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Abstract: This paper presents a study regarding the gear hob’s rake face grinding 

possibilities and its consequences. A simple theoretical lined surface is considered. The 

mathematical model of the reciprocate meshing of surfaces was applied. It was proven 

that the proposed form of the rake face cannot be obtained because an undercut of 

inacceptable extent occurs. It is also proven and sustained by CAD modeling that using a 

simplified, flat grinding disk, the undercut is avoided, but the phenomenon of transection 

appears. 
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1. Introduction 

The gear-hob is one of the most productive cutting tools used in cylindrical 

gear machining. As well as known, literature contains a very large number of 

papers dealing with the cutting process, the generating process and the build-up 

of this very efficient cutting tool. 

It can be stated that between the profile correction of the first attempt gear-

hobs till nowadays high-quality tools spread a long way marked by research and 

results of a large number of scientists. A large number of papers deal with 

different profile modifications, the sharp differentiation of roughing, semi-

finishing and finishing gear-hobs and their profiles [1], [2]. Here it must be 

remarked that interests are focused on profile modifications targeting the 

improvement of the tooth dedendum stiffness, extending to the study of the 
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realization, involving the profile of the gear hob tooth relief face grinding wheel, 

its axial profile and also its dressing methods [3], [4]. 

Other research results cluster near the cutting process. One stream is the study 

of the influence of the cutting parameters (the chip thickness, the feed, the cutting 

speed, and cutting depth) on the durability of the gear-hob’s edge. The other 

stream focuses on the influence of the chip forming process on the thermal 

phenomenon, with effect on the tool life. Here have to be mentioned the results 

published in [5], [6], [7]. 

The real form of the rake face is narrowly discussed. The principle of the 

correct meshing of this surface is mentioned in a few papers [1], [8]. 

Despite of this, the present paper is based on the hypothetic presumption that 

the rake face form has a significant influence of the cutting edge form and thus, 

on the precision of the meshed gear. 

The problem starts with the theoretical definition of the rake face. In classical 

approach, admitting a zero-addendum rake angle value, this is a constant helix 

parameter cylindrical helicoid surface, whose generator is a straight segment that 

intersects the helix axis. But trying to compute the corresponding grinding wheel 

profile, the phenomenon of undercut occurs. Trying to eliminate the undercut by 

limiting the grinding wheel diameter, another phenomenon – the transection – 

appears. This phenomenon occurs when the real body of the generating tool, a 

grinding wheel for example, or the subspace generated by the cutting edge in its 

relative motion, intersects the surface obtained with the application of the 

meshing theory [9], [10], [11], [12], [13].  

While the phenomenon of the undercut [9], [10], [11] can be described with a 

robust mathematical model, the phenomenon of the transection is discussed 

merely involving numerical, CAD sustained simulation [12], [13]. Here is also 

important to mention the method of the successive subtracting [14], [15]. 

According to all mentioned above, it must be admitted that precisely designing 

the form and the grinding wheel profile of the helical rake-face of the tool is not 

a trivial task, due to the undercut of the sharpening tool. The generation of the 

surface is theoretically simple, but the practical implementation is complicated 

due to the transection. The developed mathematical model points to the 

peculiarities of the involved phenomenon, and is presented as follows. 

2. The theoretical equations of the helical rake face 

To create the ideal rake surface, we consider the mathematical - geometric 

model shown in Fig. 1. The OX0Y0Z0 coordinate system is a stationary coordinate 

system. The revolution axis of the hob coincides with the X0 axis of the stationary 

coordinate system. To simplify the graphical representation, the gear-hob is 

replaced with a cylinder. The O2X2Y2Z2 coordinate system is the coordinate 



 Peculiarities of the Grinding Process of a Gear Hob Helical Rake Face 41 

 

system attached to the gear-hob, that rotates about the X2 axis according to the 

helical rake face rotation direction. The X2 axis is fixed to the hob, and coincides 

with the X0 axis of the stationary coordinate system. A grinding wheel is used to 

generate the rake face. The coordinate system fixed to the grinding wheel is the 

O1X1Y1Z1 coordinate system. The axis of the grinding wheel should be 

theoretically perpendicular to the pitch screw line of the rake face. To obtain the 

ideal helical rake face, we studied several cases when the grinding tool’s axis was 

tilted with the angles corresponding to the declination angles of the helices 

situated on the flute base, addendum, dedendum respectively the pitch cylinder. 
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Figure 1: The considered coordinate systems 

The equation of the rake face in matrix form [1], related to the frame S2 of 

the gear hob, can be written as: 

