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Abstract: The paper presents the energy loss minimization of a hybrid energy storage 

system used in an electric vehicle, composed by a battery and a supercapacitor. The 

optimization is carried out by searching the optimal power sharing between the energy 

storage devices. The power sharing factor is defined as a discrete time variable, with 

constant values during each subdivision of the driving cycle. The elements of the optimal 

solution vector are the power sharing factors and the time instants that define the 

subdivisions. The particle swarm optimization algorithms have been validated using the 

Rastrigin test function, and three versions of the boundary behaviour have been compared 

in case of the constrained optimization. The algorithms have been tested for the energy 

loss minimization in case of a simple driving cycle, and their performance has been 

assessed by statistical analysis for different swarm sizes. 

 

Keywords: Particle swarm optimization, hybrid energy storage system, electric 
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1. Introduction 

For the efficient operation of the electric vehicles, it is crucial to combine 

different types of energy storage devices, due to the fact each type has a limited 

range of operating conditions it can efficiently handle [4]. The high energy 

storage capability of the batteries, necessary to guarantee a high autonomy of the 

vehicle, is not associated with high output power capability, which is required 

during acceleration and deceleration. Thus, the hybridization of the energy 

storage system is the solution to satisfy the electrical energy supply or storage 

demands in different operating states [7]. 
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 The Hybrid Energy Storage System (HESS) being studied in this paper, 

illustrated in Fig. 1, consists of the combination of a Li-ion battery and a 

supercapacitor [14], in an active parallel topology that allows individual or joint 

power delivery to the load (to the wheel motors), energy recovery in case of 

braking, and energy exchange between these storage devices by means of power 

electronic converters. The battery life cycle is extended if it’s protected by the 

supercapacitor from current shocks during the vehicle power peaks [9], [13].  

 

Figure 1: Block diagram of the active parallel hybrid energy storage system  

(HESS) [13] 

The energy management of such a hybrid energy storage system has the task 

to determine in every instant of operation the “proper contribution” of each 

storage device to the power flow in either direction. This term can be converted 

to an objective function to be optimized under different constraints. One can aim 

to maximize the life cycles of the storage devices, to maximize the vehicle’s 

autonomy, to minimize the operation costs, etc. Limitations can possibly be 

imposed by state of charge or state of energy minima, or by maximum admissible 

currents, but vehicle-to-grid system requirements regarding the state of charge at 

peak or off-peak hours might also be feasible constraint.  

Fig. 2 shows the structure of the model used to study the energy management 

algorithm (EMA), which provides 𝑝𝐵𝐴𝑇  and 𝑝𝑆𝐶, i.e. the powers to be delivered 

by the battery and the supercapacitor, respectively, based on the following inputs:  

 battery state of charge (SOC); 

 instantaneous battery current, voltage, and internal resistance 

(𝑖𝐵𝐴𝑇 , 𝑢𝐵𝐴𝑇 , 𝑟𝐵𝐴𝑇); 

 supercapacitor state of energy (SOE); 

 instantaneous supercapacitor current, voltage, and internal resistance 

(𝑖𝑆𝐶 , 𝑢𝑆𝐶 , 𝑟𝑆𝐶); 

 instantaneous electrical power required to drive the vehicle (𝑝𝑒𝑙_𝑟𝑒𝑞). 

The aim of this paper is the minimization of the energy losses on the internal 

resistances of the battery and of the supercapacitor. The higher efficiency 

contributes also the increase of the vehicle’s autonomy. 
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Figure 2: The block diagram of the model including the energy management algorithm 

of the hybrid energy storage system 

The task of the EMA is to determine the optimal power sharing between the 

battery and the supercapacitor, considering their power limitations, and thus 

extending their life cycles. 

