AcTtA UNIV. SAPIENTIAE, INFORMATICA, 1, 1 (2009) 53-61

&

On the role of the reusability concept in
automatic programming research

Ladislav Samuelis
Dept. of Computers and Informatics
FEEI, Technical University of Kosice

Letna 9, 04200 Kosice, Slovakia
email: Ladislav.Samuelis@tuke.sk

Abstract. The central question of this paper is: “How the concept
of reusability influences the research in automatic programming?” After
discussing briefly the historical background of the question we analyze
the research of automatic programming from the software reuse point
of view. We try to show the presence of the reusability concept in the
automatic programming research throughout its relatively short history.
Based on observations, we argue that the concept of software reuse is
an inherent idea of the automatic programming research. Finally, we
stress the necessity to introduce the historical view into the curricula of
teaching informatics at universities.

1 Introduction

The motif of automatic programming is spreading over the history of software
engineering in various dimensions. It has been a moving target, which is
constantly shifting to reflect increasing expectations. We observe recently the
incredible increase in power of the hardware. This increase is itself the reason
for the incredible growth of the software complexity. The Wirth’s [1] “law”:
Software is getting slower, faster than hardware is getting faster, allegorically
points to this fact.

The big challenges for automatic program construction are presented (e.g.)
by Laurianne McLaughlin [2] in the following manner:

AMS 2000 subject classifications: 68N19

CR Categories and Descriptors: 1.2.2 [Automatic programming]: Subtopic - Program
synthesis; D.2.13 [Reusable Software]: Subtopic - Reuse models.

Key words and phrases: software reusability, automatic programming

93

54 L. Samuelis

e To produce good runtime performance;
e To produce code that someone can look at, deal with, and understand;

e To ensure that the code is provably correct.

The aim of this contribution is highlighting the role of the reusability con-
cept within the automatic program construction efforts in the emergent science
of software engineering. In particular, to show how the concept of reuse is in-
terwoven into the automatic programming research. We demonstrate selected
research ideas in automatic programming in chronological order.

In order to address the question: “How the concept of reusability influences
the research in automatic programming?”, we have collected several leading
ideas, which are grouped around the term of automatic program construction
or program synthesis. This selection is in no way a complete and representative
survey of the field. We hope that the reflections and discussions to the selected
concepts will attract minds and in this way enable more deep comprehension
of the notion of automatic program construction.

We believe that students studying informatics have to study the history of
software engineering very seriously. In particular they have to study deeply the
intellectual movements and to read the original works of informaticians whose
ideas mostly influenced the field. Students may observe the blind alleys in the
history, steps backward, and to follow the evolution of ideas. Pondering and
discussions about the ideas could encourage students to create their own ideas,
standpoints, and in this way to join the community of educated informaticians.
This historical view should be also an essential part of teaching informatics at
the universities. This is considered as nutriment that is a necessity for being
educated and later being expert in informatics.

This paper begins with a brief history of the idea of automatic programming
in Chapter 2. It continues by discussing the reusability principle in the era
before object-oriented programming, in Chapter 3. Obstacles to software reuse
are referred in Chapter 4 and finally we make conclusions in Chapter 5.

2 Where does the idea of automatic program con-
struction come from?

Looking backward into the history, we observe that the first mentioning and
the first discussions around the industrial production of software appeared
formally in 1968 and were presented at a NATO conference by Mcllroy [3].

Reusability concept in automatic programming 55

Many expert-like papers and books concerning automatic software construc-
tion have been already presented. However, only few of them tried to discover
“laws” which are beyond the software construction or program synthesis along
the history of computing [4].

This is an exciting story to follow the interpretations of the notion of auto-
matic program construction and to observe the interleaving of the more-less
well-known ideas. This endeavor involves also an attempt to untangle ideas
and concepts, which appear suddenly in various contexts.

The term “automated programming” (automatic program construction or
program synthesis) is used to refer to the study and implementation of methods
for automating a significant part of the process of creating and enhancing
software. Its meaning somewhat varies, but often includes several aspects of
the programming processes.

A broader goal of this field is to make computer programs much easier by
means of automation of the software creation process. More particular goals
include increasing software productivity, lowering costs, increasing reliability,
making more complex systems tractable, as mentioned in the Introduction.

The theoretical question addressed in research in program synthesis is the
discovery and articulation of the principles (or appropriate programming lan-
guages) underlying the creation of software. The important practical question
addressed is how to implement systems that embodies a particular knowledge
and applying it to assist the programmer or end user.

The history shows us that there is freedom toward the use of more declar-
ative and less procedural specification where appropriate. Another way of
description is that the specification is closer to what than to the how end of
the spectrum. The implementation is closer to the how end.

