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Department of Mathematics,

J. Selye University,
Komárno, Slovakia

email: tothj@ujs.sk

Abstract. The real sequence (xn) is maldistributed if for any non-empty
interval I, the set {n ∈ N : xn ∈ I} has upper asymptotic density 1. The
main result of this note is that the set of all maldistributed real sequences
is a residual set in the set of all real sequences (i.e., the maldistribution
is a typical property in the sense of Baire categories). We also generalize
this result.

1 Introduction

Following the concept of statistical convergence for real sequences, J. A. Fridy
[2] introduced the concept of statistical cluster points of a sequence (xn). A
number α is called a statistical cluster point of the sequence (xn) provided that
for every ε > 0 the set {n ∈ N : |xn − α| < ε} has a positive upper asymptotic
density.

G. Myerson [7] calls a sequence (xn) maldistributed if for any non-empty
interval I the set {n ∈ N : xn ∈ I} has upper asymptotic density 1. In [12] the
maldistribution property is characterized by one-jump distribution functions.
Examples of maldistributed sequences are given in [12] and [3]. Using the
idea from [4] (Example VII) for the generalization of the concept of statistical
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convergence, we can extend the maldistribution property of sequences with
the help of weighted densities.

The concept of weighted density as a generalization of asymptotic density
was introduced in [1] and [10]. Let f : N → (0,∞) be a weight function with
the properties ∞∑

n=1

f(n) =∞, lim
n→∞ f(n)∑

a≤n
f(a)

= 0. (1)

For A ⊂ N define by

df(A) = lim inf
n→∞

∑
a≤n, a∈A

f(a)∑
a≤n

f(a)
and df(A) = lim sup

n→∞
∑

a≤n, a∈A
f(a)∑

a≤n
f(a)

the lower and upper f-densities of A, respectively. Note that the asymptotic
densities correspond to f(n) = 1 and the logarithmic densities to f(n) = 1

n . It is
well-known that each set which has asymptotic density also has the logarithmic
one but a set may have a logarithmic density without having an asymptotic
one.

The main tool to compare weighted densities is the classical result of C. T. Ra-
jagopal (cf. [9], Theorem 3) which, in terms of weighted densities, says the
following.
Let f, g : N → (0,∞) be weight functions with properties (1). If f(n)

g(n) is de-
creasing, then for any A ⊂ N we have

dg(A) ≤ df(A) ≤ df(A) ≤ dg(A). (2)

Now we give a generalization of maldistributed sequences.

Definition 1 Let f : N→ (0,∞) be a weight function with properties (1). The
sequence (xn) is said to be f-maldistributed, if for any non-empty interval I
the set {n ∈ N : xn ∈ I} has upper f-density 1.

Comparing to asymptotic density, logarithmic density is less sensitive to
certain perturbations. For example, if a sequence is maldistributed, then it is
not necessary f-maldistributed for f(n) = 1

n (which defines the logarithmic
density).
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Let us denote byMf the set of all f-maldistributed sequences. The purpose
of this note is to show that for any weight function f satisfying (1) the setMf

is residual in the Fréchet metric space of all real sequences.

Let s be the Fréchet metric space of all sequences of real numbers with the
metric

ρ(x, y) =

∞∑
k=1

1

2k
|xk − yk|

1+ |xk − yk|
,

where x = (xk), y = (yk). It is known that (s, ρ) is a complete metric space.
In [5] it was proved that the set of all uniformly distributed sequences is a

dense subset of the first Baire category in s. The same is true for the set of all
statistically convergent sequences of real numbers (cf. [11]).

2 Main results

The main result of this paper is as follows.

Theorem 1 Let f : N→ (0,∞) be a weight function with properties (1). Then
the set of all f-maildistributed sequences Mf is residual in the the Fréchet
metric space of all sequences of real numbers s.

For the proof of the theorem we shall use the following lemma.

Lemma 1 For the interval I = [a, b] denote by A(I, α) the set of all x =
(xk) ∈ s for which

df
(
{n ∈ N : xn ∈ I}

)
≤ α ,

where α ∈ (0, 1). Then A(I, α) is a set of the first Baire category in s.

Proof of Lemma 1. We define a continuous function h : R→ [0, 1] by

h(x) =


2x−2a
b−a for x ∈

[
a, a+b2

]
2b−2x
b−a for x ∈

[
a+b
2 , b

]
0 for x ∈ Rr [a, b]

We choose an arbitrary real number β ∈ (α, 1). Using the function h we define
for x = (xk) ∈ s and fixed n the function gn : s→ [0, 1] in the following way:

gn(x) = max

β,
n∑
k=1

h(xk).f(k)

n∑
k=1

f(k)

 .
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Denote A∗(I, α) the set of all x = (xk) ∈ s for which there exists the limit
lim
n→∞gn(x).
One can easily check that for each x = (xk) ∈ s and natural number n we have

n∑
k=1

h(xk).f(k)

n∑
k=1

f(k)

≤

∑
k≤n, xk∈I

f(k)∑
k≤n

f(k)
. (3)

For any x ∈ A(I, α), the right hand side of (3) does not exceed α if n is large
enough. Therefore lim

n→∞gn(x) = β, and then A(I, α) ⊂ A∗(I, α).
Put g(x) = lim

n→∞gn(x) for x ∈ A∗(I, α). We shall prove that

(a) the function gn (n = 1, 2, . . . ) is a continuous function on s,
(b) g is discontinuous at each point of A∗(I, α).

(a) Let x0 = (x0k)
∞
k=1, x

(j) = (x
(j)
k )∞k=1 ∈ s (j = 1, 2, . . . ) and x(j) → x0 (for

j→∞).

