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Abstract. In this investigation, our main objective is to ascertain the
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1 Introduction

Special functions have an indispensable role in many branches of mathematics
and applied mathematics. Thus, it is important to examine their properties
in many aspects. In the recent years, there has been a vivid interest on some
special functions from the point of view of geometric function theory. For
more details we refer to the papers [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18] and references therein. However, the origins of these studies
can be traced to Brown [20], to Kreyszig and Todd [22], and to Wilf [24].
These studies initiated investigation on the univalence of Bessel functions and
determining the radius of starlikeness for different kinds of normalization. In
other words, their results have a very important place on account of the fact
that they have paved the way for obtaining other geometric properties of Bessel
function such as univalence, starlikeness, convexity and so forth. Recently, in
2014, Baricz et al. [11], by considering a much simpler approach, succeeded
to determine the radius of starlikeness of the normalized Bessel functions. In
the same year, Baricz and Szász [15] obtained the radius of convexity of the
normalized Bessel functions. We see in their proofs that some properties of the
zeros of Bessel functions and the Mittag-Leffler expansions for Bessel function
of the first kind play a crucial role in determining the radii of starlikeness
and convexity of Bessel functions of the first kind. It is worth to mention that
some geometric properties of other special functions involving Bessel function
of first kind were investigated extensively by several authors. For instance,
in 2017, Deniz and Szász [21] studied on determining the radius of uniform
convexity of the normalized Bessel functions. And also, very recently, Bohara
and Ravichandran in [19] determined, by using the method of Baricz et al.
[11, 15, 16, 21], the radius of strong starlikeness and k−uniform convexity of
order α of the normalized Bessel functions.

Inspired by the above mentioned results and considering the approach of
Baricz et al. in this paper, we investigate the radius of strong starlikeness
and k−uniform convexity of order α of the normalized Wright and q−Bessel
functions.

This paper is organized as follows: The rest of this section contains some
basic definitions needed for the proof of our main results. Section 2 is divided
into three subsections: The first subsection is devoted to the radii of k−uniform
convexity of order α of normalized Wright functions. The second subsection
contains the study of the radii of k−uniform convexity of order α of normalized
q−Bessel functions. The third subsection is dedicated to the radius of strong
starlikeness of normalized Wright and q−Bessel functions.
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Before starting to present our main results we would like to call attention to
some basic concepts, which are used by us for building our main results. For
r > 0 we denote by Dr = {z ∈ C : |z| < r} the open disk with radius r centered
at the origin. Let f : Dr → C be the function defined by

f(z) = z+
∑
n≥2

anz
n, (1)

here r is less or equal than the radius of convergence of the above power series.
Let A be the class of analytic functions of the form (1), that is, normalized by
the conditions f(0) = f′(0) − 1 = 0. Let S denote the subclass of A consisting
of univalent functions.

In this paper, for k ≥ 0 and 0 ≤ α < 1 we study on more general class
UCV(k , α) of k−uniformly convex functions of order α. A function f ∈ A is
said to be in the class UCV(k , α) if

Re

(
1+

zf′′(z)

f′(z)

)
> k

∣∣∣∣zf′′(z)f′(z)

∣∣∣∣+ α (z ∈ D).

The real number

ruck,α(f) = sup

{
r > 0

∣∣∣∣Re

(
zf′(z)

f(z)

)
> k

∣∣∣∣zf′′(z)f′(z)

∣∣∣∣+ α for all z ∈ Dr
}

is called the radius of k−uniform convexity of order α of the function f.
Finally, let us take a look at the next lemma which is very useful in building

our main results. It is worth to mention that the following lemma was proven
by Deniz and Szász [21].

Lemma 1 (see [21]) If a > b > r ≥ |z| , and λ ∈ [0, 1], then∣∣∣∣ z

b− z
− λ

z

a− z

∣∣∣∣ ≤ r

b− r
− λ

r

a− r
. (2)

The followings can be obtained as a natural consequence of this inequality:

Re

(
z

b− z
− λ

z

a− z

)
≤ r

b− r
− λ

r

a− r
(3)

and

Re

(
z

b− z

)
≤
∣∣∣∣ z

b− z

∣∣∣∣ ≤ r

b− r
. (4)

We are now in a position to present our main results.
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2 Main results

2.1 The radii of k-uniform convexity of order α of normalized
Wright functions

In this subsection, we will focus on the function

φ(ρ, β, z) =
∑
n≥0

zn

n!Γ(nρ+ β)
(ρ > −1 z, β ∈ C)

named after the British mathematician E.M. Wright. It is well known that
this function was introduced by him for the first time in the case ρ > 0 in
connection with his investigations on the asymptotic theory of partitions [26].

