic and G ′′ is a realization of A/(a
i
, a

j
). To prove that A is also graphic,

we present an algorithm, much used in the sequel, that constructs a realization
of A, denoted by G, from G ′′.

Algorithm AddVertex()
Step 1. To G ′′ add an isolated vertex labelled v

j
(as in Figure 1).

Step 2 If the degree of v
j

is a
j
, stop, output G. Else

Step 3. Amongst the a ′
i

edges incident to v
i
, counting loops twice, choose one

edge
e = (v

i
, v

k
) with probability π(e) and connect e to v

j
so that e becomes

(v
j
, v

k
). Go to Step 2.

Now, in G the degree of v
j

is a
j
, by Step 2 of algorithm AddVertex().

Moreover, by the definition of contraction, the degree of v
i

is equal to a
i
+ a

j

in G ′′. Since AddVertex() takes a
j

edges away from v
i
, the degree of v

i
is a

i

in G. Moreover all the other vertices are left unchanged by AddVertex(). Thus
G is a realization of A. �

vi vj
vi’

G’ G

Figure 1: Construction of a graph G from its minor G ′′

188 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

If AddVertex() chooses the edge e = (v
i
, v

k
) and connects e to v

j
so that

e becomes (v
j
, v

k
), we say that AddVertex() (or v

i
, or v

k
) concedes e to v

j
.

To help intuition, observe that if G ′′ is a realization of A/(a
i
, a

j
) and G is

a realization of A constructed by AddVertex(), then G ′′ is obtained from G

by contraction of the edge (v
i
, v

j
). Now, mimicking the process of recursive

contraction of matroid as used in the theory of the Tutte polynomial, we de-
fine a process of recursive contraction for a degree sequence. A recursion chain
of a degree sequence A is a unary tree rooted at A, where nodes are integer
sequences and every node, except for the root, is a minor of the preceding one.
The recursive procedure of contraction is carried on from the root A until a
node with a single entry is reached. As for the Tutte polynomial, the amazing
fact, which is then used to construct all the realizations of A, is that the order
of contraction is immaterial. Despite this basic fact, we still impose a partic-
ular order to ease many proofs in the sequel.

Notes on notations: For the sake of convenience, we refer to a node of a
recursion chain of a degree sequence A by A(i), where i is the number of entries
in the node. Thus we denote the root A by A(n), the next node by A(n−1), and
so on until the last node A(1). Similarly, we denote by G(i) the realization
of A(i). The n entries of A are labelled from 1 to n. To keep tract of the
vertices, we preserve the labelling of entries of A into its minors so that when
a contraction by the pair (a

i
, a

j
) is performed, the new vertex is labelled a

i
,

the label a
j

is deleted, and all the other entries keep the labelling they have
before the contraction.

In this paper, we consider the recursion chain, called the k-partiteaccumulating
recursion chain, constructed as follows. Let A = (A

1
: A

2
: ... : A

k
) be a k-

partite degree sequence. We label each entry as as,r , where s ranges from 1 to
n and r ranges from 1 to k, so that the entry as,r belongs to Ar .

Example 4 Let A = (5, 5 : 4, 2 : 3, 3, 2). We order entries of A as a
1,1

=

5, a
2,1

= 5, a
3,2

= 4, a
4,3

= 3, a
5,3

= 3, a
6,2

= 2, a
7,3

= 2. Thus ~A =
(5, 5, 4, 3, 3, 2, 2).

Note. The vertex having degree as,r is denoted by vs,r . But, to avoid clustering
the notation, we sometimes just right as or vs , when we deem not necessary
to specify the part Ar corresponding to the degree as,r .

Sampling k-partite graphs with a given degree sequence 189

Algorithm ConstructKpartiteRecursionChain()
Given an ordered k-partite degree ~A . Let i = n.

Step 1 If i = 1, stop, return {A
(1)
, A

(2)
, ..., A

(n)
}. Else

Step 2 Let A
(i−1)

= A
(i)
/(1, i). That is, get the (i− 1)th recursive minor of A

by contracting the (i)th recursive minor by its first entry and the last entry.
Step 3 Decrement i by 1 and go back to Step 1.

We denote the accumulation recursion chain of ~A byW = (A(1), A(2), ..., A(n)).

(a , a)
51

(a , a)
21

(a , a)
71

(a , a)
61

(a , a)
41

(a , a)
31

(5,5: 4,2:3,3,2)

(7,5,4,2,3,3)

(10,5,4,2,3)

(13,5,4,2)

(15,5,4)

(19,5)

(24)

Figure 2: The accumulating recursion chain of the tripartition [5, 5 : 4, 2 :
3, 3, 2].

The following is an algorithm for constructing a k-partite realization if A
is a k-partite degree sequence. The graph constructed below is not necessarily
simple. Loosely speaking, this algorithm consists of reversing the recursive
process of contraction as implemented by ConstructKpartiteRecursionChain().

The algorithm starts from G
(1)

the sole realization of A
(1)

, and by calling

190 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

AddVertex() recursively, it constructs G
(2)

, then G
(3)

, and so on until G
(n)

,

that is a realization of A
(n)

= A. The only condition imposed on the choice
to built edges is that if the vertex to insert has degree as,r , then we label the
vertex as vs,r . Then AddVertex links a vertex vx,y to vs,r only if j 6= r, unless
x = 1. Recall that δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise.

Algorithm ConstructKpartiteRealization()
Given W = (A(1), A(2), ..., A(n)), the Kpartite accumulating recursion chain

of A, we do the following.
Step 1. Let i = 1 and build the realization of the node A(1), denoted by G(1),
which is the graph consisting of one vertex and m loops, where m = 1

2

∑n

i=1
a

i
.

Step 2. Let G = G(i). If G has n vertices, stop, return G. Else,
Step 3. Using G(i) and A(i+1) as input, Call Algorithm AddVertex() to con-
struct G(i+1) as a realization of A(i+1). If vs,r is the vertex being inserted, then
AddVertex only constructs edges (vx,y , vs,r) where δ(y, r) = 0 and δ(x, s) = 0,
unless x = 1. Increment i by 1, go back to Step 2.

See Figure 3 for an illustration of Algorithm ConstructBipartiteRealiza-
tion().

The following definitions are needed in the sequel. In the process of con-
traction implemented by the accumulating recursion chain, we observe that
the degrees are accumulating on a

1,1
. This is equivalent to say that edges are

accumulating on v
1,1

as v
1,1

seems to ’swallow’ the other vertices one by one.
Hence, when reversing the contraction operation in ConstructKpartiteReal-
ization(), vertex v

1,1
plays the role of the ’mother that spawns’ all the other

vertices one by one and concedes some edges to them according to their de-
grees. Thus, AddVertex() can attach an edge e to a new vertex vs,r only if e is
incident to v

1,1
. This observation prompts the following formal definitions. Let

A be a k-partite degree sequence where A
i

has n
i

entries such that
∑

i
n

i
= n.

The (s, t)th stage of ConstructKpartiteRealization() is the iteration where the
algorithm inserts the tth edge of the vertex vs,r . At the (s, t)th stage an edge is
available if it is a loop incident to v

1,1
or e = (v

1,1
, vx,y) where y 6= r and x < s.

An edge e is lost otherwise. Let Eav denote the set of all available edges and
Ev

j
the set of edges (v

1
, v

j
). We recall that an edge e = (v

1,1
, vx,y) is conceded

if AddVertex() disconnects it from v
1,1

so that e becomes e = (vx,y , vs,r) for
some vertex vs,r 6= v

1,1
. We then say that v

1,1
(or sometimes Ev

j
or just v

j
)

concedes the edge e. A vertex vs having degree as is fully inserted if as edges
are conceded to it. A graph G is said to be (re)constructed if it is an output of

Sampling k-partite graphs with a given degree sequence 191

v2v1

v3

w1
w2

2

v2v1

v3

w1
w2

w3

2

v2v1

v3

w1
w2w3

2
v2v1

v3

w1
w2

w3

1

v2v1

v3

w1
w2

w3

1

v2v1

v3

w1
w2w3

2
v2v1

v3

w1
w2

w3

1

v2v1

v3

w1
w2

w3w4

v2v1

v3

w1
w2

w3w4

1
v2v1

v3

w1
w2

w3w4

v2v1

v3

w1
w2

w3w4

1

v2v1

v3

w1
w2

w3w4

v2v1

v3

w1
w2w3w4

v2v1

v3

w1
w2

w3w4

(a , a)
71

(a , a)
61

v2v1

v3

w1

3

v2v1

v3

4

v2v1

7

v1

10

(a , a)
41

(a , a)
21

(a , a)
31

(a , a)
51

(4,3,3: 3,3,2,2)

(6,3,3, 3,3,2)

(8,3,3, 3,3)

(11,3,3, 3)

(20)

(17,3)

(14,3,3)

Figure 3: Random reconstruction tree of (4, 3, 3 : 3, 3, 2, 2). The level of T on the
same height as the degree sequence A(i) corresponds to all the graphs having A(i) as
their degree sequence.

192 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

ConstructKpartiteRealization(). Now we state and prove a paramount result
of this paper.