2. The optimization problem 

The performance of the vehicle is defined for standard driving cycles, 

representative for different characteristic operating conditions, usually 

formulated as theoretically or practically derived time-diagrams of speed. Thus, 

also the acceleration can be determined in each moment to derive the mechanical 

power required by the given speed profile. As we don’t aim to detail the 

mechanical model of the vehicle, let’s consider that the required mechanical 

power at a given moment is a function of the instantaneous speed 𝑣𝑣 and 

acceleration 𝑎𝑣, and the required electrical power 𝑝𝑒𝑙_𝑟𝑒𝑞 results from this by 

considering a global efficiency 𝜂𝑣 [10], according to (1):  

 𝑝𝑒𝑙_𝑟𝑒𝑞(𝑡) =
1

𝜂𝑣
𝑓(𝑣𝑣(𝑡), 𝑎𝑣(𝑡)). (1) 

The question is how to share this power between the energy storage devices 

in a way that ensures maximum efficiency, i.e. minimum power losses over a 

driving cycle. Generally, there should exist an optimum function of time of the 

sharing, which corresponds to this goal. Let’s denote by 𝑥 the share of the 

supercapacitor (either delivered or absorbed), defined by (2).  

According to this definition, the power has the same sign at the terminals of 

both devices, and the case of energy exchange between them is not covered in 

this paper. 
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 𝑥(𝑡) =
𝑝𝑆𝐶_𝑟𝑒𝑞(𝑡)

𝑝𝑆𝐶_𝑟𝑒𝑞(𝑡)+𝑝𝐵𝐴𝑇_𝑟𝑒𝑞(𝑡)
,        𝑥 ∈ [0,1]. (2) 

Thus, the time dependent powers required from the supercapacitor and the battery 

are 

 {
𝑝𝑆𝐶_𝑟𝑒𝑞 = 𝑥𝑝𝑒𝑙_𝑟𝑒𝑞

𝑝𝐵𝐴𝑇_𝑟𝑒𝑞 = (1 − 𝑥)𝑝𝑒𝑙_𝑟𝑒𝑞 ,
 (3) 

The powers delivered by the supercapacitor and the battery result by taking into 

account the internal losses: 

 {
𝑝𝐵𝐴𝑇 = 𝑢𝐵𝐴𝑇𝑖𝐵𝐴𝑇 − 𝑟𝐵𝐴𝑇𝑖𝐵𝐴𝑇

2

𝑝𝑆𝐶 = 𝑢𝑆𝐶𝑖𝑆𝐶 − 𝑟𝑆𝐶𝑖𝑆𝐶
2 ,

 (4) 

where in the model 𝑢𝐵𝐴𝑇 and 𝑟𝑆𝐶 are considered constants. The supercapacitor 

voltage 𝑢𝑆𝐶 is time-dependent according to (5), wich uses the notation from  

Fig. 3: 

 𝑢𝑆𝐶(𝑡) = 𝑢𝑆𝐶(0) −
1

𝐶𝑆𝐶
∫ 𝑖𝑆𝐶𝑑𝑡
𝑡

0
 (5) 

 

Figure 3: The equivalent circuits of the energy storage devices 

We considered that the battery depletion is limited to 𝑆𝑂𝐶 = 50% (i. e. to half of 

the maximum stored charge Qmax), thus the linear increase of its internal 

resistance with the decrease of the SOC, according to (6), is a viable assumption 

[1], [8], [11].  

𝑟𝐵𝐴𝑇(𝑆𝑂𝐶) = 𝑟𝐵𝐴𝑇|𝑆𝑂𝐶=50% − (𝑟𝐵𝐴𝑇|𝑆𝑂𝐶=50% − 𝑟𝐵𝐴𝑇|𝑆𝑂𝐶=100%)(𝑆𝑂𝐶 − 50)/50 (6) 
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Thus, (3) - (6) yield the currents of the storage devices: 

 

{
 
 

 
 