From [17, Lem. 1] we know that under the conditions ρ > 0 and β > 0,

the function z 7→ λρ,β(z) = φ(ρ, β,−z2) has infinitely many zeros which are
all real. Thus, in light of the Hadamard factorization theorem, the infinite
product representation of the function λρ,β(z) can be written as

Γ(β)λρ,β(z) =
∏
n≥1

(
1−

z2

λ2ρ,β,n

)

where λρ,β,n is the nth positive zero of the function λρ,β(z) (or the positive
real zeros of the function Ψρ,β). Moreover, let ζ ′ρ,β,n denote the nth positive

zero of Ψ ′ρ,β, where Ψρ,β(z) = zβλρ,β(z), then the zeros satisfy the chain of
inequalities

ζ′ρ,β,1 < ζρ,β,1 = λρ,β,1 < ζ
′
ρ,β,2 < ζρ,β,2 = λρ,β,2 < . . ..

One can easily see that the function z 7→ φ(ρ, β,−z2) do not belong to
A, and thus first we perform some natural normalizations. We define three
functions originating from φ(ρ, β, .):

fρ,β(z) =
(
zβΓ(β)φ(ρ, β,−z2)

) 1
β
,

gρ,β(z) = zΓ(β)φ(ρ, β,−z
2),

hρ,β(z) = zΓ(β)φ(ρ, β,−z).

Clearly, these functions are contained in the class A.
Now, we would like to present our results regarding the k−uniform convexity

of order α of the functions fρ,β, gρ,β and hρ,β.
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Theorem 1 Let β, ρ > 0, α ∈ [0, 1) and k ≥ 0. Then, the following state-
ments are valid:

a. The radius of k-uniform convexity of order α of the function fρ,β is the
real number ruck,α(fρ,β) which is the smallest positive root of the equation

(1+ k)r
Ψ′′ρ,β(r)

Ψ′ρ,β
+ (

1

β
− 1)(1+ k)r

Ψ′ρ,β(r)

Ψρ,β(r)
+ 1− α = 0

in the interval (0, ζ′ρ,β,1), where Ψρ,β(z) = z
βλρ,β(z) and ζ

′
ρ,β,1 stands for

the smallest positive zero of the function Ψ′ρ,β(z).

b. The radius of k-uniform convexity of order α of the function gρ,β is the
real number ruck,α(gρ,β) which is the smallest positive root of the equation

(1+ k)r
g′′ρ,β(r)

g′ρ,β(r)
+ 1− α = 0

in the interval (0, ϑρ,β,1), where ϑρ,β,1 stands for the smallest positive
zero of the function g′ρ,β(z).

c. The radius of k-uniform convexity of order α of the function hρ,β is the
real number ruck,α(hρ,β) which is the smallest positive root of the equation

(1+ k)r
h′′ρ,β(r)

h′ρ,β(r)
+ 1− α = 0

in the interval (0, τρ,β,1), where τρ,β,1 stands for the smallest positive zero
of the function h′ρ,β(z)

Proof.

a. We note that

1+
zf′′ρ,β(z)

f′ρ,β(z)
= 1+

zΨ ′′ρ,β(z)

Ψ′ρ,β(z)
+

(
1

β
− 1

)
zΨ′ρ,β(z)

Ψρ,β(z)
.

Using the following infinite product representations of Ψρ,β and Ψ′ρ,β [17,
Theorem 5] given by

Γ(β)Ψρ,β(z) = z
β
∏
n≥1

(
1−

z2

ζ2ρ,β,n

)
, Γ(β)Ψ′ρ,β(z) = z

β−1
∏
n≥1

(
1−

z2

ζ′2ρ,β,n

)
,
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where ζρ,β,n and ζ′ρ,β,n denote the nth positive roots of Ψρ,β and Ψ′ρ,β,
respectively, we have

zΨ′ρ,β(z)

Ψρ,β(z)
= β−

∑
n≥1

2z2

ζ2ρ,β,n − z
2
,

zΨ′′ρ,β(z)

Ψ′ρ,β(z)
= β− 1−

∑
n≥1

2z2

ζ′2ρ,β,n − z
2
.

Thus we arrive at

1+
zf′′ρ,β(z)

f′ρ,β(z)
= 1−

(
1

β
− 1

)∑
n≥1

2z2

ζ2ρ,β,n − z
2
−
∑
n≥1

2z2

ζ′2ρ,β,n − z
2
.

In order to prove the theorem we consider two cases β ∈ (0, 1] and β > 1
separately.

Case 1 β ∈ (0, 1] .

Then λ = 1
β − 1 > 0. By making use of inequality (4) stated in Lemma

1 we conclude that the following inequality

|z|2

ζ2ρ,β,n − |z|2
≥ Re

(
z2

ζ2ρ,β,n − z
2

)

holds true for every ρ > 0, β > 0, n ∈ N and |z| < ζρ,β,n. With the help
of (4), we get

Re

(
1+

zf′′ρ,β(z)

f′ρ,β(z)

)
≥ 1−

(
1

β
− 1

)∑
n≥1

2r2

ζ2ρ,β,n − r
2
−
∑
n≥1

2r2

ζ′2ρ,β,n − r
2

= 1+
rf′′ρ,β(r)

f′ρ,β(r)
,

(5)

where |z| = r and z ∈ Dζ′ρ,β,1 .