Theorem 5 Let A = (a
1
, a

2
, ..., an) = (A

1
: A

2
: ... : A

k
) be a k-partite

degree sequence having n entries where A
i

has n
i

entries, such that
∑
n

i
= n

and m =
a
i
+a

2
+...+an
2 . Let W be the k-partite recursion chain of A. Then

Algorithm ConstructKpartiteRealization() constructs in time linear on m a k-
partite graph G having n vertices and m edges such that G is a realization of
A. Moreover, every k-partite realization of A can be constructed in this way.

Proof. By Algorithm AddVertex(), the graph G(n) output by Algorithm Con-
structKpartiteRealization() is assured to be a realization of A. We need only
to prove that G(n) is k-partite. Now, the routine AddVertex() constructs edges
(v

s,x)
, vr,y only if δ(s, r) = δ(x, y) = 0, unless s = x = 1. Thus vertices corre-

sponding to degrees in different parts Ax and Ay are never adjacent. Thus, we
only have to show that in G

n
, v

1,1
is not adjacent to any vertex v

j,1
. We need

the following fact.

Observation 6 Suppose that A is a k-partite degree sequence. From the νth
1

iteration of ConstructKpartiteRealization(), the number of available edges is
equal to the number of edges left to be inserted until ConstructKpartiteReal-
ization() terminates.

This is because the number of available edges at the end of (ν
1
)th is equal

to half the sum of degrees a
i
∈ A

1
. By the definition of the bipartite degree

sequence, this number is equal to half the sum of degrees a
j
∈ A

2

Now, to prove that G = Gn is k-partite, in the proof of Theorem 5, suppose
for a contradiction, G contains an edge e = (v

1,1
, v

j,1
). Consider the graph

H obtained from G by contracting all the edges not incident to any vertex
v
j,1

. It is easy to see that the degree sequence of H, denoted by B, is the
degree sequence obtained from A by contracting the entries corresponding to
vertices contracted in G. Thus B is a k-partite degree sequence. Now, suppose
that ConstructKpartiteRealization() outputs a realization K of B with en edge
(v

1,1
, v

j,1
). Then by Observation 6 one vertex of K is not fully inserted which is

a contradiction. Thus ConstructKpartiteRealization() reconstructs H has no
edge (v

1,1
, v

j,1
). This is the final contradiction we are looking for.

It remains to prove that any k-partite realization of A can be constructed
this way. We recall that v

i
(a

i
) denotes the ith vertex (degree) in the ordering,

regardless of the second index. So, let G be a realization ofA and let e = (v
i
, v

j
)

be any edge of G such that vertex v
i

has degree a
i

and vertex v
j

has degree

Sampling k-partite graphs with a given degree sequence 193

a
j
. Also, suppose that the vertcies v

i
and v

j
were inserted at the ith and

jth iteration of ConstructKpartiteRealization() respectively. We need to show
that at the jth iteration, there is a positive probability to have an edge e
which is incident to v

i
and e is available. If not, that is, at the jth iteration

all the edges incident to v
i

are lost. Now all the edges incident to v
i

are
lost before the jth iteration only if, at some stage of the running of Algorithm
ConstructKpartiteRealization(), there are only the edges that are available and
they are exhausted before reaching the jth iteration. Thus, at the jth iteration
there are no more available edges. Especially, there are no loops incident to
v
1
. But this means that a

1
+ a

2
+ ... + a

j
≥ 2m, contradicting the definition

of accumulating recursion chain.
As for the running time, Algorithm ConstructKpartiteRealization() calls Al-

gorithm AddVertex() once for every new vertex v
k

to insert. If v
k

has degree
a

k
, then Algorithm AddVertex() has to go through a

k
iterations to insert the

a
k

edges of v
k
. Hence the total number of iterations to terminate Construc-

tKpartiteRealization() is a
1
+ a

2
+ ...+ an = 2m. �

2.2 Sampling all k-partite realizations uniformly

Although Theorem 5 shows that the routine ConstructKpartiteRealization()
can construct a realization of A in linear time, we need the next result to show
that it can construct any k-partite realization of A with equal probability,
provided we define the probability π(e) with which AddVertex() has to insert
the edge e.

We recall that if at its sth iteration ConstructKpartiteRealization() is to
insert the vertex vs that has degree as , (regardless of the second index of vs),
then ConstructKpartiteRealization() has to call AddVertex() that has to go
through as iterations. Let the (s, t)th stage of ConstructKpartiteRealization()
be the iteration, where AddVertex() inserts the tth edge of the sth vertex and

let G
(s,t)

denote the graph obtained at that (s, t)th stage. With this notation,

let G
(s)

be the graph G
(s,as) .

The random reconstruction tree, denoted by T , is a directed rooted tree,
where the root is the sole realization of the degree sequence A(1), and the
(s, t)th level contains all those possible graphs obtainable after inserting the
tth edge of the sth vertex, and there is an arc from a graph H at level i to the
graph G at level i+ 1 if it is possible to move from H to G by the concession
of a single available edge. Realizations of A are thus the leaves of the tree T .
With this formalism, sampling a random k-partite realization of the degree
sequence A is equivalent to performing a random walk from the root until a

194 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

leaf is reached, and every step of the random walk consists of walking along a
random arc of T . See Figure 3 for an illustration.

Observations about uniform sampling

(1) Let G1 denote the root of T and G1 be the graph on a single vertex and m
loops. So the stage (2, 1) of ConstructKpartiteRealization consists of inserting
the first edge of second vertex v

2
. Suppose at some stage (s, t) of Construc-

tKpartiteRealization(), the random walk along T is at the graph G
(s,t)

with

probability π(G
(s,t)

) and that AddVertex() is to concede an edge e to vs . Sup-

pose also that the vertex v
j

of G
(s,t)

has |Ev
j
| available edges. That is, v

j
is

connected to v
1

by |Ev
j
| parallel edges. Thus, the next level of T would con-

tain |Ev
j
| identical graphs whose edge sets will contain the edge (v

j
, vs). Hence,

if Algorithm AddVertex() chooses every available edge uniformly at random,

the random walk will reach such a graph with probabibility
|Ev

j
|

|Eav |
. Thus, if

this graph is a leaf of T , ConstructBipartiteRealization() will be biased to-

ward it with a probability proportional to
|Ev

j
|

|Eav |
. So, if the random walk has

to reach each different child of G
(s,t)

with the same probability, we have to
move from G

(s,t)
to its child obtained by adding the edge e ∈ Ev

j
with prob-

ability
|Ev

j
|

|Eav |
1

|Ev
j
|
= 1

|Eav |
. Equivalently, let |V(G

(s)
)| be the number of vertices

already inserted up to the sth iteration of ConstructKpartiteRealization() and

let |V ′(G
(s)
)| be the number of vertices in V(G

(s)
) which are adjacent to v

1
.

Obviously v
1
∈ V ′(G(s)

), if there is a loop incident to v
1
. We may choose any

vertex v
j
∈ V ′(G(s)

) uniformly at random. If e ∈ Ev
j
, then we concede e with

probability |V ′(G
(s)

)|

|V(G
(s)

)|
.

(2) Suppose that G(s,t+1) is obtained from G(s,t) by the concession of edge
e to vertex vs . If in G(s,t) the vertex vs is adjacent to bs (with bs ≤ as) dif-
ferent vertices, then it is obvious that the random walk on T reaches G(s,t) in
bs different paths. Thus there is a bias proportional to bs towards G(s,t). To
remove this bias, the random walk would rather move away from G(s,t) with
a reducing factor of 1

bs
. Similarly G(s+1,1) is obtained from G(s,as) by the con-

cession of edge e to vertex v
s+1

. These two observations prompt the following
extension of the routines Addvertex() and ConstructKpartiteRealization() to
sample uniformly.

Sampling k-partite graphs with a given degree sequence 195

Algorithm BiasedAddvertex()

(A modification of Algorithm Addvertex() to get a uniform distribution, di-
viding by the number of vertices inserted up to the sth iteration).
Step 1 To the graph G

s
, add an isolated vertex called v

s+1
. Let a

s+1
be the

number of edges to concede to v
s+1

and let j = 0.
Step 2 If v

s+1
is incident to a

s+1
edges, return Gs+1. Else,

Step 3 Let bi
s+1

be the number of different vertices v
l

which are incident to

v
s+1

after the insertion of its jth edge, with j ≥ 1. If j = 0, let bj
s+1

be the
number of different vertices adjacent to vs .
Step 4 Choose vertex vq uniformly at random amongst all the vertices adjacent
to v

1
.

Step 5 If e ∈ Evq
, then concede e to v

s+1
with probability |V ′(G

(s)
)|

|V(G
(s)

)|.bjs+1

, where

V(G
(s)
) and V ′(G

(s)
) are respectively the set of vertices inserted up to the sth

iteration and the set of vertices in V(G
(s)
) that are adjacent to v

1
. Increment

j by 1 and go back to Step 2.
Accordingly, we modify the routine ConstructBipartiteRealization() as fol-

lows.

Algorithm BiasedConstructKpartiteRealization()

Given the k-partite recursion chain of A = (A
1
: A

2
: ... : A

k
), where A

i
has

n
i

entries such that n
1
+ n

2
+ ...+ n

k
= n, do the following.