 𝒓2(𝑢, 𝜑) = [

𝑝𝜑
𝑢 cos𝜑
−𝑢 sin𝜑

] (1) 

where u is the radial and 𝝋 the angular parameter of the surface. 
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It is well known, that the normal vector of the ideal rake surface is defined as 

the vector product of the partial derivatives: 

 𝒏̱ = 𝒓̇2𝑢 × 𝒓̇2𝜑 (2) 

where the expressions of the operands involved in eq. (2) are: 

 𝒓̇2𝑢 = [
0

cos𝜑
− sin𝜑

] (3) 

 𝒓̇2𝜑 = [

𝑝
−𝑢 sin𝜑
−𝑢 cos𝜑

] (4) 

Using the antisymmetric matrix of 𝒓̃̇𝟐𝒖 

 𝒓̃̇2𝑢 = [

0 𝑢 cos𝜑 −𝑢 sin𝜑
−𝑢 cos𝜑 0 −𝑝
𝑢 sin𝜑 𝑝 0

] (5) 

and using (2), (4) and (5) the normal vector can be written as: 

 𝐧̱ = 𝒓̃̇2𝑢 ⋅ 𝒓̇2𝜑 = [

0 𝑢 cos𝜑 −𝑢 sin𝜑
−𝑢 cos𝜑 0 −𝑝
𝑢 sin𝜑 𝑝 0

] [
0

cos𝜑
− sin𝜑

] = [
0

𝑝 sin𝜑
𝑝 cos𝜑

](6) 

On the other hand,, considering (1) and (6), the general parametric equation 

of the normal line in an arbitrary point of the helicoid (1) results in the following 

form: 

𝑥2(𝑢,𝜑)−𝑝𝜑

𝑢
=

𝑦2(𝑢,𝜑)−𝑢 cos𝜑

𝑝 sin𝜑
=

𝑧2(𝑢,𝜑)+𝑢 sin𝜑

𝑝 cos𝜑
 (7) 

The supposed contact curve between the grinding wheel surface and the 

helical rake face can be computed if a dependence between the independent 

surface parameters (𝑢, 𝜑) is found. Classically, this is obtained by the application 

of the kinematic theory of meshing, applied first time by Litvin [9]. A simpler 

way is based on the recognition that the normal line of a revolution surface 

intersects the surface axis. Thus, from all surface points must be selected only 

those where the surface normal intersects the axis of the grinding wheel. In 

algebraic terms, it can be primed that the linear system built up from the axis 

equations and the normal line equations must admit a unique solution. 

Because the system comprises four linear equations and only 3 unknowns 

𝑥2, 𝑦2, 𝑧2, the sole characteristic determinant of the system must be zero. 

Fig. 1 lets us observe easily that the revolution axis of the grinding wheel 

admits the following equations: 
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 {
𝑦2 = 𝑎𝑤

tan 𝜆𝑥 =
𝑥2

𝑧2

 (8) 

As it was stated earlier, the model deals with different tilting angles λx of the 

grinding wheel’s axis, matching the declination angles of the helices situated on 

the characteristic diameters of the hob. On the other hand, aw is the axial distance 

between the hob and the grinding tool. 

Thus, using (8) and (7), the linear system becomes: 

 

{
 
 

 
 

𝑦2 = 𝑎𝑤

tan 𝜆𝑥 =
𝑥2

𝑧2

𝑝 sin𝜑 𝑥2 − 𝑢𝑦2 = 𝑝
2𝜑 sin𝜑 − 𝑢2 cos𝜑 = 𝑒1

𝑝 cos𝜑 𝑦2 − 𝑝 sin𝜑 𝑧2 = 𝑝𝑢 = 𝑒2

 (9) 

The characteristic determinant of the system is to be written as: 

 𝛥𝑐 = det [

0 1 0 𝑎𝑤
1 0 − tan 𝜆𝑥 0

𝑝 sin𝜑 −𝑢 0 𝑒1
0 𝑝 cos𝜑 −𝑝 sin𝜑 𝑒2

] (10) 

Equalizing this to zero and doing the calculus, it results the following 

dependence between the helicoid parameters: 

 𝑢2 cos𝜑 − (𝑎𝑤 + 𝑝 tan 𝜆𝑥)𝑢 + 𝑎𝑤𝑝𝜑 tan 𝜆𝑥 − 𝑝
2𝜑 sin𝜑 = 0 (11) 

Due to the fact the condition above is an algebraic equation of 2nd degree in u, 

there exist two solutions:  