Moreover, by using triangle inequality |z1 + z2| ≤ |z1|+ |z2| together with
the fact that 1

β − 1 > 0, we get
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∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n≥1

2z2

ζ′2ρ,β,n − z
2
+

(
1

β
− 1

)∑
n≥1

2z2

ζ2ρ,β,n − z
2

∣∣∣∣∣∣
≤
∑
n≥1

∣∣∣∣∣
(

2z2

ζ′2ρ,β,n − z
2
+

(
1

β
− 1

)
2z2

ζ2ρ,β,n − z
2

)∣∣∣∣∣
≤
∑
n≥1

(
2r2

ζ′2ρ,β,n − r
2
+

(
1

β
− 1

)
2r2

ζ2ρ,β,n − r
2

)

= −
rf′′ρ,β(r)

f′ρ,β(r)
.

(6)

From (5) and (6), we obtain

Re

(
1+

zf′′ρ,β(z)

f′ρ,β(z)

)
− k

∣∣∣∣∣zf′′ρ,β(z)f′ρ,β(z)

∣∣∣∣∣− α ≥ 1+ (1+ k)r
f′′ρ,β(r)

f′ρ,β(r)
− α,

|z| ≤ r < ζ′ρ,β,1.
(7)

Case 2 β > 1. Then, we show that the same inequality is valid in this
case also. In this case, taking into consideration the inequality (3) stated
in 1 we get

Re

(
1+

zf′′ρ,β(z)

f′ρ,β(z)

)
≥ 1−

(
1

β
− 1

)∑
n≥1

2r2

ζ2ρ,β,n − r
2
−
∑
n≥1

2r2

ζ′2ρ,β,n − r
2

= 1+
rf′′ρ,β(r)

f′ρ,β(r)
.

(8)

Also, with the aid of (2) stated in the same lemma, we have∣∣∣∣∣zf′′ρ,β(z)f′ρ,β(z)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n≥1

2z2

ζ′2ρ,β,n − z
2
−

(
1−

1

β

)∑
n≥1

2z2

ζ2ρ,β,n − z
2

∣∣∣∣∣∣
≤
∑
n≥1

∣∣∣∣∣
(

2z2

ζ′2ρ,β,n − z
2
−

(
1−

1

β

)
2z2

ζ2ρ,β,n − z
2

)∣∣∣∣∣
≤
∑
n≥1

(
2r2

ζ′2ρ,β,n − r
2
−

(
1−

1

β

)
2r2

ζ2ρ,β,n − r
2

)

= −
rf′′ρ,β(r)

f′ρ,β(r)
.

(9)
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From (8) and (9), we deduce

Re

(
1+

zf′′ρ,β(z)

f′ρ,β(z)

)
− k

∣∣∣∣∣zf′′ρ,β(z)f′ρ,β(z)

∣∣∣∣∣− α ≥ 1+ (1+ k)r
f′′ρ,β(r)

f′ρ,β(r)
− α,

|z| ≤ r < ζ′ρ,β,1.
(10)

Due to the minimum principle for harmonic functions, equality holds
if and only if z = r. Now, the above deduced inequalities imply for
r ∈ (0, ζ′ρ,β,1)

inf
z∈Dr

{
Re

(
1+

zf′′ρ,β(z)

f′ρ,β(z)

)
− k

∣∣∣∣∣zf′′ρ,β(z)f′ρ,β(z)

∣∣∣∣∣− α
}

= 1− α+ (1+ k)r
f′′ρ,β(r)

f′ρ,β(r)
.

On the other hand, the function uρ,β : (0, ζ′ρ,β,1)→ R is defined by

uρ,β(r) = 1− α+ (1+ k)r
f′′ρ,β(r)

f′ρ,β(r)

= 1− α+ (1+ k)

(∑
n≥1

2r2

ζ′2ρ,β,n − r
2
−

(
1−

1

β

)∑
n≥1

2r2

ζ2ρ,β,n − r
2

)
.

Then,

u′ρ,β(r) = − 4(1+ k)

(
1

β
− 1

)∑
n≥1

ζ2ρ,β,nr

(ζ2ρ,β,n − r
2)2

− 4(k+ 1)
∑
n≥1

ζ′2ρ,β,nr

(ζ′2ρ,β,n − r
2)2

< 0

for all β ∈ (0, 1] and z ∈ Dζ′ρ,β,1 . Moreover, we consider that if β > 1,

then 0 < 1 − 1/β < 1 and taking into consideration the inequality
ζ2ρ,β,n(ζ

′2
ρ,β,n − r

2)2 < ζ′2ρ,β,n(ζ
2
ρ,β,n − r

2)2 for r < ζ′ρ,β,1, we get

u′ρ,β(r) = −4(1+ k)