Step 1. Let s = 1 and build the realization of the node A(1), denoted by G(1),
that is the graph consisting of one vertex and m loops.
Step 2. Let G = G(s). If G has n vertices, stop, return G. Else,
Step 3. Using G(s) and A(s+1) as input, call Algorithm BiasedAddVertex() to
construct G(s+1) as a realization of A(s+1). If vs = vs,y BiasedAddvertex only
concedes loops or edges (v

1,1
, vr,x) such that δ(x, y) = 0. Increment s by 1, go

back to Step 2.

Theorem 7 (1) For the degree sequence A = (A
1
: A

2
: ... : A

k
), where A

i

has respectively n
i

vertices such that n
1
+n

2
+n

k
= n, BiasedConstructKpar-

titeRealization() reaches every leaf of T uniformly at random with probability
1∏n

s=1
s
a
s+1

.

(2) The set of leaves of T is the set of realizations of A

Proof. (1) Suppose that BiasedConstructKpartiteRealization() calls BiasedAd-

196 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

dVertex() to insert vertex vs that has degree as , where s > n
i
, and that Bi-

asedAddvertex() is conceding the jth edge of vs . We know there are |V(G
(s)
)|

vertices inserted up to the sth iteration. Now, if e ∈ Evt
, then the routine

BiasedAddVertex() will choose e with probability 1

|V ′(G
(s)

)|
and would concede

it with probability |V ′(G
(s)

)|

|V(G
(s)

)|.bj−1
s

. But the graph G(s,j−1) is reached through bj−1
s

different paths. Hence the graph G(s,j) obtained by conceding e to vs will be
sampled with probability given as

bj−1
s

|V ′(G
(s)
)|
.

|V ′(G
(s)
)|

|V(G
(s)
)|.bj−1

s

=
1

|V(G
(s)
)|
=

1

s− 1
.

Finally, we know that vertex vs needs as iterations of BiasedAddVertex to
be fully inserted. Hence, it takes altogether

∑n

i=1
a

i
= 2m iterations before

BiasedConstructBipartiteRealization() terminates. Thus multiplying all the
probabilities to move from one level to the next from the root to a leaf yields
probability 1

1
a
1 2

a
2 ...nan

.
(2) Obviously, by construction, every leaf of T is a realization of A. The

proof that every realization of A is a leaf of T is given in the proof of Theorem
5. �

3 Construction of simple k-partite graphs

Up to now, BiasedConstructKpartiteRealization() generates all the k-partite
realizations of the k-partite degree sequence A. But, it is easy to modify Bi-
asedAddVertex() so that the output of BiasedConstructKpartiteRealization()
is always a simple graph. One obvious condition is stated as follows.

(a) If the Algorithm is inserting the jth edge of vertex vs with j > 1 and
s > n

i
with 1 ≤ i ≤ k and v

l
is already adjacent to vs , then no more available

edge incident to v
l

should be chosen. This will prevent BiasedConstructK-
partiteRealization() from outputting graphs with multiple edges (vs , vl). Thus
this condition is necessary but is not sufficient. Indeed, it is easy to see that
the following must also apply.

(b) While inserting vertex vs and avoiding choosing edges incident to v
l

so
as not to construct multiple edges (vs , vl), BiasedConstructKpartiteRealiza-
tion() may fall into a stage where there are more edges incident to v

l
than

there are vertices left to be inserted, and G, the graph output by BiasedCon-
structBipartiteRealization() will then have a multiple edge (v

1
, v

l
).

Sampling k-partite graphs with a given degree sequence 197

Although (a) and (b) seem to contradict each other, this section defines
all these conditions in a formal settings and proves that they can be satisfied
simultaneously. Although the analysis seems long, this set of conditions are just
inequalities involving the number of edges and vertices already inserted and
the number of edges and vertices left to insert at each stage of the Algorithm.
Moreover, checking these conditions at each iteration of BiasedAddVertex()
requires checking O(n2) inequalities altogether. Thus it does not add crucially
to the running time.

Let A = (A
1
: A

2
: ... : A

k
) be a k-partite degree sequence of a simple graph,

where A
i

has n
i

vertices such that
∑
n

i
= n. Suppose that BiasedConstruc-

tKpartiteRealization() is at the iteration of inserting vertex vs . We recall that
Eav represents the set of available edges at the (s, t)th stage. That is, edges
that are incident to v

1
and vertices inserted before the iteration inserting the

tth edge of the sth vertex. We also recall that Ev
j

are the edges (v
1
, v

j
) at that

stage. In particular, Ev
1

is the set of loops incident to v
1
. The set of excess

edges of v
j
, denoted by Eev

j
, is the same as the set Ev

j
if v

j
= v

j,1
. In partic-

ular, a loop is an excess edge incident on v
1
. If v

j
= v

j,r
for r 6= 1, the set of

excess edges of v
j

is the set Ev
j

except one edge. That is |Eev
j
| = |Ev

j
|− 1.

The aim of this section is to show that it is possible to choose edges so that
the algorithm never stalls after choosing a ’wrong’ edge. If at its sth itera-
tion, Algorithm BiasedConstructKpartiteRealization() is inserting the vertex
vs that has degree as , then BiasedConstructKpartiteRealization() has to call
the routine BiasedAddVertex() which has to go through as iterations. We
recall that the (s, t)th stage of BiasedConstructKpartiteRealization() is the
iteration, where BiasedAddVertex() inserts the tth edge of the sth vertex. Let
Xs,t and |X|s,t respectively denote a set and its cardinality at the (s, t)th stage
of BiasedConstructKpartiteRealization().

To help the reader, we first introduce the motivation behind every defini-
tion. Obviously, if at some stage, the number of excess edges is greater than
the number of edges left to be inserted, then BiasedConstructKpartiteRealiza-
tion() can never produce a simple graph as the left-over of excess edges would
result in a multiple edge or a loop in the final graph. Thus the choice of edges
by BiasedAddvertex() must be such that this contingency never happens. This
prompts the following definitions.

The (s, t)th stage of Algorithm BiasedConstructKpartiteRealization() is crit-
ical if

|Ee|st = as − (t− 1) + a
s+1

+ a
s+2

+ ...+ an . (1)

198 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

That is, the number of excess edges equals the number of edges left to insert
until the end of BiasedConstructRealization(). The (s, t)th stage is spoilt if

|Ee|st > as − (t− 1) + a
s+1

+ a
s+2

+ ...+ an . (2)

That is, there are too many excess edges and whatever the future choices
might be, a simple graph can never be output. A stage is normal if it is neither
critical nor spoilt.

Now, at each stage of constructing a simple k-partite graph, every vertex
vr,x must be connected to any other vs,y , with δ(x, y) = 0 unless r = x = 1, by
at most one common edge. So, if some vertex vr,x , with r 6= 1, has more excess
edges than the number of vertices vs,y , with δ(x, y) = 0, left to be inserted,
BiasedConstructKpartiteRealization() would never be able to get rid of all
these multiple edges, which will then appear in the final graph. This prompts
the following definition. Let N(x̄)st be the the set of vertices vq,y with q < s
and y 6= x. At the (s, t)th stage, the vertex vr,x with r ≤ s and r 6= 1 is due if

|Eevr,x |st = |N(x̄)|st , (3)

that is, Eevr,x has got as many excess edges as there are vertices left to be
inserted to which it can concede an edge. The vertex vr,x is overdue if

|Eevr,x |st > |N(x̄)|st , (4)

that is, there are too many excess edges incident to vr,x and whatever the
future choices might be, the Algorithm will never output a simple graph. The
vertex vr,x is undue if it is neither due or overdue.

Now, although v
1

may concede many edges to a vertex vs , there is also a
limit, other than as , to the number of edges it can concede to vs if the end result
is to be a simple graph. For example, BiasedAddvertex() can construct at most
1 edge (v

1
, vn), by conceding a loop incident to v

1
to the vertex vn . Similarly

BiasedAddvertex() can construct at most 2 edges (v
1
, v

n−1
) . Otherwise, these

vertices will be overdue. More generally, BiasedAddvertex() can construct at
most q edges (v

1
, v

n−q+1
). This requirement prompts the following definitions.

The vertex v
1

is due if

|Eev
1
|st = 1+ 2+ ...+ (n− s) + (as − t),

that is, Eev
1

has got just enough loops to make each of the remaining vertices
due.

The vertex v
1

is overdue if

Sampling k-partite graphs with a given degree sequence 199

|Eev
1
|st > 1+ 2+ ...+ (n− s) + (as − t).

Similarly to other vertices, v
1

is undue if it is neither due nor overdue.
Moreover, if the degree sequence A has no entry a

i
= 1, then the vertex v

1

is ripe if

|Eev
1
|s,t =

∑
j6=1

|Eev
j
|s,t . (5)

It is overipe if

|Eev
1
|s,t >

∑
j6=1

|Eev
j
|s,t . (6)

If the degree sequence A has an entry a
i
= 1, then the vertex v

1
is ripe if

|Eev
1
|s,t =

∑
j 6=1

|Eev
j
|s,t − 1. (7)

It is overipe if

|Eev
1
|s,t >

∑
j 6=1

|Eev
j
|s,t − 1. (8)

In both cases, this means that there are more loops than all the other excess
edges put together, and so, if the stage is also critical, whatever the future
choices might be, the Algorithm will never produce a simple graph, as there
will be at least one loop left incident to v

1
. The vertex v

1
is unripe if it is

neither ripe nor overipe. We also say that a stage is due (overdue, undue,
ripe, overipe, unripe) if it contains a vertex that is due (overdue, undue, ripe,
overipe, unripe). It should be understood that saying that Ev

i
is due (overdue,

undue, ripe, overipe, unripe) only means that v
i

is due (overdue, undue, ripe,
overipe, unripe).