𝑖𝐵𝐴𝑇 =

𝑢𝐵𝐴𝑇−√𝑢𝐵𝐴𝑇
2 −4𝑟𝐵𝐴𝑇(1−𝑥)𝑝𝑒𝑙𝑟𝑒𝑞

2𝑟𝐵𝐴𝑇

𝑖𝑆𝐶 =
𝑢𝑆𝐶−√𝑢𝑆𝐶

2 −4𝑟𝑆𝐶𝑥𝑝𝑒𝑙_𝑟𝑒𝑞

2𝑟𝑆𝐶

. (7) 

The total power loss at a given instant is 

 𝑝𝑙𝑜𝑠𝑠 =
(𝑢𝐵𝐴𝑇−√𝑢𝐵𝐴𝑇

2 −4𝑟𝐵𝐴𝑇(1−𝑥)𝑝𝑒𝑙𝑟𝑒𝑞)
2

4𝑟𝐵𝐴𝑇
+
(𝑢𝑆𝐶−√𝑢𝑆𝐶

2 −4𝑟𝑆𝐶𝑥𝑝𝑒𝑙_𝑟𝑒𝑞)

2

4𝑟𝑆𝐶
, (8) 

while the energy losses until that moment are 

 𝑊𝑙𝑜𝑠𝑠(𝑡) = ∫ 𝑝𝑙𝑜𝑠𝑠𝑑𝑡
𝑡

0
. (9) 

 

A possible choice for the objective function to be minimized can be the 

instantaneous power loss (10), which enables online optimization, according to 

the procedure from Fig. 4.  

 𝐽𝑝 = 𝑝𝑙𝑜𝑠𝑠(𝑡) (10) 

As intuitively expected, and further on demonstrated in the paper, better 

results can be obtained according to the procedure from Fig. 5 when the objective 

function is the total energy loss at 𝑡 = 𝑇 (11), i.e. at the end of the driving cycle. 

 𝐽𝑊 = 𝑊𝑙𝑜𝑠𝑠(𝑇) (11) 

According to the procedure from Fig. 4, the instantaneous power loss (i.e. the 

objective function in this case) is calculated numerically using the discretization 

step 𝑇𝑠. The power loss minimization is performed on the one dimensional 

solution space of the instantaneous scalar power sharing factor 𝑥. The calculation 

of the energy loss is made by the integration of the instantaneous power minima 

to the end of the driving cycle. 

The optimization from Fig. 5 is made on the multidimensional solution space 

of the power sharing factors that correspond to each time step of the driving cycle. 

The dimensionality of this problem is not manageable, and the number of 

components of the solution vector must be reduced as discussed in the further 

sections. 
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Figure 4: Flowchart in case of 𝐽𝑝 = 𝑝𝑙𝑜𝑠𝑠(𝑡) 
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Figure 5: Flowchart in case of 𝐽𝑊 = 𝑊𝑙𝑜𝑠𝑠(𝑇) 
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3. The particle swarm optimization algorithm 

The particle swarm optimization method (PSO) has been chosen for the 

minimization of 𝐽𝑊 = 𝑊𝑙𝑜𝑠𝑠(𝑇) [12]. 

This intensely studied stochastic method [3], which simulates the social 

behaviour of animal swarms, is appied in this paper for simultaneous search over 

large regions of the solution space of the objective function. The search algorithm 

followed by an individual particle is based both on its own “experience” and on 

the results obtained by other particles from the swarm. 

There exist several versions of the algorithm [5], [6], [15]. However, its 

principle can be formulated according to the relation (12), which defines the new 

position of the particle by using a “speed” vector (in fact a position increment) 

that contains components of randomized magnitudes. In case of an unconstrained 

optimization, these components are derived taking into account the initial speed 

of the particle (inertial term), its best previous result (cognitive term) and the best 

previous result of the swarm (social term) [3]. 