Then from the convergence in the space s for each fixed k we have lim
j→∞ x(j)k =

x0k. The continuity of function h implies lim
j→∞gn(x(j)) = gn(x

0). Thus gn

(n = 1, 2, . . . ) is continuous on s.

(b) Let y = (yk) ∈ A∗(I, α). We have the following two possibilities.
(1) g(y) < 1,
(2) g(y) = 1.

In case (1) we choose a positive ε such that ε < 1−g(y). It is suffice to prove
that in each ball K(y, δ) = {x ∈ A∗(I, α), ρ(x, y) < δ} (δ > 0) of the subspace
A∗(I, α) of s there exists an element x = (xk) ∈ s with g(x) − g(y) > ε.

Let δ > 0. Choose a positive integer m such that
∞∑

k=m+1

2−k < δ, and define

the sequence x = (xk) in the following way:

xk =

{
yk, if k ≤ m,
a+b
2 , if k > m.

Hence ρ(x, y) < δ, further h(xk) = 1 for k > m. Then

n∑
k=1

h(xk).f(k)

n∑
k=1

f(k)

≥

n∑
k=m+1

f(k)

n∑
k=1

f(k)

= 1−

m∑
k=1

f(k)

n∑
k=1

f(k)

→ 1 for n→∞,
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and therefore g(x) = lim
n→∞gn(x) = 1. Then immediately follows

g(x) − g(y) = 1− g(y) > ε.

In case (2) we have g(y) = 1. Let δ,m, x have the previous meaning. Put

xk =

{
yk, if k ≤ m,
a, if k > m.

Then, clearly ρ(x, y) < δ, and h(xk) = 0 for k > m. Then

n∑
k=1

h(xk).f(k)

n∑
k=1

f(k)

≤

m∑
k=1

f(k)

n∑
k=1

f(k)

→ 0 for n→∞.
So, we have g(x) = lim

n→∞gn(x) = β, and therefore g(y) − g(x) = 1 − β > 0.

Hence the discontinuity of g at y ∈ A∗(I, α) has been proved.
The function g is a limit function (on A∗(I, α) ) of the sequence of contin-

uous functions (gn)
∞
n=1 on A∗(I, α). Then the function g is a function in the

first Baire class on A∗(I, α). According to the well-known fact that the set of
discontinuity points of an arbitrary function of the first Baire class is a set of
the first Baire category (cf. [8], p. 32), we see that the set A∗(I, α) is of the first
Baire category in A∗(I, α) Thus A∗(I, α) is in s, too. Since A(I, α) ⊂ A∗(I, α),
the assertion follows. �

Proof of Theorem 1. Denote by Q the set of all rational numbers. Denote
by H the set of all x = (xk) ∈ s for which there exists an interval I with

df
(
{n ∈ N : xn ∈ I}

)
≤ α

for some α ∈ (0, 1). Combining Lemma 1 and the fact that for each interval I
there exist rational numbers a, b such that I ⊂ [a, b], we have

H ⊂
⋃

a,b∈Q, a<b

⋃
i∈N, i≥2

A

(
[a, b], 1−

1

i

)
from which follows at once that H is a meager set. ButMf = srH and there-
fore the assertion of theorem follows. Hence the property of f-maldistribution
is a typical property of real sequences from the topological point of view. �

We now introduce the concept of f-maldistributed integer sequences.
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Definition 2 Let f : N → (0,∞) be a weight function with properties (1).
The sequence (xn) of positive integers is said to be f-maldistributed, if for
any positive integers m ≥ 2 and j ∈ {0, 1, . . . ,m − 1} the set {n ∈ N : xn ≡
j (mod m)} has upper f-density 1.

Let S be the Baire’s space of all sequences of positive integers with the
metric ρ ′ defined in the following way.

Let x = (xk) ∈ S, and y = (yk) ∈ S. If x = y, then ρ ′(x, y) = 0, otherwise

ρ ′(x, y) =
1

min{n : xn 6= yn}
.

The space (S, ρ ′) is a complete metric space. In [6] the topological properties
of the set of all uniformly distributed sequences of positive integers in Baire’s
space were investigated.

The following auxilary result is similar to Lemma 1.

Lemma 2 For the positive integers m ≥ 2 and j ∈ {0, 1, . . . ,m− 1} denote by
A(j,m, α) the set of all x = (xk) ∈ S for which

df
(
{n ∈ N : xn ≡ j (mod m)}

)
≤ α ,

where α ∈ (0, 1). Then A(j,m, α) is a set of the first Baire category in S.

The proof is analogous to the proof of Lemma 1. The crucial role is played
by the function gn : S→ [0, 1] given by

gn(x) = max


√
α,

∑
k≤n

xk≡j (mod m)

f(k)

n∑
k=1

f(k)

 .
The following theorem says that the set of all f-maldistributed integer se-

quences form a residual set in Baire’s space.

Theorem 2 Let f : N → (0,∞) be a weight function with properties (1).
Denote by G the set of all x = (xk) ∈ S for which there exist m ≥ 2 and
j ∈ {0, 1, . . . ,m− 1} such that

df
(
{n ∈ N : xn ≡ j (mod m)}

)
≤ α

for some α ∈ (0, 1). Then G is a set of the first Baire category in S.
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Proof. Combining Lemma 2 with the fact that

G ⊂
+∞⋃
m=2

m−1⋃
j=0

+∞⋃
i=2

A
(
j,m, 1−

1

i

)
it immediately follows that G is a meager set in S. �
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[4] P. Kostyrko, M. Mačaj, T. Šalát, O. Strauch, I-convergence and extremal
I-limit points, Math. Slovaca, 55 (2005), 443–464.
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