(
1

β
− 1

)∑
n≥1

ζ2ρ,β,nr

(ζ2ρ,β,n−r
2)2

− 4(k+1)
∑
n≥1

ζ′2ρ,β,nr

(ζ′2ρ,β,n − r
2)2

< 4(1+ k)

(∑
n≥1

ζ2ρ,β,nr

(ζ2ρ,β,n − r
2)2

−
∑
n≥1

ζ′2ρ,β,nr

(ζ′2ρ,β,n − r
2)2

)
<0.
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Consequently, uρ,β is strictly decreasing function of r for all β > 0. Also,

lim
r↘0uρ,β(r) = 1− α and lim

r↗ζ′ρ,β,1 uρ,β(r) = −∞.
This means that

Re

(
1+

zf′′ρ,β(z)

f′ρ,β(z)

)
− k

∣∣∣∣∣zf′′ρ,β(z)f′ρ,β(z)

∣∣∣∣∣− α > 0
for all z ∈ Druck,α(fρ,β) where ruck,α(fρ,β) is the unique root of the equation

1− α+ (1+ k)r
f′′ρ,β(r)

f′ρ,β(r)
= 0

or

(1+ k)r
Ψ′′ρ,β(r)

Ψ′ρ,β
+ (

1

β
− 1)(1+ k)r

Ψ′ρ,β(r)

Ψρ,β(r)
+ 1− α = 0

in (0, ζ′ρ,β,1).

b. Let ϑρ,β,n be the nth positive zero of the function g′ρ,β(z). In view of the
Hadamard theorem we get the Weierstrassian canonical representation
(see [17])

g ′ρ,β(z) =
∏
n≥1

(
1−

z2

ϑ2ρ,β,n

)
.

Logarithmic derivation of both sides yields

1+
zg ′′ρ,β(z)

g ′ρ,β(z)
= 1−

∑
n≥1

2z2

ϑ2ρ,β,n − z
2
.

Application of the inequality (4) implies that

Re

(
1+

zg ′′ρ,β(z)

g ′ρ,β(z)

)
≥ 1−

∑
n≥1

2r2

ϑ2ρ,β,n − r
2
, (11)

where |z| = r. Moreover,∣∣∣∣∣zg ′′ρ,β(z)g ′ρ,β(z)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
n≥1

2z2

ϑ2ρ,β,n − z
2

∣∣∣∣∣∣ ≤
∑
n≥1

∣∣∣∣∣ 2z2

ϑ2ρ,β,n − z
2

∣∣∣∣∣ ≤∑
n≥1

2r2

ϑ2ρ,β,n − r
2

= −
rg ′′ρ,β(r)

g ′ρ,β(r)
, |z| ≤ r < ϑρ,β,1.

(12)
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Taking into considering the inequalities (11) and (12) we arrive at

Re

(
1+

zg ′′ρ,β(z)

g ′ρ,β(z)

)
−k

∣∣∣∣∣zg ′′ρ,β(z)g ′ρ,β(z)

∣∣∣∣∣−α≥1−α+(1+k)r
g ′′ρ,β(r)

g ′ρ,β(r)
|z| < r < ϑρ,β,1.

In light of the minimum principle for harmonic functions, equality holds
if and only if z = r. Thus, for r ∈ (0, ϑρ,β,1) we get

inf
|z|<r

{
Re

(
1+

zg ′′ρ,β(z)

g ′ρ,β(z)

)
− k

∣∣∣∣∣zg ′′ρ,β(z)g ′ρ,β(z)

∣∣∣∣∣− α
}

= 1− α+ (1+ k)r
g ′′ρ,β(r)

g ′ρ,β(r)
.

The function wρ,β : (0, ϑρ,β,1)→ R, defined by

wρ,β(r) = 1− α+ (1+ k)r
g ′′ρ,β(r)

g ′ρ,β(r)
,

is strictly decreasing and

lim
r↘0wρ,β(r) = 1− α > 0, lim

r↗ϑρ,β,1wρ,β(r) = −∞.
Consequently,

Re

(
1+

zg ′′ρ,β(z)

g ′ρ,β(z)

)
− k

∣∣∣∣∣zg ′′ρ,β(z)g ′ρ,β(z)

∣∣∣∣∣− α > 0
for all Druck,α(gρ,β) where ruck,α(gρ,β) is the unique root of the equation

1− α+ (1+ k)r
g ′′ρ,β(r)

g ′ρ,β(r)
= 0

in (0, ϑρ,β,1).

c. Let τρ,β,n denote the nth positive zero of the function h′ρ,β. By using
again the fact that the zeros of the Wright function λρ,β are all real and
in view of the Hadamard theorem we obtain

h ′ρ,β(z) =
∏
n≥1

(
1−

z

τρ,β,n

)
,

which implies that

1+
zh ′′ρ,β(z)

h ′ρ,β(z)
= 1−

∑
n≥1

z

τρ,β,n − z
.
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By using again the inequaliy (4) we get