 {
𝒗𝑖
𝑘+1 = 𝜔𝒗𝑖

𝑘 + 𝑐1𝒓𝒂𝒏𝒅𝑖1
𝑘 ⊙(𝒓𝐵𝑖

𝑘 − 𝒓𝑖
𝑘) + 𝑐2𝒓𝒂𝒏𝒅𝑖2

𝑘 ⊙ (𝒓𝐺
𝑘 − 𝒓𝑖

𝑘)

𝒓𝑖
𝑘+1 = 𝒓𝑖

𝑘 + 𝒗𝑖
𝑘+1

, (12) 

where the notations stand for: 

𝒓𝑖
𝑘 – position vector of particle i in the k-th step of the search; 

𝒗𝑖
𝑘 – “speed”of particle i in the k-th step of the search; 

𝒓𝐵𝑖
𝑘  – individual best position vector of particle i until the k-th step of the 

search; 

𝒓𝐺
𝑘  – best position vector of any particle from the swarm until the k-th 

step of the search; 

𝒓𝒂𝒏𝒅𝑖1
𝑘  and 𝒓𝒂𝒏𝒅𝑖2

𝑘  are random vectors, with elements with continuous 

uniform distribution, in the range [0,1]; 
𝜔 – inertia weight; 

𝑐1 – cognitive learning factor; 

𝑐2 – social learning factor; 

⊙ – Hadamard product of vectors. 

The algorithm in a two-dimensional space is illustrated in Fig. 6. 



90 J. Ferencz, and A. Kelemen 

 

  

 

Figure 6: The unconstrained particle swarm optimization algorithm in a  

two-dimensional space 

When the solution space is subject to constraints, the performance of swarm 

optimization algorithm is largely influenced by the behaviour of the boundary, 

especially when its position is close to the global optimum [2]. 

For the application of inequality-type constraints that characterize the hybrid 

energy storage system, in this study we analyzed the applicability of boundaries 

with different behaviour, reported in the literature [2]. Namely, the “absorbing” 

and “invisible” type boundaries have been verified for a standard test function, 

and the “invisible” and a newly proposed “halving” behaviour have been 

considered feasible in case of the HESS optimization. 

These are illustrated in Fig. 7. The principle of the “invisible” limitation 

method is that if, according to (12), the particle should exit the solution space, the 

new position is omitted from the calculation, and the position of that particle is 

not refreshed. The “absorbing” method allows the motion of the particle in the 

direction given by (12), but strictly limited to the surface of the boundary. 

The “halving” method preserves the direction of the speed vector (12), and it 

iteratively halves its length until the new position of the particle fits the solution 

space. 

The “absorbing” method (also the “reflecting” and “hybrid” mentioned in [2]) 

can be efficiently applied when the intersection point “A” in the bottom diagram 

from Fig. 7 can be determined easily. Unfortunately, this is not the case of the 

HESS optimization. 



 Particle Swarm Optimization of a Hybrid Energy Storage System 91 

 

 

Figure 7: Illustration of the behaviour of the “invisible”, “halving”, and 

“absorbing”, boundaries 

A Matlab program has been developed to test the constrained swarm 

optimization algorithm applied to search the global minimum of the non-convex 
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Rastrigin function shown in Fig. 8, where the boundary is the green transparent 

plane. 

 

Figure 8: The Rastrigin function used for the performance test of the constrained 

optimization algorithm. The global minimum is set on the boundary 

Table 1: The performance of the constrained optimization algorithm for different swarm 

sizes and boundary behaviours 

Number of 

individuals 

in the swarm 

Boundary 

behaviour 

Number of searches 

out of 100, when 

only local minima 

were found 

Average number of iterations 

for the cases when the global 

minimum was found 

5 Absorption 90 146 

5 Halving 94 114 

5 Invisible 98 142 

10 Absorption 32 73 

10 Halving 56 130 

10 Invisible 81 214 

25 Absorption 3 54 

25 Halving 5 131 

25 Invisible 17 365 

50 Absorption 1 54 

50 Halving 3 130 

50 Invisible 7 373 

75 Absorption 1 52 

75 Halving 1 139 

75 Invisible 2 363 
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Table 1 summarizes the results of the constrained optimization algorithm 

applied to the problem from Fig. 8, obtained for different sizes of the swarm and 

different behaviours of the boundary. 