The next lemma only means that once BiasedConstructKpartiteRealiza-
tion() has taken a ’wrong path’, it is impossible to mend the situation.

Lemma 8 Suppose that BiasedConstructKpartiteRealization() is inserting the
vertex vs,y and suppose that BiasedAddvertex() satisfies the following condi-
tion.

Condition (1) For each vertex vr,x with δ(x, y) = 0 and r 6= 1, BiasedAddver-
tex() must choose at most one edge from Evr

so that there is never a double
edge (vr , vs).

200 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

Then the following hold.
(a) If the (s, t)th stage is critical, then the next stage is critical or some

future stage is spoilt.
(b) If the (s, t)th stage is spoilt, then any future stage is spoilt.
(c) If the vertex vr,x is due, it is due or overdue at the next stage. If it is

overdue, it is overdue at any future stage.
(d) If the (s, t)th is critical and v

1
is overripe, then the last stage is spoilt.

(e) If the (s, t)th stage is spoilt, then the previous stage (the stage inserting
the previous edge) is either spoilt or critical.

(f) If the (s, t)th stage is overipe, then the previous stage (the stage inserting
the previous edge) is either overipe or ripe.

(g) If the (s, t)th stage is overdue, then the previous stage (the stage inserting
the previous edge) is either due or overdue.

Proof. At the (s, t)th stage, where the tth edge of the vertex vs,y the following
types of edges are available.

(1) A loop incident to v
1

and, if conceded, the resulting edge (v
1
, vs) is

single,
(2) a loop incident to v

1
and, if conceded, the resulting edge (v

1
, vs) is a

multiple edge,
(3) a single edge (v

1
, vr,x) for some r < s and δ(x, y) = 0 or

(4) a multiple edge (v
1
, vr,x) for r < s and δ(x, y) = 0.

(a) In case of choice (1), both the right side and the left side of Equation 1
go down by one. Thus the next stage is still critical. In case of choice (2), the
resulting edge (v

1
, vs) forms a multiple edge with a previously inserted edge.

Thus, the next stage is spoilt as the left hand side stays the same while the right
hand side goes down by 1. If Algorithm BiasedAddvertex() chose an edge of
type (3) then the left side of Equation 1 will stay the same while the right side
goes down by 1, hence the next stage would be spoilt. If BiasedAddvertex()
chose an edge of type (4), then both the right side and the left side of Equation
1 will go down by one. Thus the next stage will still be critical. Thus, whatever
the choice, the next stage is either critical or spoilt.

(b) Using the same arithmetic arguments as above, it is easy to see that if
a stage is spoilt, the next stage is spoilt.

(c) Suppose that j 6= 1, the vertex v
j

is due and v
j
= v

j,x
. If vs 6∈ N(x̄)st , then

the next step is due. So, suppose that vs ∈ N(x̄)st . If BiasedAddvertex() makes
the choice (3) or (4) from Evr

with r 6= j, then since no edge of Ev
j

is chosen,

the left side of Equation 3 stays the same while the right hand side either goes
down by one if BiasedConstructKpartiteRealization() moves to a new vertex

Sampling k-partite graphs with a given degree sequence 201

v
s+1

or stays the same if the algorithm moves to another edge t+1 of the same
vertex vs . Hence the next stage is due or overdue. If BiasedAddvertex() makes
the choice (4) by choosing an edge from Ev

j
, then both sides go down by 1

and the next stage is due. Obviously, if BiasedAddvertex() makes the choice
(1) or (2), v

j
stays due or becomes overdue since in any case the left side of

Equation 3 stays the same while the right side either goes down by one if the
algorithm moves to a new vertex v

s+1
or stays the same if the algorithm moves

to a new edge of the same vertex vs .
If v

j
is overdue, it stays overdue since, for any choice, Condition (1) makes

the right side of Equation 4 to go down by 1 while the left side may go down
by 1 or stays the same.

A similar argument, replacing loop by edge of type (3) or (4), and vice versa,
holds for the case where v

1
is due.

Suppose the vertex vs to be inserted, is due. If BiasedAddvertex() chose a
loop, the left hand goes up by 1 while the right hand side of Equation 3 stays
the same. Thus vs is overdue at the next stage. If an edge of type (3) or (4)
is chosen, then both the left and the right hand sides of Equation 3 stay the
same. Thus vs is due at the next stage.

(d) By (a), the future stages will be either critical or spoilt. Suppose that
there are more loops than other excess edges. If two loops are conceded to the
same vertex, then the next stage is spoilt. So suppose v

1
concedes at most one

loop to each of the remaining vertices. BiasedAddvertex() is then forced to
pick edges from other vertices. If it picks an edge of type (3), the next stage is
spoilt. So it must pick edges of type (4) only. But then edges of type (4) will
be exhausted before the loops. Hence there will be at least one vertex that
must conceded two loops. Thus the last stage will be spoilt.

(e) Suppose that the (s, t)th stage is spoilt but the previous stage (the stage
inserting the previous edge) is normal. Then at the previous stage we have

|Ee|st < as − (t− 1) + a
s+1

+ a
s+2

+ ...+ an . (9)

The insertion of one edge always lowers the right hand side of Equation 9
by 1 while the left hand side is the same if BiasedAddvertex() chooses an edge
of type (2) or (3) or is lowered by 1 if an edge of type (1) or (4) is chosen.
Hence the (s, t)th stage is either critical or normal. This is a contradiction.

(f) Suppose that A has no entry a
i
= 1 and suppose that v

1
is overipe at

the (s, t)th stage but is unripe at the stage inserting the previous edge. That
is, at that previous stage we have

202 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

|Ev
1
| <

∑
j

|Eev
j
|. (10)

Now, the last edge inserted is of type (1), (2), (3) or (4). If the chosen
edge is of type (1) or (2) or (3), then Equation 10 is unchanged. Hence v

1
is

unripe at the (s, t)th stage. This is a contradiction. If the chosen edge is of
type (4), then the right hand side of Equation 10 goes down by 1 while the
left hand side is unchanged. Hence v

1
is ripe at the (s, t)th stage and this is

also a contradiction. The argument is similar if A has an entry a
i
= 1

(g) Suppose v
j,x

is overdue at the (s, t)th stage but is undue at the stage
inserting the previous edge. Then at the previous stage, we have

|Eev
j,x
| < |Nx̄ |. (11)

Now, the last edge inserted is of type (1) or (2) or (3) or (4). Moreover, in
either case, BiasedConstructKpartiteRealization() moves to a new vertex or
not. If it stays on the same vertex and the chosen edge of type (1) or (2) or
(3), then the right and the left hand sides of Equation 11 are both unchanged.
Hence v

j
is undue at the (s, t)th stage. This is a contradiction. If the chosen

edge is of type (4) from Eev
j
, then the left hand side of Equation 11 goes

down by 1 while the right hand side is unchanged. Hence v
j

is also undue at

the (s, t)th stage and this is also a contradiction. If the chosen edge is of type
(4) from Eev

i
with i 6= j, then both the left hand side and the right hand side

of Equation 11 are unchanged. Hence v
j

is also undue at the (s, t)th stage and
this is also a contradiction.

Suppose that the algorithm moves to a new vertex. Now either v
s−1
∈

N(x̄)
s−1,t

or not. If v
s−1
6∈ N(x̄)

s−1,t
, then the previous stage was overdue.

This is a contradiction. So suppose that v
s−1
∈ N(x̄)

s−1,t
. If the chosen edge is

of type (1) or (2) or (3), then the right hand side of Equation 10 goes down by
1 while the right hand side is unchanged. Hence v

j
is due at the (s, t)th stage

and this is a contradiction. If the chosen edge is of type (4) from Eev
j
, then

both left hand and right hand sides of Equation 10 goes down by 1. Hence v
j

is normal at the (s, t)th stage and this is a contradiction. If the chosen edge is
of type (4) from Eev

i
with i 6= j, then left hand stays the same and right hand

side of Equation 10 goes down by 1. Hence v
j

is normal at the (s, t)th stage
and this is a contradiction. The same argument holds if v

1
is overdue. �

Edges of types (1) and (4) are safe edges while edges of types (2) and (3)
are risky edges. Thus, the basic intuition is that our Algorithm aims at con-

Sampling k-partite graphs with a given degree sequence 203

structing a simple k-partite graph has to avoid risky edges as much as possible.
Now, let N̂(x̄)s be the set of vertices vq,x̄ where q < s and whose second index
is not x. Observe that if the degree of the vs,x , the vertex being inserted, is
2 units greater than |N̂(x̄)s | − 2, then BiasedConstructKpartiteRealization()
must take preventive measures so that the stage inserting the first edge of vs
is not critical. Otherwise, it will be impossible to insert all the edges of vs
without conceding too many risky edges of type (2). This intuition prompts
the following definitions.