Re

(
1+

zh ′′ρ,β(z)

h ′ρ,β(z)

)
≥ 1−

∑
n≥1

r

τρ,β,n − r
= 1+ r

h ′′ρ,β(r)

h ′ρ,β(r)
. (13)

Also,∣∣∣∣∣zh ′′ρ,β(z)h ′ρ,β(z)

∣∣∣∣∣ =
∣∣∣∣∣∣−
∑
n≥1

z

τρ,β,n − z

∣∣∣∣∣∣ ≤
∑
n≥1

r

τρ,β,n − r
= −r

h ′′ρ,β(r)

h ′ρ,β(r)
. (14)

Considering the inequalities (13) and (14) we have

Re

(
1+

zg ′′ρ,β(z)

g ′ρ,β(z)

)
− k

∣∣∣∣∣zg ′′ρ,β(z)g ′ρ,β(z)

∣∣∣∣∣− α ≥ 1− α+ (1+ k)r
g ′′ρ,β(r)

g ′ρ,β(r)
.

In view of the minimum principle for harmonic functions, equality holds
if and only if z = r. Thus, for r ∈ (0, τρ,β,1) we have

inf
|z|<r

{
Re

(
1+

zh ′′ρ,β(z)

h ′ρ,β(z)

)
− k

∣∣∣∣∣zh ′′ρ,β(z)h ′ρ,β(z)

∣∣∣∣∣− α
}

= 1−α+ (1+ k)r
h ′′ρ,β(r)

h ′ρ,β(r)
.

Now define the function ϕρ,β : (0, ϑρ,β,1)→ R,as

ϕρ,β(r) = 1− α+ (1+ k)r
h ′′ρ,β(r)

h ′ρ,β(r)

is strictly decreasing and

lim
r↘0ϕρ,β(r) = 1− α > 0, lim

r↗ϑρ,β,1ϕρ,β(r) = −∞.
Consequently,

Re

(
1+

zh ′′ρ,β(z)

h ′ρ,β(z)

)
− k

∣∣∣∣∣zh ′′ρ,β(z)h ′ρ,β(z)

∣∣∣∣∣− α > 0
for all Druck,α(hρ,β) where ruck,α(hρ,β) is the unique root of equation

1− α+ (1+ k)r
h ′′ρ,β(r)

h ′ρ,β(r)
= 0

in (0, τρ,β,1). This completes the proof. �

Remark 1 It is clear that by choosing k = 0 in the above theorem we obtain
the earlier results given in [17, Thm. 5, p. 107]. Moreover, for k = 1 and α = 0
in the above theorem we get the results given in [5, Thm. 2.2].
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2.2 The radii of k-uniform convexity of order α of normalized
q−Bessel functions

In this subsection, we shall concentrate on Jackson’s second and third (or
Hahn-Exton) q−Bessel functions which are defined by

J
(2)
ν (z;q) =

(qν+1;q)∞
(q;q)∞

∑
n≥0

(−1)n
(
z
2

)2n+ν
(q;q)n(qν+1;q)n

qn(n+ν)

and

J
(3)
ν (z;q) =

(qν+1;q)∞
(q;q)∞

∑
n≥0

(−1)nz2n+ν

(q;q)n(qν+1;q)n
q
1
2
n(n+1),

where z ∈ C, ν > −1, q ∈ (0, 1) and

(a;q)0 = 1, (a;q)n =

n∏
k=1

(
1− aqk−1

)
, (a, q)∞ =

∏
k≥1

(
1− aqk−1

)
.

These functions are q−analogue of the classical Bessel function of the first
kind [23]

Jv(z) =
(z
2

)ν∑
k≥0

(−1)k

k!Γ(ν+ k+ 1)

(z
2

)2k
,

since

lim
q↗1 J(2)ν ((1− z)q;q) = Jν(z), lim

q↗1 J(3)ν
(
1− q

2
z;q

)
= Jν(z).

Obviously, the functions J
(2)
ν (.;q) and J

(3)
ν (.;q) do not belong to A, and thus

first we perform some natural normalization. We consider the following six

normalized functions, as given by [10], originating from J
(2)
ν (.;q) and J

(3)
ν (.;q):

For ν > −1,

f
(2)
ν (z;q) =

(
2νcν(q)J

(2)
ν (z;q)

) 1
ν
, f

(3)
ν (z;q) =

(
cν(q)J

(3)
ν (z;q)

