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Abstract. The eigenvalues of the adjacency matrix of a graph form the
spectrum of the graph. The multiplicity of the eigenvalue zero in the
spectrum of a graph is called nullity of the graph. Fan and Qian (2009)
obtained the nullity set of n-vertex bipartite graphs and characterized
the bipartite graphs with nullity n−4 and the regular n-vertex bipartite
graphs with nullity n − 6. In this paper, we study similar problem for a
class of tripartite graphs. As observed the nullity problem in tripartite
graphs does not follow as an extension to that of the nullity of bipartite
graphs, this makes the study of nullity in tripartite graphs interesting. In
this direction, we obtain the nullity set of a class of n-vertex tripartite
graphs and characterize these tripartite graphs with nullity n − 4. We
also characterize some tripartite graphs with nullity n− 6 in this class.
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1 Introduction

Let G be a simple graph with vertex set V(G) = {v1, . . . , vn} and edge set
E(G). An edge joining a vertex vi to a vertex vj is denoted by vivj (or vjvi).
The adjacency matrix of G is A(G) = [aij]n×n, where

aij =

{
1 if vivj ∈ E(G)
0 otherwise

(∀vi, vj ∈ V(G)).

The eigenvalues of the graph G are the eigenvalues of A(G) and the spectrum
of G is the multiset of eigenvalues of G. The nullity of graph G, denoted by
η(G), is the multiplicity of the eigenvalue zero in the spectrum of G. The graph
G is singular if η(G) > 0 and is non-singular if η(G) = 0. For graph theoretical
terminology, we refer [10].

Collatz and Sinogowitz [2] posed the problem of characterizing singular
graphs and since then, the theory of nullity of graphs has stimulated much
research because of its importance in mathematics and chemistry. In litera-
ture, we find characterization of trees, unicyclic graphs, bicyclic graphs and
bipartite graphs with their nullity.

Fiorini et al. [5] determined the greatest nullity among n-vertex trees in
which no vertex has degree greater than a fixed positive integer D and gave
a method of constructing the respective trees. Li and Chang [7] showed that
there are some other trees with maximum nullity which can not be constructed
by the method devised by Fiorini et al. [5] and modified the method of con-
structing the respective trees. Tan and Liu [11] found the nullity set of n-vertex
unicyclic graphs with n ≥ 5. They also characterized the unicyclic graphs with
maximal nullity. The unicyclic graphs with minimum nullity are characterized
by Li and Chang [8]. Li et al. [9] found the nullity set of n-vertex bicyclic
graphs and gave a characterization of the bicyclic graphs with maximum nul-
lity. Hu et al. [6] also found the nullity set of n-vertex bicyclic graphs, n ≥ 6.
Furthermore, the authors also characterized bicyclic graphs with extremal nul-
lity. In Fan et al. [3], the authors found the nullity of unicyclic signed graphs
and characterized n-vertex unicyclic signed graphs. Fan and Qian [4] intro-
duced nullity of n-vertex bipartite graphs and presented characterization of
bipartite graphs with nullity.

We find that the nullity of tripartite graphs does not follow as the extension
of that of bipartite graphs. Thus it became interesting to characterize family
of tripartite graphs with nullity. In this paper, we consider a class of n-vertex
tripartite graphs, n ≥ 3 and give nullity set of these tripartite graphs and
characterize them with nullity n − 4, n ≥ 4. Furthermore, we discuss some
tripartite graphs with nullity n− 6, n ≥ 6.
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2 Preliminaries

In this section, we give some definitions, terminologies and known results which
will be used later. Let G be an n-vertex graph with vertex set V(G) and edge
set E(G). For S ⊆ V(G), the neighbor set of S in G, denoted as N(S), is a set
containing those vertices of G that are adjacent to some vertex in S. If S = {v},
we write N(v) for N({v}). If S is nonempty, we denote by G[S] the induced
subgraph of G. The rank of the graph G, denoted by rank(G), is the rank
of its adjacency matrix A(G), that is, rank(G) = rank(A(G)). It is known
that η(G) = n− rank(G). The graph G is said to be an expanded graph if its
vertex set V(G) can be partitioned into V1, V2 . . . , Vk, k ≥ 2, such that G[Vi]
is an empty graph, for 1 ≤ i ≤ k. If G[Vi ∪ Vj] is a nonempty graph, it is a
complete bipartite graph for 1 ≤ i, j ≤ k, i 6= j. If G is an expanded graph
on V1, V2, . . . , Vk, each Vi, for 1 ≤ i ≤ k, is called an expanded vertex of order
|Vi|. We observe that each simple graph can be viewed as an expanded graph.

The n-vertex graph G is said to be an expanded path of length k if its vertex
set V(G) can be partitioned into V1, . . . , Vk, k ≥ 2, such that

(i) G[Vi] is an empty graph for 1 ≤ i ≤ k,

(ii) G[Vi ∪ Vi+1] is a complete bipartite graph for 1 ≤ i ≤ k− 1,

(iii) G[Vi ∪ Vj] is an empty graph for 1 ≤ i, j ≤ k with j 6= i+ 1.
We use the notation Pk(V1, . . . , Vk) to denote an expanded path on V1, . . . , Vk
of length k. Similarly, an expanded cycle of length k, denoted by Ck(V1, . . . , Vk),
is obtained from the expanded path Pk(V1, . . . , Vk) by adding edges between
each vertex of V1 and each of Vk. When there is no ambiguity, we simply write
Pk and Ck respectively to represent an expanded path and an expanded cycle
of length k. An expanded decomposition of the graph G is a list of expanded
subgraphs such that each edge of G appears in exactly one expanded subgraph
in the list.