The cognitive learning factor and the social learning factor were set to 𝑐1 =
𝑐2 = 2, while the inertia weight was 𝜔 = 0.073. 

 Several 100 searches were performed for each swarm size and boundary type 

combination.  

It can be concluded that a swarm of 5 particles is too small to cope with this 

task, as more than 90% of the randomly initialized searches fail to find the global 

minimum. It can be also observed that the increase of the number of particles 

above 25 does not determine the significant decrease of the number of iterations. 

The statistics from Fig. 9 demonstrate that the “absorbing” boundary is the 

most performant, with more than two times less iterations to the global minimum, 

than the “halving” one, and with 7 times less than the invisible” one. 

 

Figure 9: Boxplot statistics of the iteration number to the global minimum for 

different swarm sizes and boundary behaviours 

4. Particle swarm minimization of the HESS energy losses 

 The solution of the energy loss minimization problem is represented by the 

time function of the power sharing ratio 𝑥(𝑡). Time discretization has been made 

according to Fig. 5, but it became evident that the dimensionality of the problem 

with the solution space of 𝑥 ∈ [0,1]𝑁 is prohibitive even for a relatively short 

driving cycle. 
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 Two approaches are presented in this section for the reduction of the 

dimensionality, applied both in case of unconstrained and constrained 

optimization. 

 The first approach consists of the division of the driving cycle to a small 

number of equal time intervals 𝑃 ≪
𝑇

𝑇𝑠
, each with a constant value of the energy 

sharing factor 𝑥. Thus, the optimization task is reduced to a search in a P-

dimensional solution space, i.e. the determination of a P-dimensional vector 

 𝒙𝑚 = [𝑥1, 𝑥2, … 𝑥𝑃] = argmin
𝒙
(𝑊𝑙𝑜𝑠𝑠

〈𝑁〉) , 𝑥𝑖 ∈ [0,1]. (13) 

 It is not totally surprising that such an unsupported subdivision of the driving 

cycle can yield results that are by far not optimal. 

 In the second version we propose a “dynamic” subdivision of the driving 

cycle. In this approach, the time instants that define the subdivision become 

dimensions of the solution space. Thus, the optimization task can be formulated 

as 

 𝒙𝑚
∗ = [𝒙𝑚, 𝝉𝑚] = [𝑥1, 𝑥2, … 𝑥𝑃 , 𝜏1, 𝜏2, … 𝜏𝑃−1] = argmin

𝒙∗
(𝑊𝑙𝑜𝑠𝑠

〈𝑁〉), 𝑥𝑖 ∈ [0,1], 𝜏𝑖 ∈ [0,1] ,

  (14) 

where 𝜏𝑖 =
𝑡𝑖

𝑇
 are the subdivision time instants normalized to the driving cycle 

period.  

 The optimal solution is the vector 𝒙𝑚
∗ , obtained by the extension of the optimal 

power sharing vector 𝒙𝑚 with the normalized vector of the optimal subdivision 

time instants 𝝉𝑚. 

 In this way the dimension of the solution space is almost doubled, but the 

complexity of the problem can still be handled for simple driving cycles. 

We propose as an example of energy loss optimization the driving cycle from 

Fig. 10, which consists of a 𝑇𝑎 = 50 𝑠, 𝑎 = 0.8 
𝑚

𝑠2
 acceleration, and a 𝑇𝑑 = 50 𝑠, 

𝑎 = −0.8 
𝑚

𝑠2
 deceleration stage of an 𝑚 = 1611 𝑘𝑔 vehicle. Thus, the maximum 

speed is 𝑣𝑚𝑎𝑥 = 144 
𝑘𝑚

ℎ
. The parameters of the energy storage devices are listed 

in Table 2. The capacity of the battery and the internal resistances have been 

distorted on purpose to obtain a large SOC variation, and to bring the HESS close 

to its operation limits in the short driving cycle from Fig. 10. 
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Figure 10: The simple driving cycle used to demonstrate the PSO of the  

total energy losses 

Table 2: The parameters of the HESS, used for simulation. 