) 1
ν
, (ν 6= 0)

g
(2)
ν (z;q) = 2νcν(q)z

1−νJ
(2)
ν (z;q), g

(3)
ν (z;q) = cν(q)z

1−νJ
(3)
ν (z;q),

h
(2)
ν (z;q) = 2νcν(q)z

1−ν
2 J

(2)
ν (
√
z;q), h

(3)
ν (z;q) = cν(q)z

1−ν
2 J

(3)
ν (
√
z;q),

where cν(q) = (q;q)∞/(qν+1;q)∞. It is clear that each of the above functions
belong to the class A.
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In view of [10, Lem. 1, p.972], we know that the infinite product represen-

tations of the functions z 7→ j
(2)
ν (z;q) and z 7→ j

(3)
ν (z;q) are of the form

J
(2)
ν (z;q) =

zν

2νcν(q)

∏
n≥1

(
1−

z2

j2ν,n(q)

)
, J

(3)
ν (z;q) =

zν

cν(q)

∏
n≥1

(
1−

z2

l2ν,n(q)

)

where jν,n(q) and lν,n(q) denote the nth positive zeros of the functions j
(2)
ν (z;q)

and j
(3)
ν (z;q), respectively.

Also, from [10, Lem. 8] we observe that the functions z 7→ g
(2)
ν (z;q), z 7→

h
(2)
ν (z;q), z 7→ g

(3)
ν (z;q) and z 7→ h

(3)
ν (z;q) are of the form

dg
(2)
ν (z;q)

dz
=
∏
n≥1

(
1−

z2

α2ν,n(q)

)
,
dg

(3)
ν (z;q)

dz
=
∏
n≥1

(
1−

z2

γ2ν,n(q)

)
(15)

dh
(2)
ν (z;q)

dz
=
∏
n≥1

(
1−

z

β2ν,n(q)

)
,
dh

(3)
ν (z;q)

dz
=
∏
n≥1

(
1−

z

δ2ν,n(q)

)
(16)

where αν,n(q) and βν,n(q) represent the nth positive zeros of z 7→ z.dJ
(2)
ν (z;q)/

dz+ (1− ν)J
(2)
ν (z;q) and z 7→ z.dJ

(2)
ν (z;q)/dz+ (2− ν)J

(2)
ν (z;q), while γν,n(q)

and δν,n(q) are the nth positive zeros of z 7→ z.dJ
(3)
ν (z;q)/dz+(1−ν)J

(3)
ν (z;q)

and z 7→ z.dJ
(3)
ν (z;q)/dz+ (2− ν)J

(3)
ν (z;q).

Now, we are ready to present our results related with the radius of k−uniform
convexity of order α of the normalized q−Bessel functions:

Theorem 2 Let ν > −1, s ∈ {2, 3} and q ∈ (0, 1). Then, the following asser-
tions holds true

a. Suppose that ν > 0. Then, the radius of k−uniform convexity of order

α of the function z 7→ f
(s)
ν (z;q) is the real number ruck,α(f

(s)
ν ) which is the

smallest positive root of the equation

1− α+ (1+ k)r
(f

(s)
ν (r;q))′′

(f
(s)
ν (r;q))′

= 0

in (0, j′ν,1(q)).

b. The radius of k-uniform convexity of order α of the function z 7→ g
(s)
ν (z;q)

is the real number ruck,α(g
(s)
ν ) which is the smallest positive root of the

equation
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(1− ν)(1+ α− (1+ k)ν)

)
J
(s)
ν (r;q)

+

(
1− α+ 2(1+ k)(1− ν)

)
r
(
J
(s)
ν (r;q)

)′
+ (1+ k)r2

(
J
(s)
ν (r;q)

)′′
= 0

in (0, αν,1(q)).

c. The radius of k-uniform convexity of order α of the function z 7→ h
(s)
ν (z;q)

is the real number ruck,α(h
(s)
ν ) which is the smallest positive root of the

equation

(
(ν− 2) (ν(1+ k) − 2(1− α))

)
J
(s)
ν

+

(
(3− 2ν)(1+ k) + 2(1− α)

)√
r
(
J
(s)
ν

)′
+ (1+ k)r

(
J
(s)
ν

)′′
= 0

in (0, β2ν,1(q)), where J
(s)
ν = J

(s)
ν (
√
r;q).

Proof. Since the proofs for the cases s = 2 and s = 3 are almost the same we
are going to present the proof only for the case s = 2.

a. In [10, p. 979] it was proven that the following equality is valid

1+ z

(
f
(2)
ν (z;q)

)′′
(
f
(2)
ν (z;q)

)′ = 1− ( 1ν − 1

)∑
n≥1

2z2

j2ν,n(q) − z
2
−
∑
n≥1

2z2

j′2ν,n(q) − z
2
,

where jν,n(q) and j′ν,n(q) are the nth positive roots of the functions

z 7→ J
(2)
ν (z;q) and z 7→ dJ

(2)
ν (z;q)/dz, respectively.