A vertex vr is the red vertex of BiasedConstructKpartiteRealization() if vr
is the first vertex during the insertion of which BiasedConstructKpartiteReal-
ization() can reach a critical stage. That is, if BiasedAddvertex() can choose
as many risky edges of type (2) as possible, without making previously in-
serted vertex overdue, then the first critical stage occurs during the insertion
of vertex vr . A vertex v

f
is a fat vertex if a

f
≥ N̂(x̄)

f
+ 2. That is, the degree

of v
f

is greater by at least 2 than the number of vertices v
j

with j < f and that
can concede an edge to v

f
. If this is the case, then since by Condition (1) v

f

can be conceded only N̂(x̄)
f

edges of types (3) or (4), BiasedAddvertex() will
be forced to conceded a

f
− N̂(x̄)

f
≥ 2 loops. Thus, the insertion of v

f
is likely

to lead to a spoilt stage if a critical stage is reached before inserting all the
edges of v

f
. The sequence of vertices (vr , vr+1

, . . . , vz) is the red-fat sequence
of BiasedConstructKpartiteRealization() if vr is red and vz is fat. Now, given
a red-fat sequence, BiasedConstructKpartiteRealization() has to take preven-
tive measures so that a critical stage is not reached before the last fat vertex
is inserted.

Another observation is that if BiasedConstructKpartiteRealization() is in-
serting vertex vs that is fat, then as above, Condition (1) imposes that the
vertex vs,x can be connected to at most N̂(x̄)s vertices v

j,x
with j < s and j 6= 1.

Thus, it is easy to see that the maximal number edges of type (4), denoted
by |E4|st , which BiasedAddvertex() may concede, from the insertion of the tth

edge of vertex vs until the insertion of the last edge of the last fat vertex vz is

|E4|st = N̂(x̄)s + N̂(x̄)
s+1

+ ...+ N̂(x̄)z .

These observations prompt the following definitions. Suppose there is a red-
fat sequence RF = (vr , vr+1

, ..., vz), vs ∈ RF and Evs
= as − N̂(x̄)s . Then vs is

fat-critical if

|Ee|st − |E4|st − (z− s) = a
z+1

++ an . (12)

The (s, t)th stage is fat-spoilt if

204 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

|Ee|st − |E4|st − (z− s) > a
z+1

++ an . (13)

To make sense of Equation 12, observe that its left hand side is equal to
|Ee|z,az if BiasedAddvertex() chose the maximal possible number of edges of
type (4) (and, conversely, the minimal number of loops). Indeed, an edge
e ∈ Eez,az only if e ∈ Ees,t . Now, starting from e ∈ Ees,t , to get the number of

edges that are still in the set of excess edges at the (z, az)
th stage, one has to

remove the edges of type (4) which are conceded and thus become unavailable,
and there are at most |E4|st of them. Moreover, since as ≥ as+1

≥ · · · ≥ az , all
these vertices are fat. Thus to each such vertex v

j,x
, v

1
must concede a

j
−N̂(x̄)

j

loops. But, if p loops are conceded to v
j
, then p − 1 excess-edges (v

1
, v

j
) are

constructed. Hence for every vertex v
j

inserted between vs and vz , there is one
excess edge lost. Hence the term z − s has to be subtracted. Hence the left
hand side of Equation 12 is indeed equal to |Ee|z,az if the maximal possible
number of edges of type (4) is conceded. Using this fact, it is easy to observe
that Equation 12 means that the (s, t)th stage is not critical, but if Algorithm
BiasedAddvertex() chooses the maximal number of edges of type (4), then
the first critical stage would occur after inserting the last edge of the last fat
vertex vz .

Lemma 9 (i) If the (s, t)th stage is fat-critical, then the next stage is fat-
critical or fat-spoilt.

(ii) If the (s, t)th stage is fat-spoilt, then some future stage is spoilt.

Proof. (i) First, observe that whatever the choice of edge, the right hand side
of Equation 12 stays the same. If BiasedAddvertex() chose an edge of type
(4), then on the left hand side, |Ee|st will go down by 1 and |E4|st will also go
down by 1, while z− s will stay the same. Hence the next stage is fat-critical.
Suppose a loop is chosen, then |Ee|st will stay the same as one loop is lost
but an edge of type (4) is created, |E4|st will go down by 1 as vs can not be
connected to the maximal number of edges of type (4) while z − s will stay
the same. Hence the next stage is also fat-spoilt.

(ii) The left hand side of Equation 13 is equal to |Ee|z,az . Hence, if the (st)th

stage is fat-spoilt, the (z, az)
th stage is spoilt. �

While Lemmas 8 and 9 say that once the random walk on T takes a wrong
path, it is impossible to mend it. The next routine gives the preventive measure
to avoid getting into that wrong path in the first place. If the algorithm is
inserting the tth edge of vertex vs,y , then an edge e is available when e is a
loop (incident on v

1
) or e ∈ Evr,x

with r < s and δ(x, y) = 0.

Sampling k-partite graphs with a given degree sequence 205

Routine ChooseCorrectEdge()[Routine choosing edges that lead to a sim-
ple graph]

Suppose that BiasedConstructKpartiteRealization() is at its (s, t)th stage.
That is, it is inserting the tth edge of vertex vs,y . Then

(1) For each vertex vr,x with r < s and δ(x, y) = 0, choose at most one edge
from Evr

.
(2) If the stage is normal but not due, choose any available edge uniformly

at random.
(3) If the stage is critical but not due nor ripe, choose any available edge of

type (1) or (4) uniformly at random.
(4) For j > s, if the vertex v

j
is due, pick an edge from Ev

j
. If many such

vertices are due, pick an edge uniformly at random from the vertices that are
due.

(5) If the stage is critical and ripe, pick a loop.
(6) If vs , the vertex being inserted, is due, then pick any available edge of

type (3) or (4) uniformly at random.
(7) If the stage is fat-critical, then pick any available edge of type (4) uni-

formly at random.

We illustrate the Routine ChooseCorrectEdge() in Figure 4. Before proving
that this algorithm is necessary and sufficient to sample a simple k-partite
graph at random, we observe that it runs in O(n2) steps, where n is the
number of vertices in any realizations of A. Indeed, BiasedConstructKpartite-
Realization() calls BiasedAddVertex() n times and BiasedAddVertex() calls
ChooseCorrectEdge() a

i
times to insert all the edges of vertex v

i
. At the

ith iteration of BiasedConstructKpartiteRealization(), ChooseCorrectEdge()
has to check Equations 1, 7 and 12 once each. Moreover, it has to check
Equation 3 for at most i − 1 vertices. Hence throughout the running of Bi-
asedConstructKpartiteRealization(), ChooseCorrectEdge() has to perform at

most 3n+ (n−1)(n−2)
2 checks.

Theorem 10 Algorithm BiasedConstructKpartiteRealization() reconstructs a
simple k-partite graph if and only if BiasedAddVertex() calls the routine ChooseC-
orrectEdge(). In other words, BiasedConstructKpartiteRealization() outputs a
simple k-partite graph if and only if the choice of edges satisfies conditions
(1)–(7).

The following lemma is required in the proof of Theorem 10.

206 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

 v1

 v3

 v2

 v1

 v3

 v2

 v4

 v1

 v3

 v2

 v4

 v1

 v3

 v2

 v4

 v1

 v3

 v2

 v4

 v1

 v3

 v2

 v4

(a , a)
41

(a , a)
21

(a , a)
31

 v1

 v3

 v2 v1

 v3

 v2

 v1 v2

 v1

 v1

 v3

 v2

 v1

 v3

 v2

 v1

 v3

 v2

 v4

c4

c4

c1

(3,3,2,2)

(5,3,2)

(7,3)

(10)

Figure 4: Random reconstruction tree of (3, 3, 2, 2) for simple graph. It is similar to
that in Figure 3, but some choice of edges are forbidden. Forbidden moves are marked
by a cross and the condition that they fail to satisfy. For example, c1 means condition
1 of the Routine ChooseCorrectEdge()

Lemma 11 If A is a degree sequence of a simple k-partite graph having n
vertices, then the (2, 1)the stage of Algorithm BiasedConstructKpartiteRealiza-
tion() is neither critical nor spoilt nor overdue nor overipe.

Proof. Before the insertion of vertex v
2
, there are m loops incident to v

1

where m =

∑n

i=1
a
i

2 . That is,

Sampling k-partite graphs with a given degree sequence 207

|Ee|
2,1

=

∑n

i=1
a

i

2
. (14)

To prove the result, we only need to show that |Ee|
2,1
≤

∑n

i=2
a

i
. That is, the

number of excess edges is not greater than the number of edges left to insert.
But by Erdos-Gallai criterion, we have

a
1
≤

n∑
i=2

a
i
. (15)

Rearranging Equation 14 and plugging Equation 15 into it, we get that

2|Ee|
2,1

=

n∑
i=1

a
i
≤ 2(

n∑
i=2

a
i
). (16)

Hence the first stage is not spoilt and vacuously it is not overdue. �

Proof.[Proof of Theorem 10] Suppose for a contradiction that conditions (1)–
(7) hold at all the stages but BiasedConstructKpartiteRealization() outputs a
k-partite graph G with multiple edges or loops. By condition (1) there can not
be a multiple edge connecting two vertices vr,x and vs,y with r < s. Moreover,
the algorithm would prevent any edge vr,x and vs,x with r < s unless r = 1.
Hence if G fails to be a simple graph, it must have either a loop or a multiple
edge incident to v

1
.