Battery 

Capacity 𝑸𝒘𝒉 1000 Wh 

No load voltage 𝒖𝑩𝑨𝑻 800 V 

Initial state of charge 𝑺𝑶𝑪𝒊𝒏𝒊𝒕 100 % 

Internal resistance at 

SOC=100% 
𝒓𝑩𝑨𝑻|𝑺𝑶𝑪=𝟏𝟎𝟎% 𝟑𝟎𝟎 𝒎𝛀 

Internal resistance at 

SOC=50% 
𝒓𝑩𝑨𝑻|𝑺𝑶𝑪=𝟓𝟎% 𝟔𝟓𝟎 𝒎𝛀 

Supercapacitor 

Capacity 𝑪𝑺𝑪 10 F 

Initial voltage 𝑼𝑺𝑪_𝒊𝒏𝒊𝒕 800 V 

Internal resistance 𝒓𝑺𝑪 𝟏𝟎𝟎 𝒎𝛀 

4.1 Unconstrained energy loss minimization 

Fig. 11 shows the minimum values of the energy losses obtained by the 

application of the fixed and dynamic subdivision approaches, for 𝑃 = {1, 2, 3, 4}. 
To be noticed, that the fixed division of the driving cycle into three equal 

subintervals yields higher losses than if it was divided only in two. 

On the contrary, the dynamic subdivision yields a monotonically efficiency 

increasing with the number of subdivision intervals. 
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Figure 11: The results of the unconstrained PSO for fixed step (blue curve) and 

dynamic (red curve) subdivision of the driving cycle, versus the number of the 

subdivision intervals (the length of the power sharing vector) 

Table 3 contains the optimal power sharing vectors and the optimal subdivision 

vectors for different numbers of subdivision intervals, resulted from the 

application of the fixed-step and dynamic subdivision methods. 

Table 3: The results of the unconstrained energy loss optimization. 

 Dynamic subdivision Fixed step subdivision 

P 

Optimal 

power sharing 

vector 𝒙𝒎 

Optimal normalized 

subdivision vector 

𝝉𝒎 

Optimal power 

sharing vector 

𝒙𝒎 

Optimal normalized 

subdivision vector 

𝝉𝒎 

1 [0.6902] - [0.6902] - 

2 
[0.6575, 

0.7299] 
[0.499] 

[0.6604,  

0.7290] 
[0.5] 

3 

[0.5157, 

0.6699 

0.7317] 

[0.159,  

0.499] 

[0.6391,  

0.6936,  

0.7416] 

[0.3333,  

0.6666] 

4 

[0.5389, 

0.6499, 

0.6663, 

0.7235] 

[0.131,  

0.328,  

0.503] 

[0.6081,  

0.6693, 

 0.7269, 

 0.7471] 

[0.25,  

0.5,  

0.75] 
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4.2. Constrained energy loss minimization 

The constrained particle swarm optimization of the HESS efficiency has been 

performed considering the limitation of the supercapacitor voltage: 

 𝑈𝑠𝑐_𝑀𝐼𝑁 ≤ 𝑢𝑠𝑐 ≤ 𝑈𝑠𝑐_𝑀𝐴𝑋 , (15) 

where 𝑈𝑠𝑐_𝑀𝐼𝑁 = 0 𝑉, 𝑈𝑠𝑐_𝑀𝐴𝑋 = 800 𝑉. 