Now, suppose that ν ∈ (0, 1]. Taking into account the inequality (4), for
z ∈ Dj′1(q) we obtain the inequality
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Re

1+ z
(
f
(2)
ν (z;q)

)′′
(
f
(2)
ν (z;q)

)′
 ≥ 1− ( 1

ν
− 1

)∑
n≥1

2r2

j2ν,n(q) − r
2

−
∑
n≥1

2r2

j′2ν,n(q) − r
2

= 1+ r

(
f
(2)
ν (r;q)

)′′
(
f
(2)
ν (r;q)

)′ ,
(17)

where |z| = r. Moreover, by using triangle inequality along with the fact
that 1

ν − 1 > 0, we get∣∣∣∣∣∣∣z
(
f
(2)
ν (z;q)

)′′
(
f
(2)
ν (z;q)

)′
∣∣∣∣∣∣∣ ≤ −r

(
f
(2)
ν (r;q)

)′′
(
f
(2)
ν (r;q)

)′ . (18)

On the other hand, observe that if we use the inequality (3), then we
obtain that the above inequalities is also valid for ν > 1. Here we used
tacitly that the zeros jν,n(q) and j′ν,n(q) interlace according to [10, Lem.
9., p. 975]. The above inequalities imply for r ∈ (0, j′ν,1(q))

inf
|z|<r

Re

1 + z
(
f
(2)
ν (z;q)

)′′
(
f
(2)
ν (z;q)

)′
− k

∣∣∣∣∣∣∣z
(
f
(2)
ν (z;q)

)′′
(
f
(2)
ν (z;q)

)′
∣∣∣∣∣∣∣ − α

=1 − α + (1 + k)r

(
f
(2)
ν (r;q)

)′′
(
f
(2)
ν (r;q)

)′ .
The function uν : (0, j

′
ν,1(q)) 7→ R defined by

uν(r) = 1− α+ (1+ k)r

(
f
(2)
ν (r;q)

)′′
(
f
(2)
ν (r;q)

)′
= 1− α− (1+ k)

∑
n≥1

(
2r2

j′2ν,n(q) − r
2
−

(
1−

1

ν

)
2r2

j2ν,n(q) − r
2

)

is strictly decreasing since

u′ν(r) = −(1+ k)
∑
n≥1

(
4rj′2ν,n(q)(

j′2ν,n(q) − r
2
)2 − (1− 1

ν

)
4rj2ν,n(q)

(j2ν,n(q) − r
2)
2

)
< 0
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for r ∈ (0, j′ν,1(q)). Also, it can be observed that

lim
r↘0uν(r) = 1− α and lim

r↗j′ν,1(q)uν(r) = −∞.
Consequently, it is obvious that the equation

1− α+ (1+ k)r

(
f
(2)
ν (r;q)

)′′
(
f
(2)
ν (r;q)

)′ = 0
has a unique root ruck,α

(
f
(2)
ν (z;q)

)
in D(0,j′ν,1(q))

, where ruck,α

(
f
(2)
ν (z;q)

)
is the radius of k−uniform convexity of order α of the function z 7→
f
(2)
ν (z;q).

Taking into account Equ. (15) and (16), the rest of proof is obvious and follows
by considering a similar way of concluding process as in the previous theorem.
This is why we omit the rest of proof here. �

Remark 2 It is obvious that by taking k = 1 and α = 0 in the above theorem
we obtain the results given in [5, Thm. 2.1].

2.3 Radius of strong starlikeness of normalized Wright and
q−Bessel functions

In this subsection, our aim is to present the radius of strong starlikeness of
normalized Wright and q−Bessel functions. It is well known from [19] that a
function f ∈ A is said to be strong starlike of order γ, 0 < γ ≤ 1, if∣∣∣∣arg

zf′(z)

f(z)

∣∣∣∣ < πγ

2
, z ∈ D

and the real number

rγ(f) = sup

{
r > 0 :

∣∣∣∣arg
zf′(z)

f(z)

∣∣∣∣ < πγ

2
, ∀z ∈ Dr

}
is called the radius of strong starlikeness of f.

The following lemma have an important place for finding our main results:

Lemma 2 [19] If a is any point in |argw| ≤ πγ
2 and if

Ra ≤ Re[a] sin
πγ

2
− Im[a] cos

πγ

2
, Im[a] ≥ 0,

the disk |w− a| ≤ Ra is contained in the sector |argw| ≤ πγ
2 , 0 < γ ≤ 1. In

particular when Im[a] = 0, the condition becomes Ra ≤ a sin πγ
2 .
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We are now in a position to present our main results related with the radii
of strong starlikeness of normalized Wright and q−Bessel functions. Upcoming
theorem is related with normalized Wright functions.

Theorem 3 Let ρ > 0 and β > 0. The following assertions are true:

a. The radius of strong starlikeness of fρ,β is the smallest positive root of
the equation

2

β

∑
n≥1

r2
(
λ2ρ,β,n + r

2 sin πγ
2

)
λ4ρ,β,n − r

4
− sin

πγ

2
= 0

in (0, λρ,β,1).

b. The radius of strong starlikeness of gρ,β is the smallest positive root of
the equation

2
∑
n≥1

r2
(
λ2ρ,β,n + r

2 sin πγ
2

)
λ4ρ,β,n − r

4
− sin

πγ

2
= 0

in (0, λρ,β,1).

c. The radius of strong starlikeness of hρ,β is the smallest positive root of
the equation ∑

n≥1

r
(
λ2ρ,β,n + r sin πγ

2

)
λ4ρ,β,n − r

2
− sin

πγ

2
= 0

in (0, λ2ρ,β,1).