     𝑢1,2 =
𝑎𝑤+𝑝 tan𝜆𝑥±√(𝑎𝑤+𝑝tan𝜆𝑥)2−4(𝑎𝑤𝑝𝜑 tan𝜆𝑥−𝑝2𝜑sin𝜑)cos𝜑

2 cos𝜑
 (12) 

In order to decide which solution corresponds to the geometric reality of the 

grinding operation, a numerical approach is necessary. Let’s consider the case of 

a gear-hob originating from an involute worm. Starting from the normal module, 

the pitch helix angle and the normal rake profile angle, all the other characteristic 

parameters were computed using the classical formulae from the literature [8], 

[9]. Omitting the computation, the resulting geometrical data are the following: 

The input data for the calculation are: normal module 𝑚𝑛: 5 [mm], pitch 

helix declination angle 𝜆0= 5 [deg], rake profile normal angle 𝛼0𝑛= 20 [deg]. 

Omitting the computation, the calculated geometrical data are the following:  

frontal module 𝑚𝑡= 57,36587 [mm], rake profile frontal angle 𝛼0𝑡= 76 32'1'' , 

pitch radius R0 = 28.684 [mm], basic cylinder radius Rb = 6.68 [mm], addendum 

cylinder radius Ra = 34.934 [mm], dedendum cylinder radius Rf = 22.434 [mm], 

flute interior radius Rq= 14.984 [mm], flute interior helix declination angle 𝜆𝑞= 



44 N. Hodgyai, M. Máté, F. Tolvaly-Rosca, and M.V. Drăgoi 

 

2.617 [deg], dedendum helix declination angle 𝜆𝑓 = 3.914 [deg], addendum helix 

declination angle 𝜆𝑎= 6.082 [deg], worm helix parameter 𝑝= 2,50955 [mm], flute 

helix parameter 𝑝𝐶= 327.8628563 [mm]. 

Now, computing both 𝑢(𝜑) dependencies given by (12) and associating them 

the graphical representation shown in Fig. 2, it can be decided that the real 

considered situation corresponds to the concave line, because the u values 

involved match the interval Rq ≤ u ≤ Ra. As a conclusion, the applicable 

𝑢(𝜑) dependence is: 

𝑢1,2 =
𝑎𝑤+𝑝 tan𝜆𝑥−√(𝑎𝑤+𝑝𝑡an𝜆𝑥)2−4(𝑎𝑤𝑝𝜑 tan𝜆𝑥−𝑝2𝜑sin𝜑)cos𝜑

2 cos𝜑
 (13) 

Representing function (13) for different helix angles values, it can be 

concluded that the maximum point of the graphic increasingly sharpens. Thus, 

acceptable u parameter values occur for more and more narrowing intervals of 𝜑, 

as shown in Fig. 3. Inspecting the figure, it results that even the accepted solution 

contains two possibilities for constituting the 𝑢(𝜑) dependence. The first one 

results for the negative, while the other for the positive 𝜑 values. 

 

Figure 2: The graphics associated with function 𝑢(𝜑)  
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Figure 3: The variation of the accepted 𝑢(𝜑) function in function of the helix angles 

Next goal is to build up the contact curves and using them, the grinding wheel 

surface. The model was numerically solved. Using the Mathcad environment, 

equation (11) was numerically solved for a number of 𝑛 = 50 discrete and 

equidistant u values, 𝑢 ∈ [𝑅𝑞 , 𝑅𝑎], searching first the negative and after that the 

positive solutions in variable 𝜑. The procedure was repeated for the next values 

of the grinding wheel axis declination angle: 𝜆 ∈ {𝜆𝑞 , 𝜆𝑓 , 𝜆0, 𝜆𝑎}.  

 

Figure 4: Contact curves for the positive 𝜑 values 
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Figure 5: Contact curves for the negative 𝜑 values 

The possible contact curves are represented through their discrete points, 

replacing the discrete arranged pairs. The contact curves on the theoretical helical 

rake face are shown in Fig. 4 for the negative, respectively in Fig. 5 for the 

positive 𝜑 values. 

The colors used are red for the addendum, magenta for the pitch, black for 

the dedendum and finally yellow for the flute base helix angles. 

Let’s denote 𝐂 = (𝐱(2), 𝐲(2), 𝒛(2)) the matrix of the coordinates of the contact 

curve points, where 𝐱, 𝐲, 𝐳 are the columns of length n of the coordinates. 