So, suppose that in G the vertex v
1

is incident to either a loop e or a
multiple edge. Thus, the stage inserting the last edge of the last vertex vn is
either spoilt, or critical and overipe or overdue.

If the last stage is spoilt (overdue), then by Lemma 8 (e, f, g), the previous
stage was either spoilt (overdue) or critical (due). If it were spoilt (overdue),
then the one prior to it was spoilt (overdue) or critical (due), and so on. Thus
by induction, the first stage of BiasedConstructKpartiteRealization() was ei-
ther spoilt (overdue) or critical (due). This contradicts Lemma 11. Hence some
stage later than the (3, 1)th must have been critical (due). Thus BiasedCon-
structKpartiteRealization() must have gone through a series of normal (undue)
stages, then a series of critical (due), then a (possible) series of spoilt (overdue)
stages prior to the stage inserting the last edge.

So, let the first spoilt (overdue) stage be the (q, p)th stage. So the stage
preceding it was critical (due). But, by condition (4), (condition (5)) Algorithm
BiasedAddvertex() must have chosen a safe edge so that the (q, p)th stage
should be critical (due) by Lemma 8. This is a contradiction.

208 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

Suppose that the last stage is critical and overipe. Then using an argument
similar to the case where the last stage is spoilt, we also get a contradiction.

Conversely, suppose that some condition (1)–(7) is not satisfied at the (s, t)th

stage and let G be the realization output at the end of BiasedConstructKpar-
titeRealization(). If condition (1) is not satisfied at the (s, t)th stage, then this
would create a double edge (v

j
, vs) with j, s 6= 1. In that case, the edge stops

to be available, and since Algorithm BiasedAddvertex() can not concede it
anymore, the double edge would appear in G. Hence G would not be simple.

If condition (3) is not satisfied at the (s, t)th, then by Lemma 8(a) and (b)
any future stage is spoilt. Hence G is not a simple graph. Suppose that condi-
tion (4) is not satisfied. That is, there is a vertex v

j
that is due at the (s, t)th

stage but Algorithm BiasedAddvertex() does not pick any of the elements of
Eev

j
for all the remaining edges conceded to vs . Then v

j
is overdue at the

insertion of vertex v
s+1

, and by Lemma 8(c) it remains overdue until the end
of the Algorihm. Hence G is not simple.

Suppose that condition (5) is not satisfied at the (s, t)th stage that is critical.
That is, Eev

1
, the set of loops incident to v

1
is ripe but Algorithm BiasedAd-

dvertex() does not pick a loop. Then, by Lemma 8(d), any future stage is
spoilt. Hence G is not simple.

Suppose that condition (6) is not satisfied at the (s, t)th stage, that is, the
vertex vs is due and Algorithm BiasedAddvertex() picks a loop. Then vs will
become overdue and G will exhibit a multiple edge (v

1
, vs). If condition (7) is

not satisfied, then by Lemma 9 (2) Algorithm ConstructRealization() reaches
a spoilt stage. �

Let a correct edge be an edge chosen by Algorithm ChooseCorrectEdge.
So, if BiasedConstructKpartiteRealization() terminates, we have shown that
it always outputs a simple graph. It remains to show that it always terminates
by showing that there is always a correct edge so that conditions (4)–(7) can
be satisfied.

Theorem 12 Algorithm ChooseCorrectEdge() always terminates. That is, con-
ditions (4)–(7) can always be satisfied.

The proof that is quite involved is left to the end of the paper. Still, we
have to show that every simple realization can be reached. The next result is
instrumental in showing that every simple realization ofA can be reconstructed
by BiasedConstructKpartiteRealization() if conditions (1)–(7) are satisfied.

Sampling k-partite graphs with a given degree sequence 209

Lemma 13 Let G = Gn
1
,n

2
,...,n

k
be the n

1
, n

2
, ..., n

k
- complete k-partite graph.

That is, the k-partite graph where the ith part contains n
i

vertices each having
degree

∑
j 6=i
n

j
. Then BiasedConstructKpartiteRealization() satisfying condi-

tions (1)–(7) can reconstruct G as a realization of A = (A
1
: A

2
: ... : A

k
),

where A
i

has n
i

entries equal to
∑

j 6=i
n

j
.

Proof. At the second iteration, the algorithm inserts the vertex v
2,x

by conced-
ing

∑
j 6=i
n

j
. It is routine to check that v

2,x
is due. Now suppose that v

3
= v

3,y
.

If δ(x, y) = 1, then v
1

will concede
∑

j 6=i
n

j
loops to v

3
. If δ(x, y) = 0, then

by Condition (4), v
2

will concede one edge to v
3

and v
1

will have to concede∑
j 6=i
n

j
− 1 loops to v

3
. In both cases v

3
is due and by Lemma 8 v

2
is also

due. Now, for an induction, suppose that the algorithm is inserting the ver-
tex vs,z and all the preceding vertices are due. Recall that N̂(z̄)

i
is the set of

vertices inserted before v
i,z

and whose second index in not z. Then v
i

will be
conceded |N̂(z̄)

i
| edges from vertices in N̂(z̄)

i
and

∑
j 6=z
n

j
− |N̂(z̄)

i
| loops from

v
1
. Hence v

i
will also be due and all the vertices preceding it will be due by

Lemma 8. Now it is routine to check that at the nth every vertex is incident
to a single available edge. Thus, each of them will concede it and Algorithm
BiasedConstructBipartiteRealization() outputs the graph G. �

Let G be a graph, a delete-minor of G ′ = G\e is the graph obtained from G

by deleting the edge e. If A = (A
1
: A

2
: ... : A

k
) is a k-partite degree sequence,

let A ′ be the degree sequence obtained from A by subtracting 1 from two of
its entries ar and as , where ar ∈ Ai

and ar ∈ Aj
with i 6= j. Thus, if A is

the degree sequence of a k-partite graph G, then A ′ is the degree sequence of
some delete-minor of G.

Lemma 14 If BiasedConstructKpartiteRealization() satisfying conditions (1)–
(7) can reconstruct G as a realization of A, then it can reconstruct all the
delete-minors of G that are realizations of A ′.

Proof. Let G be a k-partite graph output by Algorithm BiasedConstructK-
partiteRealization() and let G\e be a delete-minor of G. Suppose in the graph
G, the edge e is incident to vertices vr,x and vs,y having respectively degrees ar

and as , and where r < s and δ(x, y) = 0. Thus in G\e, vertices vr and vs have
degrees ar − 1 and as − 1. Let f be any edge of G\e. Now, since G is output
by BiasedConstructKpartiteRealization(), then there is a series of choices of
correct edges such that f can be inserted. Now, in that series of choices either
e is inserted before f or after. If e is inserted after f, then the same series of
choices would insert f in G\e. If e is inserted before f, then the same series of

210 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

choices, minus the insertion of e, will also lead to the insertion of f in G\e,
since Algorithm BiasedConstructKpartiteRealization() does not need to insert
any edge incident to vr and vs as their degrees are down by 1. �

Corollary 15 Let G be a simple k-partite realization of a degree sequence
A = (A

1
: A

2
: ... : A

k
), where A

i
has n

i
entries. Then there is a positive prob-

ability that G is output by Algorithm BiasedConstructKpartiteRealization() if
conditions (1)–(2) are satisfied.

Proof. Every simple k-partite graph whose jth part contains n
j

vertices can
be obtained from Gn

1
,n

2
,...,n

k
by a series of deletions. �

3.1 Sampling simple realizations uniformly

The calling of BiasedAddVertex() by BiasedConstructKpartiteRealization()
allows to sample all k-partite realizations of A with equal probability. But
to construct simple k-partite realizations only, the choice of edges is dictated
by the routine ChooseCorrectEdge(). We recall that correct edges are those
edges chosen by the routine ChooseCorrectEdge(). It is easy to check that
the number of correct edges is not constant across all the graphs on the same
level of T . This remark prompts to modify the routine BiasedAddVertex() as
follows. A vertex vr,x , where r < s and δ(x, y) = 0, is said to be correctly-
adjacent to v

1
at the (s, t)th stage if vr is connected to v

1
by a correct edge at

that stage.

SimpleBiasedAddvertex() (A modification of Algorithm Addvertex() to
get a uniform distribution on the set of simple k-partite realizations, dividing
by the number of vertices inserted up to the sth iteration)

Step 1 To the graph G
l

add an isolated vertex called v
l+1

. Let a
l+1

be the
number of edges to concede to v

l+1
and let t = 0.

Step 2 If v
l+1

is incident to a
l+1

edges, return Gl+1. Else,
Step 3 Let bt

l+1
be the number of different vertices incident to v

l+1
after the

insertion of its tth edge, with t ≥ 1. If t = 0, let bt
l+1

be the number of different
vertices adjacent to v

l
.

Step 4 Choose vertex vr uniformly at random amongst all the vertices that
are correctly-adjacent to v

1
.