Proof. For |z| ≤ r < 1, |zk| = R > r, we have from [19]∣∣∣∣ z

z− zk
+

r2

R2 − r2

∣∣∣∣ ≤ Rr

R2 − r2
. (19)

Since the series
∑
n≥1

2r2

λ2ρ,β,n−r
2 and

∑
n≥1

r
λ2ρ,β,n−r

are convergent, we arrive at

∣∣∣∣∣∣zf
′
ρ,β(z)

fρ,β(z)
−

1− 2

β

∑
n≥1

r4

λ4ρ,β,n − r
4

∣∣∣∣∣∣ ≤ 2

β

∑
n≥1

λ2ρ,β,nr
2

λ4ρ,β,n − r
4

(20)
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′
ρ,β(z)

gρ,β(z)
−

1−∑
n≥1

2r4

λ4ρ,β,n − r
4

∣∣∣∣∣∣ ≤ 2
∑
n≥1

λ2ρ,β,nr
2

λ4ρ,β,n − r
4

(21)

∣∣∣∣∣∣zh
′
ρ,β(z)

hρ,β(z)
−

1−∑
n≥1

r2

λ4ρ,β,n − r
2

∣∣∣∣∣∣ ≤
∑
n≥1

λ2ρ,β,nr

λ4ρ,β,n − r
2

(22)

for z ∈ Dλρ,β,1 where |z| = r and λρ,β,n stands for the nth positive zero of the
function λρ,β. Thanks to Lemma 2, it is obvious that the disk given in (20) is
contained in the sector |argw| ≤ πγ

2 , if

2

β

∑
n≥1

λ2ρ,β,nr
2

λ4ρ,β,n − r
4
≤

1− 2

β

∑
n≥1

r4

λ4ρ,β,n − r
4

 sin
πγ

2

is satisfied. This inequality reduces to ψ(r) ≤ 0 where

ψ(r) =
2

β

∑
n≥1

r2
(
λ2ρ,β,n + r

2 sinπγ/2
)

λ4ρ,β,n − r
4

− sin
πγ

2
.

We note that

ψ′(r) =
2

β

∑
n≥1

2rλ6ρ,β,n + 2r5λ
2
ρ,β,n + 4r

3λ4ρ,β,n sinπγ/2

(λ4ρ,β,n − r
4)2

≥ 0.

Moreover, limr↘0ψ(r) < 0 and limr↗λρ,β,1 ψ(r) = ∞. Thus ψ(r) = 0 has a
unique root say Rfρ,β in (0, λρ,β,1). Hence the function fρ,β is strongly starlike
in |z| < Rfρ,β .

The disk given in (21) is contained in the sector |argw| ≤ πγ
2 , if

φ(r) = 2
∑
n≥1

r2
(
λ2ρ,β,n + r

2 sinπγ/2
)

λ4ρ,β,n − r
4

− sin
πγ

2
≤ 0.

Also, the proof of part (b) is completed by considering the limits limr↘0φ(r) <
0 and limr↗λρ,β,1 φ(r) =∞.

The proof of part (c) is obvious and follows by considering the same con-
cluding process as in the proof of part (b).

�

Since it can be obtained desired results by repeating the same calculations
in the previous theorem we present the following theorem without proof.
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Theorem 4 Let ν > −1, s ∈ {2, 3} and q ∈ (0, 1). Moreover, let ην,n(q) be the

nth positive root of the function z 7→ J
(s)
ν (z;q). Then the following assertions

are true:

a. The radius of strong starlikeness of the function f
(s)
ν (z;q) is the smallest

positive root of the equation

2

ν

∑
n≥1

r2
(
η2ν,n(q) + r

2 sin πγ
2

)
η4ν,n(q) − r

4
− sin

πγ

2
= 0

in (0, ην,1(q)), where ην,1(q) is the smallest positive zero of the function

J
(s)
ν (z;q).

b. The radius of strong starlikeness of g
(s)
ν (z;q) is the smallest positive root

of the equation

2
∑
n≥1

r2
(
η2ν,n(q) + r

2 sin πγ
2

)
η4ν,n(q) − r

4
− sin

πγ

2
= 0

in (0, ην,1(q)).

c. The radius of strong starlikeness of h
(s)
ν (z;q) is the smallest positive root

of the equation

∑
n≥1

r
(
η2η,n(q) + r sin πγ

2

)
η4ν,n(q) − r

2
− sin

πγ

2
= 0

in (0, η2ν,1(q)).
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