Fig. 11 and Fig. 12 demonstrate that the dynamic subdivision method yields 

higher efficiency over the driving cycle than the fixed-step subdivision. 

 

Figure 12: The results of the constrained PSO for fixed step (blue curve) and dynamic 

(red curve) subdivision of the driving cycle, versus the number of the subdivision 

intervals (the length of the power sharing vector) 

The results for fixed-step and dynamic subdivision are shown in Fig. 12, while 

Table 4 resumes the optimal power sharing vectors and the optimal subdivision 

vectors in case of the constrained PSO. 

Fig. 13 illustrates the variation in time of different state variables of the HESS, 

when this is operated in the conditions that minimize the driving cycle energy 

losses. It can be observed that the constraints set for the supercapacitor voltage 

are satisfied. 
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Table 4: The results of the constrained energy loss optimization 

 Dynamic subdivision Fixed step subdivision 

P 

Optimal power 

sharing vector 

𝒙𝒎 

Optimal 

normalized 

subdivision 

vector 𝝉𝒎 

Optimal power 

sharing vector 𝒙𝒎 

Optimal 

normalized 

subdivision 

vector 𝝉𝒎 

1 [0.6902] - [0.6902] - 

2 [0.5344, 0.6917] [0.1158] [0.6868, 0.6955] [0.5] 

3 
[0.5327, 0.6921 

0.4877] 

[0.1184,  

0.9759] 

[0.6781, 0.6925, 

0.6976] 

[0.3333, 

0.6666] 

4 
[0.5067, 0.6579, 

0.6941, 0.5535] 

[0.0921, 0.2148, 

0.9228] 

[0.6654, 0.6909, 

0.6967, 0.6825] 
[0.25, 0.5, 0.75] 

 

Figure 13: Time diagrams of the HESS state variables in case of operation under the 

condition 𝒙∗ = 𝒙𝑚
∗  

4.3. Performance comparison of the “Invisible” and “Halving” boundaries 

 The influence of the boundary behaviour on the performance of the 

constrained optimization algorithm has been analyzed in case of the dynamic 

subdivision of the driving cycle to four time-intervals. 
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Figure 14: Boxplot statistics of the iteration number to the global minimum for a swarm 

of 75 particles in case of the “Invisible” and “Halving” boundaries 

 Thus, the dimension of the power sharing vector 𝒙 is 𝑃 = 4, and the dimension 

of the vector 𝝉 of the subdivision time instants is 3. 

 In Fig. 14 it can be observed that the “Invisible” behaviour of the boundary 

results in almost three times more iterations to reach the global minimum, than 

the “Halving” behaviour. The statistics resulted from 20 search processes for each 

type of boundary, starting from different, randomly chosen initial positions. 

5. Conclusions 

 In the study we aimed to minimize the losses of a hybrid energy storage system 

of an electric vehicle. This has been performed by means of an optimal sharing 

of the required electrical power between the energy storage devices. It has been 

shown that extending the dimension of the space of solutions with the number of 

the subdivision time instants of the driving cycle, the HESS can be efficiently 

optimized, while the dimensionality of the problem remains manageable. 

 The constrained optimization algorithm has been validated using the Rastrigin 

test function and three different behaviours of the boundary. Out of these, the 

“absorption” behaviour provided the best results, which is reasonable, especially 

in the cases when the optimum is close to the boundary. 

 For this test function, and a swarm of 75 particles, we found that the 

“Absorption” method is almost 7 times faster, and the “Halving” method is 

almost 3 times faster in finding the global minimum, than the “Invisible” method. 

 Unfortunately, the “Absorption” method can’t be applied for the constrained 

optimization of the hybrid energy storage system, because in this case the 
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boundary itself is hard to be defined in the space of the power sharing factors and 

subdivision instants. 

 The local minima have been avoided by multiple initializations of the search 

algorithm, and combination of different stop conditions, including the clustering 

of the swarm, had to be applied in case of the constrained optimization. 
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