Step 5 If e ∈ Evr
, then concede e to v

l+1
with probability |V ′(G

s
)

|V(G
s
)|.bt

l+1

, where

V(G
s
) and V ′(G

s
) are respectively the sets of vertices inserted up to the sth

Sampling k-partite graphs with a given degree sequence 211

iteration and the set of vertices in V(G
s
) that are correctly-adjacent to v

1
.

Increment t by 1 and go back to Step 2.

Theorem 16 For the degree sequence A = (A
1
: A

2
: ... : A

k
), where A

i
has

n
i

entries such that n
1
+ n

2
+ ... + n

k
= n, BiasedConstructKpartiteRealiza-

tion() reaches every simple k-partite realization of A uniformly at random with
probability.

Proof. Corrolary 15 shows that all simple realizations can be reached by the
BiasedConstructKpartiteRealization() if the choice of edges is dictated by the
routine ChooseCorrectEdge(). The proof for uniformity is similar to that of
Theorem 7.

�

We now give the overall Algorithm and its running time.

Algorithm UniformGenerateSimpleKpartiteRealization()
Input: k-partite degree sequence A = (A

1
: A

2
: ... : A

k
) where A

i
has n

i

entries.
Output: A random k-partite realization of A.

Step 1 Put A in non increasing order.
Step 2 Construct the recursion chain of A by calling the routine ConstructK-
partiteRecursionChain().
Step 3 Construct a random k-partite realization of A by calling BiasedCon-
structSimpleKpartiteRealization().

Now, it is known that Step 1 takes log(n) iterations and as shown earlier

Step 2 takes n iterations. In Step 3, ChooseCorrectEdge() does n(n−1)
2 checks

altogether. Finally, BiasedAddVertex() needs 2m iterations to insert all the
vertices. Thus, the overall running time is at most

log(n) +
n(n− 1)

2
+ 2m ≤ n2 + 2m.

3.2 Proof that ChooseCorrectEdge() always terminates suc-
cessfully

Recall that an edge is correct at the (s, t)th stage if ChooseCorrectEdge() may
choose it at the (s, t)th stage. We have shown that if BiasedConstructKpar-
titeRealization() terminates, it always outputs a simple graph. It remains to

212 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

show that it always terminates by showing that there is always a correct edge
so that conditions (4)–(7) can be satisfied.
Proof.[Proof of Theorem 12]

The proof is by induction on the stage where BiasedConstructKpartiteRe-
alization() is and consists of many lemmas, each dealing with one of the con-
ditions. Obviously all the conditions are satisfied at the (2, 1)th stage. Suppose
they hold up to the (s, t− 1)th stage and let BiasedConstructKpartiteRealiza-
tion() be at its (s, t)th stage, where the vertex vs,y is being inserted. The next
lemma shows that condition (4) is always met. Recall that a safe edge is an
edge of type (1) or type (4). �

Lemma 17 Let the Algorithm BiasedConstructKpartiteRealization() satisfy
conditions (1)–(7) and the (s, t)th stage is unripe, undue and critical. Then it
is always possible to concede a safe edge.

Proof. Suppose the (s, t)th is critical, but there is no edge of type (1) or type
(4). That is, vs,y is already adjacent to v

1
and all vertices vr,x , such that r < s

and δ(x, y) = 0, have no correct edge.
(a) Suppose v

1
and all the vertices vr,x such that r < s and δ(x, y) = 0 are

connected to vs . Then there is no safe edge if as > N̂(x̄)s . Thus the vertex vs is
fat. But by condition (7), BiasedConstructKpartiteRealization() can not reach
a critical stage before inserting all the edges of vs . This is a contradiction.

(b) Now suppose there is one vertex, vq,x with q < s and δ(x, y) = 0, that
is not connected to vs,y . If |Evq

| > 1, then there is a correct edge in Evq
. This

is a contradiction. So let |Evq
| ≤ 1. We need the following fact.

Fact 18 Let A = (a
1
, a

2
, . . . , as , . . . an) be a degree sequence, let G be a simple

realization of A and let Ĝ be the simple graph obtained from G by deleting the
vertex vq and all edges incident to vq. Then Ĝ is a simple realization of the

degree sequence Â obtained from A by removing the entry aq and subtracting

1 to all entries a
i

such that v
i

is adjacent to vq in G. Hence Â is the degree

sequence of a simple graph. We call Â a q-reduction of A.

Now, for the degree sequence A, let P
A

= (e
1
, e

2
, . . . , er) be the sequence

of correct edge choices leading the critical stage (s, t), where some preceding
vertices are not connected to vs and let vq be such a vertex. Then P

Â
obtained

from P
A

by removing all the edges incident to vq is obviously a sequence of

correct edge choices for Â and leading to a critical stage. They are correct,
since if e

i
is of type (4) or (1) in P

A
, it is still of type (4) or (1) in P

Â
as

Sampling k-partite graphs with a given degree sequence 213

removing edges incident to vq will leave at least one other edge parallel to
it. They lead to a critical stage, since removing edges incident to vq does not
affect the number of excess edges, as vq is connected to v

1
by 1 edge at most.

But according to part (a) the sequence P
Â

leads to a critical stage satisfying
condition (4). That is, there is a edge e that is correct. Hence the same edge
e is correct for A. Thus, we have proved that condition (4) is satisfied in case
(b).

�

The next lemma shows that condition (5) is always met.

Lemma 19 Suppose that BiasedConstructKpartiteRealization() satisfies con-
ditions (1)–(7) and at the (s, t)th stage, the vertex vr,x is due. Then it is always
possible to concede an edge from Evr

.

Proof. Let ar denote the degree of the vertex vr . The proof uses induction
on s, the number of vertices already inserted. For a contradiction, we suppose
that vr is due but SimpleBiasedAddvertex() can not pick an edge from Evr

.
This is possible only if there are too many vertices that are due. For s = 1, this
is vacuously not possible. Now suppose for all the stages up to the (s − 1)th

stage, the result holds, so that none of these stages is spoilt or overdue. In
particular, at the insertion of vertex vq,y , where q is the greatest index less
than s whose second index is y, all the vertices that were due conceded one
edge. Suppose at the insertion of vertex vs , the number of sets that are due is
greater than as .

(i) Let νs = |N̂(ȳ)| be the number of vertices inserted before vs,y and whose
second index is not y. Suppose v

1
is not due and that there are νs − p (for

p ≥ 2) vertices v
j
, with j 6= 1, that are due at the insertion of vertex vq . By

hypothesis, all the νs −p concede an edge to vertex vq and by Lemma 8(c) all
these νs−p vertices are due at the insertion of vertex vs . Hence, by hypothesis,
as < νs − p.

If the (s, t)th stage is normal or critical then we have

|Ee|st ≤ as − t+ as+1
+ ...+ an . (17)

But, at t = 1, that is, at the insertion of the first edge of vertex vs , there
are at least νs − p vertices v

j
that are due. Thus, on one hand, we have

as − t+ as+1
+ ...+ an < (νs − p)(n− s+ 1). (18)

214 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

Equation 18 follows from the fact as < νs − p, as we assume that there are
too many due vertices, and au ≤ as for u > s, and there are n− s+ 1 vertices
left to insert.

On the other hand, recalling that Ev
1

denotes the set of loops incident to
v
1
, we have

|Ee|st = |Ev
1
|+ |Eev

2
|+ · · ·+ |Eev

s−1
|

= |Ev
1
|+ |Ee|

due
+ |Ee|

undue

= |Ev
1
|+ |Ee|

undue
+ (νs − p)(n− s+ 1),

where |Ee|
due

and |Ee|
undue

denote the set of excess-edges from vertices that
are due and from vertices that are not due respectively, and
|Ee|

due
= (νs − p)(n − s + 1), since there are at least νs − p vertices that are

due and each has n− s+ 1 excess-edges as there are n− s+ 1 vertices waiting
to be inserted.

Hence, if the stage is normal or critical, we have

|Ev
1
|+|Ee|

undue
+(νs−p)(n−s+1) ≤ as−t+as+1

+...+an < (νs−p)(n−s+1).

(19)
This is impossible. If the stage is spoilt, then SimpleBiasedAddvertex() chose

an edge of type (2) or (3) at the (s−1)th stage. This contradicts the inductive
hypothesis.

(ii) Suppose v
1

is due at the (s, t)th stage, so that there are too many vertices
that are due and one of them is v

1
. Thus, we have

|Ev
1
|+|Ee|

notdue
+(νs−p)(n−s+1) ≤ as−t+as+1

+...+an ≤ (νs−p)(n−s+1).

(20)
Here we have ≤ as as = (νs −p), where νs −p is the number of due vertices

other than v
1
. But this is possible only if |Ev

1
| = 0 and this is a contradiction.

�

The next lemma shows that Condition (6) is always met.

Lemma 20 Suppose that Algorithm BiasedConstructRealization() satisfies con-
ditions (1)–(7) and the (s, t)th stage is critical and ripe. Then it is always
possible to concede a loop from Ev

1
.

Sampling k-partite graphs with a given degree sequence 215

Proof. The proof uses induction on i, the number of vertices already inserted.
The lemma holds vacuously for i = 1. Suppose now it holds for all i < s. At
the insertion of the sth vertex, it may not hold only if there are also at least
νs − p > as other vertices that are due. Suppose the stage is normal. In that
case, as in the proof of Lemma 19, we have

|Ev
1
|+|Ee|

notdue
+(νs−p)(n−k+1) ≤ as−t+as+1

+...+an ≤ (νs−p)(n−s+1).