The axial profile of the grinding wheel can be computed by executing several 

computation tasks. First of all, the coordinates of the contact curve must be 

transposed in the frame of the grinding wheel. Here can be used the 

transformation matrix between frame 𝑆1 and 𝑆2, particularized for the 𝜑 = 0 

parameter value. Thus, the contact curve parameters will be comprised in the 

matrix 𝐶 = (𝑥(1), 𝑦(1), 𝑧(1)). We omit here the detailed computation. Using the 

coordinate values in the frame of the grinding wheel, for each 

𝐶𝑖(𝑥𝑖
(1), 𝑦𝑖

(1), 𝑧𝑖
(1)) corresponds a profile point 𝑃𝑖(𝑥𝑖

𝑃 , 𝑦𝑖
𝑃 , 𝑧𝑖

𝑃) with the 

coordinates computed as follows: 

𝑥𝑖
𝑃 = √(𝑥𝑖

(1))
2
+ (𝑦𝑖

(1))
2
 

𝑧𝑖
𝑃 = 𝑧𝑖

(1)
 (14) 
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Using (14), the revolution surface of the grinding wheel results immediately. 

The relative position of the grinding wheel’s surface and the theoretical rake 

face is shown in Fig. 6. 

 

Figure 6: The relative position of the surfaces of the grinding wheel and the rake face 

In Fig. 6 the blue surface represents the ideal helical rake face and the pink 

one the side surface of the grinding wheel. 

Based also on the figure, it can be concluded that in the position of the 

grinding wheel where the contact curve is correct, the grinding wheel cuts under 

the dedendum cylinder, i.e., it cuts into the body of the gear-hob. 

As the results of the numerical analysis shows, it can be concluded that the 

diameter of the grinding wheel required to generate the contact curve is not 

suitable for grinding the rake face, because the disk cuts very deep into the hob 

body.  

3. The practical generation of the helical rake face 

Regarding the industrial generation of the gear-hob rake face we can consider 

two solutions: using a grinder wheel (or mill) or a grinding bit (or an end mill). 

In the present paper we studied the finishing of the helical rake face of 

parametric equations (1), with a profiled grinding- and with a cylindrical grinding 

wheel. 
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3.1 Generating the rake face using a profiled grinding wheel 

As it can be seen in Fig. 7, the axis of the grinding wheel is parallel to the 

X0OZ0 plane. The normal vector of the helical rake face passes through the axis 

of rotation of the grinding wheel. 

 
Figure 7: Rake face generation with a profiled grinding wheel 

The location of the contact curves on the ideal rake face is in the negative 

angular range of 𝜑 (Fig. 5). 

In order to be able to sharpen the gear-hob properly, the revolution surface of 

the grinding must not intersect the helical rake face. 

3.2 Generating the rake face using a cylindrical grinding wheel 

As a simplified procedure in some industrial practice, the side face (a plane 

surface) of a grinding wheel is used as the generator of the helical rake face. 

However, in the case of this simplified, practical solution, applying the 

appropriate equations, we do not obtain a solution to the applied function, from 

here we can conclude that there is no common normal, similarly to the previous 

cases for the undercut situation. The traces left by the flat disk are shown in Fig. 8. 
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Figure 8: Numerical solution for the traces of a cylindrical grinding wheel 

Generating the rake face with a cylindrical grinding wheel, and using the 

“Analyze Interference” command on the assembly model (Fig. 9) it can be clearly 

seen, that the grinding wheel undercuts the helical rake face in all cases. 

 

Figure 9: Analyze Interference command running on the assembly model 
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4. Conclusions 

The revolution surface of the grinding tool was computed using the theory of 

meshing, but it was demonstrated that this firmly undercuts the machined rake 

face, even in cases when the contact is correct along the computed contact curve. 

The flat grinding surface (a circular disk) produces through the relative 

motion reported to the gear hob (or to the surface) a points cloud that includes the 

theoretical surface subjected to the machining process. The theoretical surface 

cannot result because the phenomenon of transection appears in every region of 

action of the grinding wheel’s generating surface. Here the undercut is 

surprisingly avoided. 

The volume of the points cloud increases with the tilting angle of the grinding 

tool’s axis, e.g. the phenomenon of transection appears with ascending intensity. 

Considering the computing and the models presented it can be concluded that 

the theoretical form of the rake face (1) cannot be achieved through classical 

helical grinding operation, using disk-type tools. 

If for economic reasons the classical grinding procedure is still applied, the 

computation of the edges and of the relief face must take into consideration the 

real form of the rake face, that results as the trace of transection. 
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