Methods for automated program synthesis vary. One approach is to view
synthesis as a set of transformations that perform the steps of successive re-
finement of the specification into the implementation, performing data struc-
ture refinement and control structure refinement of the program into the final
implementation. Other methods of program synthesis focus more on theorem
proving, where an inference engine derives the steps of the program and proves
the necessary facts along the way, e.g. the PROLOG program is such a set
of declarations. In particular, a prover proves that an implementation exists,
and the proof is made constructive, that is, it constructs the implementation
that exists. We note, that both of the above mentioned formulations describe
the same goal: to allow users focusing more on solving problems than on the
details of implementation.

We have to be aware that programming cannot be fully automated since the

56 L. Samuelis

computer must at least be told what to do. There is no way for a computer “to
invent an idea”. The automation may refer only to the way how “to execute
an idea”.

3 Automatic program construction before the ob-
ject-oriented programming

Nowadays it is almost forgotten that before the object oriented approach,
within the frame of the classical procedural programming, the automatic pro-
gram construction was associated (e.g.) with the “construction of programs
by examples” or with the “construction of loops”.

In the 1950s, the term “automatic computing” referred to almost anything
related to computing with a computer. The biggest problem of automatic
coding systems was efficiency, or the lack of it. Human-computer interaction
was very inefficient. This resulted in an atmosphere in which the idea of auto-
matic coding was conceived as fundamentally wrong: “efficient programming
was something that could not be automated” was an often-heard statement.

In the period of “structured programming tide” (1967-1977) the optimizers
mattered because they free programmers from the need to deal with specific
details to focus on larger issues. In this way developers are able to do more
important things. One research stream was dedicated to the loop optimizers.
Typical representative of the loop optimizer is the programming by example
approach. This technology is based on the induction principle.

In the next section we outline the idea, which represents the automatic
program construction efforts in the 1980th. In other words, how the au-
tomatic programming by example was perceived before the object orienta-
tion [5], [6], [7]. The research before the object-orientation was influenced in
great extent by the results gained in the artificial intelligence research. Algo-
rithm described below was discussed in detail by the author elsewhere [8].

The principle of programming by examples

There exist many areas when the demonstration is a suitable tool for au-
tomating tasks. For example, paths of robots represent linear plans and the
task is to construct program; or the sequence of learning objects represent the
progress of the student in the learning material and the task is to construct
the navigation plan (learning by watching). The structures of the systems
devoted to synthesis of programs by examples are similar also to the structure

Reusability concept in automatic programming 57

of linguistic pattern recognition systems.

In the next paragraphs we describe formally the idea of synthesis the loops
from examples [9]. The aim of the synthesis is to construct a minimal final
deterministic automaton with branches and loops, which are expressed as:

1. L3I
2. b3 I

where I1, Iy and I3 are the instructions of the trace and ¢; and ¢y represent
the conditions for the execution of the respective instructions. In this model
the program equals to the regular grammar:

i (Vna W, D, IO)
where
e V), - is the set of program instructions (non terminal symbols),

e 1, - is set of conditions, which belong to the appropriate transitions
between the program instructions (set of terminal symbols),

e D - is set of rules, which does not contain 2 or more rules with the same
left side,

e [j - is the start non terminal symbol.

The algorithm for building the model is summarized as follows. Let the sym-
bol P be a set of available instructions, which are necessary for constructing
the example.

P=(I,Is...,Ig) (1)

We introduce notation [I;], for the set of equal instructions I;|1 < j < K.
We introduce, that

(1] = 11;,21;,..., X;1; (2)

where the integers in front of I; are called labels. Let the overall number of

I;s in the model equal to |[I;]| and the [I;]* is the actual number of [I;] . The
number of the total instructions ¢y in the model is:

K
L=Y |l 3)
j=1

58 L. Samuelis

where the number of various types of instructions is K. Because the value of
the L is varying during the synthesis, we introduce the L* for the actual value
of L. Then

L* =3 |l (4)

“Step”in the example is defined as a pair of (c,, I;). Different steps (1) may
contain the same pairs, i.e. the same condition ¢, and same instruction I,.
That is why we introduce the notion of N; for the condition and O; for the
instruction in certain step {. The u(l) will denote the label of the instruction
O(l). The principle of the program synthesis is in searching the value of u(l),
which will fulfill the following conditions:

1. The number of instructions L in the program is minimal and it is true
that K < L < M, where M is the maximum number of instructions of
the example.

2. If the M is the maximum number of instructions of the example, then
during the synthesis it is necessary to assign a label u(l) to every in-
struction O(l) of the example and at the same time to achieve de-
terministic flow of control. l.e. for every step ¢ where ¢ < [, and
O(i—-1)=0(1—-1),u(i—1)=wu(l—1) and N(i) = N(l), then either

e O(l) = O(7) and in this case it is possible to provide merging, i.e.
u(l) = u(i) or

e the above-mentioned conditions are not true and O(l) = O(i), then
new node has to be created, i.e. w(l) # w(i) for the respective
instructions in O(i) and O(l). This creation of the new node has
to be done in order to secure the deterministic control of flow.