(21)
But this is possible only if |Ev

1
| = 0 and this is a contradiction. Similarly,

there is a contradiction if the stage is critical as |Ev
1
| must also be null. More-

over the inductive hypothesis is contradicted if the stage is spoilt.
�

The next lemma shows that condition (7) is always met.

Lemma 21 Suppose that Algorithm BiasedConstructRealization() satisfies con-
ditions (1)–(7) and at its (s, t)th stage vs, the vertex being inserted, is due.
Then there is an available edge that is not a loop.

Proof. Suppose after the insertion of the (τ
1
+τ

2
)th edge of vertex vs , (where

τ
2

edges are of type (3) or (4)) the vertex vs is due, but τ
1
+ τ

2
< as . That

is, |Eevs | = |N(x̄)|s but vs is not completely inserted. If for some r 6= 1 and
r < s the vertex vr,x , with δ(x, y) = 0, is not adjacent to vs and Evr

6= φ, then
SimpleBiasedAddvertex() picks an edge from Evr

.
If not, suppose all the vertices vr,x , with r < s and δ(x, y) = 0 and that are

not adjacent to vs , we have Ev
j
= φ. Now either (i) the stage is critical or (ii),

it is not.
If (i) and all the available edges are loops, then the stage is critical and

overipe and this contradicts the inductive hypothesis. Thus, some are loops
and some are multiple edges incident to vr,x with r 6 1, δ(x, y) = 0, and vr is
adjacent to vs . But, then there must be a vertex v

j
not incident to vs with

a
j
< as . Let there be p vertices adjacent to vs and q vertices v

j
not adjacent

to vs such that Ev
j
= φ. Then, as assumed above, we have t + p < as as

vs is not fully inserted. But v
j

must be adjacent to some of the vertices v
i

that are adjacent to vs . Thus a
j
≤ p < as . This contradicts the fact that

a
1
≥ a

2
≥ ... ≥ an .

Now, let all previously inserted vertices v
j

be connected to vs . It is easy
to see that there must be s − 2 such vertices which are not v

1
. Thus as =

n − s + 1 + (s − 2) = n − 1. But, by Erdös-Gallai criterion, we also have

216 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

as ≤ n − 1. Hence the vertex vs is already completely inserted . This is a
contradiction. �

The next lemma shows that condition (7) is always met.

Lemma 22 Suppose that Algorithm BiasedConstructRealization() satisfies con-
ditions (1)–(7) and that the (s, t)th is fat-critical. Then there is an available
edge of type (4).

Proof. Suppose, for a contradiction, the (s, t)th is fat-critical, but there is
no edge of type (4). That is, all available edges are loops or type (3). That
is, for all vertices vr,x such that r < s and δ(x, y) = 0 we have that ar,x <

|N̂(x̄)|r + |N(x̄)|r . But we know, for all r with r < s, as ≤ ar and as,y > |N̂(ȳ)|s
as vs is fat. This is a contradiction. �

Thus, we have proved that conditions (4)–(7) are always satisfied at all
stages of the running of Algorithm BiasedConstructRealization(). Hence it
always terminates reaching a leaf of T that is a simple graph.

References

[1] M. Bayati, J. H. Kim and A. Saberi, A sequential algorithm for generating
random graphs, Algorithmica 58 (2010) 860–910. ⇒184, 185, 186

[2] E. A. Bender and E. R. Canfield, The assymptotic number of labelled graphs
with given degree sequence, J. Combin. Theory, Ser A. 24, 3 (1978) 296–307.⇒184, 185

[3] J. Blitzstein and P. Diaconis, A sequential importance sampling algorithm for
generating random graphs with prescribed degree sequence, Internet Math. 6, 4
(2011) 489–522. ⇒184, 185, 186

[4] B. Bollobas, A probalistic proof of an assymptotic formula for the number of
labelled regular graphs, European J. Combin. 1, 4 (1980) 311–316. ⇒184, 185

[5] R. A. Brualdi, Matrices of zeroes and ones with fixed row and column sum
vectors, Linear Algebra Appl. 33 (1980) 159–231. ⇒184

[6] T. Brylawsky and J. Oxley, The Tutte polynomial and its applications, in N.
White, ed., Matroid Applications, Encyclopedia of Mathematics and its Appli-
cations, Cambridge University Press, (1992) 123–225. ⇒185

[7] Y. Chen, P. Diaconis, S. Holmes and J. S. Liu, Sequential Monte Carlo methods
for statistical analysis of tables, J. Am. Stat. Assoc. 100 (2005) 109–120. ⇒184

[8] G. W. Cobb and Y. Chen, An application of Markov Chains Monte Carlo to
community ecology, Amer. Math. Month. 110 (2003) 265–288. ⇒184

[9] C. Cooper, M. Dyer and C. Greenhill, Sampling regular graphs and Peer-to-Peer
network, Combinatorics, Probability and Computing 16 (2007) 557–594. ⇒184

https://web.stanford.edu/~bayati/
http://www.math.ucsd.edu/~ebender/
https://statistics.fas.harvard.edu/people/joseph-k-blitzstein
https://statweb.stanford.edu/~cgates/PERSI/
https://www.memphis.edu/msci/people/bollobas.php
https://www.math.wisc.edu/~brualdi/
http://www.unc.edu/math/Faculty/thb/Remembs.html
https://www.math.lsu.edu/~oxley/
https://publish.illinois.edu/yuguo/
https://statweb.stanford.edu/~susan/susan_person.html
https://https://www.mtholyoke.edu/people/george-cobb
https://nms.kcl.ac.uk/colin.cooper/
https://math.nd.edu/people/faculty/matthew-j-dyer/

Sampling k-partite graphs with a given degree sequence 217

[10] P. Diaconis and A. Gangolli, Rectangular arrays with fixed margins, In Discrete
Probability and Algorithms (Minneapolis, MN, 1993), IMA Vol. Math. Appl. 72
15–41 , New York Springer, 1995. ⇒184

[11] P. Diaconnis and B. Sturmfels, Algebraic algorithms for sampling from condi-
tional distributions, Ann Statist. 26, 11 (1998) 363–397. ⇒184

[12] P. Erdös and T. G. Gallai, Graphs with prescribed degrees of vertices (Hungar-
ian), Mat. Lapok 11 (1960) 264–274. ⇒184, 185

[13] M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput.
18, 6 (1989) 1149–1178. ⇒184

[14] R. Kannan, P. Tetali and S. Vempala, Simple Markov-chain algorithms for gener-
ating bipartite graphs and tournaments, Random Struct. Algorithms 14, 4 (1999)
293–308. ⇒184, 185

[15] K. K. Kayibi, M. A. Khan and S. Pirzada, Rejection sampling of bipartite graphs
with given degree sequence, Acta Univ. Sapientia, Mathematica 10, 2 (2018)
249–275. ⇒183, 184

[16] M. Luby, D. Randall and A. Sinclair, Markov chain algorithms for planar lattice
structures, SIAM J. Comput. 31, 1 (2001) 167–192. ⇒184

[17] I. Miklós, P. L. Erdös and L. Soukup, Towards random uniform sampling of
bipartite graphs with given degree sequence, Preprint. ⇒184, 185

[18] M. E. J. Newman, A. L. Barabasi and D. J. Watts, The structure and dynamics
of networks (Princeton Studies in Complexity, Princeton UP) (2006) pp 624. ⇒
184

[19] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad,
India, 2012. ⇒185

[20] V. V. Vazirani, Approximation algorithms, Springer-Verlag, Berlin, Heildelberg,
New York, 2003. ⇒184

[21] N. Wormald, Models of random regular graphs, In Surveys in Combonatorics
(Canterbury), Cambridge University Press, London, Math. Soc. Lecture Note
Ser. 267 (1999) 239–298. ⇒184, 185

Received: October 22, 2018 • Revised: November 21, 2018

https://statweb.stanford.edu/~cgates/PERSI/
https://statweb.stanford.edu/~cgates/PERSI/
https://math.berkeley.edu/~bernd/
https://www.britannica.com/biography/Paul-Erdos
http://www.maths.qmul.ac.uk/~mj/
https://www.maths.ed.ac.uk/school-of-mathematics/people?person=19
http://people.math.gatech.edu/~tetali/
http://www.bristol.ac.uk/maths/people/ko-k-kayibi/overview.html
http://directory.uleth.ca/users/ma.khan
http://maths.uok.edu.in/DrSPirzada.aspx
https://www.icsi.berkeley.edu/~luby/
http://ramet.elte.hu/~miklosi/
http://www.renyi.hu/~elp/
http://www-personal.umich.edu/~mejn/
http://maths.uok.edu.in/DrSPirzada.aspx
http://www.universitiespress.com/
https://www.ics.uci.edu/~vazirani/
http://www.math.uwaterloo.ca/~nwormald/

	1 Introduction
	2 Construction of all k-partite realizations of given degrees
	2.1 Recursion chain of degree sequences
	2.2 Sampling all k-partite realizations uniformly

	3 Construction of simple k-partite graphs
	3.1 Sampling simple realizations uniformly
	3.2 Proof that ChooseCorrectEdge() always terminates successfully