It is evident that when there does not exist a node in the model, which is
merge-able with the given instruction in the example, then new node has to
be created.

4 Obstacles to software reuse

The book H. Mili et. al. [12] defines the reusability as follows: Software reuse
is the process whereby an organization defines a set of systematic operating

Reusability concept in automatic programming 59

procedures to specify, produce, classify, retrieve, and adapt software artifacts
for the purpose of using them in its development activities.

Software reusability is an attribute of software that facilitates its incorpora-
tion into new application programs. Reusable software shares many attributes
in common with “good software” (i.e. transportability, maintainability, flexi-
bility, understandability, usability and reliability).

The status and the future of the software reuse research is described ex-
haustly in the paper of W.B.Frakes [11]. The work of Z.Porkoldb [13] points
to the relation between metaprogramming and reusability. Interesting fact
(or friction) is that “reusability” is not usually a distinguished attribute of
artifacts in other engineering disciplines. This induces the following question:
“Why do we emphasize so intensively reusability in software engineering?”

If we follow the idea of W. Wang [10] “The key reason is that software is a
tangible form of mathematics that lends itself to being engineered.... This tan-
gibility is both software’s strength and Achilles heel.”, then it is clear that this
“executability” feature is the driving force behind the “software engineering”
activities (e.g. software testing).

It is also often argued that the reusable software assets are “information
rich”. What does it mean that “information rich”? In fact it means that:
software assets represent written ideas and the “customization” of these rep-
resentations within other context requires excessive mental effort. This idea is
valid also for other kinds of representations, as software patterns and models.

The history shows that all contemporary techniques always contained some
mechanism of reusability. For example: data encapsulation, information hid-
ing, polymorphism, abstract data types, classes and methods, pipes and filters,
inheritance, parametrization and generality, etc. All these techniques could
help in certain implementations and domains. More detailed analysis on these
issues is out of scope of this contribution.

5 Conclusion

We have discussed some selected ideas around the notion of automatic pro-
gramming research. We tried focusing on the importance of raising students’
awareness to sustainable ideas, which are beyond the “fashionable” ones. This
paper could be a basis for formulating further questions in this direction. We
expect that the formulation of adequate questions is the first step toward dis-
covery of relevant knowledge in the emergent science of software engineering.
We think that this approach could support more thorough understanding of

60

L. Samuelis

other software engineering principles too.

Acknowledgments

This work was supported by project VEGA No. 1/0350/08 “Knowledge-Based
Software Life Cycle and Architectures” and project VEGA No. 1/0175/08
“Behavioral categorical models for complex programme systems.”

References

1]
2]

3]

7]

8]

[9]

N. Wirth, Plea for Lean Software. Computer, 28, 2 (1995) 64-68.

L. McLaughlin, The Next Wave of Developer Power Tools, IEEE Soft-
ware, 23, 3 (2006) 91-93.

D. Mcllroy, Mass-Produced Software Components Proceedings of
the 1st International Conference on Software Engineering, Garmisch
Partenkirchen, Germany, pp. 88-98, 1968.

D. King, C. Kimble, Uncovering the epistemological and ontological as-
sumptions of software designers. Paper presented at the conference Pro-
ceedings 9e Colloque de I”AIM, Fuvry, France, 2004.

J. S. Poulin, Technical opinion: reuse: been there, done that. Comm.
ACM 42,5 (1999) 98-100.

Z. Manna, R. J. Waldinger, Toward automatic program synthesis, Comm.
ACM 14, 3 (1971) 151-165.

C. H. Smith, The Power of Pluralism for Automatic Program Synthesis.
Journal ACM 29, 4 (1982) 1144-1165.

L. Samuelis, Programming by examples, Technical University of Bu-
dapest, 1990, PhD thesis.

A. W. Biermann, Automatic programming, In Stuart C. Shapiro, edi-
tor, Encyclopedia of Artificial Intelligence. John Wiley and Sons, January
1992.

[10] Wei-Lung Wang, Beware the Engineering Metaphor, Comm. ACM, 45, 5

(2002) p. 29.

Reusability concept in automatic programming 61

[11] W .B. Frakes, K.Kang, Software Reuse Research: Status and Future,
IEEE Transactions on Software Engineering, 31, 7 (2005) 529-535.

. Mili, A. Mili, S. Yacoub, E. v, Reuse based software engineering
12] H. Mili, A. Mili, S. Y. b, E. Addy, R based 3 3
(techniques, organization, and measurement), John Wiley & Sons, 2002.

[13] Z. Porkolab, Debugging C++ Template Metaprograms, Generative Pro-
gramming and Component Engineering, The ACM Digital Library pp.
255-264.

Received: October 183, 2008