The graph G is tripartite if its vertex set can be partitioned into three subsets
X, Y and Z such that G[X], G[Y] and G[Z] are empty graphs; such a partition
(X, Y, Z) is called a tripartition. For any S ⊆ V(G), we denote by NX(S) the
neighbors of S in X. Analogously, we can define NY(S) and NZ(S). We consider
a special class of tripartite graphs defined as follows. Let Tn be the family of
those n-vertex tripartite graphs G, n ≥ 5, whose tripartition (X, Y, Z) satisfies
the following:

NX(Y
′) 6= X and NZ(Y

′) 6= Z ∀ Y ′ ⊆ Y, (1)

G[X ∪ Z] is complete bipartite. (2)
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Lemma 1 (Fan [4]) An expanded path of length k ≥ 2 and order n has nul-
lity n− k, if k is even and n− k+ 1, if k is odd.

Let Kn1,n2
denote the complete bipartite graph, where n1 and n2 are the sizes

of its partite sets. Also, K1 denotes an isolated vertex and r K1 denotes r copies
of K1. Then the following result characterizes the graphs with nullity n− 2.

Lemma 2 (Cheng [1]) Let G be an n-vertex simple graph, n ≥ 2. Then
η(G) = n − 2 if and only if G ∼= Kn1,n2

∪ n3K1, where n = n1 + n2 + n3,
n1, n2 > 0 and n3 ≥ 0.

3 Main results

Let G ∈ Tn with tripartition (X, Y, Z). The adjacency matrix A(G) of G is
defined by

A(G) =


X Z Y

X 0 J C1

Z Jt 0 C2

Y Ct1 Ct2 0

,
where J and 0 respectively denote the matrices with all entries 1 and 0. Let C
and B denote the matrices defined as follows.

C =

[
C1
C2

]
and B =

[
0 J

Jt 0

]
.

The matrix A(G) can be viewed as

A(G) =

[
B C

Ct 0

]
. (3)

Let

U = [B C], L = [Ct 0]. (4)

Then A(G) can be written as A(G) =

[
U

L

]
.

For each v ∈ X ∪ Z, we denote by Uv the row of A(G) corresponding to
the vertex v. Similarly, for each v ∈ Y, the row of A(G) corresponding to the
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vertex v is denoted by Lv. Let S ⊆ X ∪ Z. Then from the matrix A(G), we see
that ∑

v∈S
kvUv = [b1 b2 c], (5)

where b1, b2 are constant row matrices respectively of dimension 1 × |X| and
1×|Z|, c is row vector of dimension 1×|Y|, and kv’s are real constants. Similarly,
for any Y ′ ⊆ Y, we can write∑

v∈Y ′
k
′
vLv = [c1 c2 0], (6)

where c1, c2 and 0 are row vectors respectively of dimension 1 × |X|, 1 × |Z|

and 1× |Y|, and k
′
v’s are real constants.

The following result gives information about the rank of a tripartite graph
in Tn.

Lemma 3 Let G ∈ Tn with tripartition (X, Y, Z) and adjacency matrix defined
by (3). Then

rank(G) = rank(U) + rank(L), (7)

where U and L are defined by (4).

Proof. Let S and Y ′ be arbitrary subsets, respectively of X∪Z and Y. To prove
(7), it is enough to show that

∑
v∈S kvUv 6=

∑
v∈Y ′ k

′
vLv whenever

∑
v∈S kvUv 6=

0 and
∑
v∈Y ′ k

′
vLv 6= 0, and kv’s and k ′v’s are real constants.

We can write
∑
v∈S kvUv = [b1 b2 c] and

∑
v∈Y ′ k

′
vLv = [c1 c2 0], where b1,

b2, c, c1, c2 and 0 are defined in (5) and (6). By condition (1), there exists a
vertex in X which is not adjacent to any vertex in Y. Similarly, there exists a
vertex in Z which is not adjacent to any vertex in Y. Thus there are at least two
zero columns in Ct corresponding to a vertex in X and to a vertex in Z. That
is, there are zero entries in vectors c1 and c2. Now, if

∑
v∈S kvUv =

∑
v∈Y ′ k

′
vLv

then [b1 b2 c] = [c1 c2 0]. As b1 and b2 are constant vectors, the vectors b1,
b2, c, c1, c2 are all zero vectors. This completes the proof. �

Corollary 4 Let G ∈ Tn with tripartition (X, Y, Z) and the adjacency matrix
A(G) defined by (3). Then rank(G) = 2(1+ rank(C)).

Proof. By the construction of the matrix A(G) and by the arguments used
in Lemma 3, we see that rank(U) = rank(B) + rank(C). Since rank(B) = 2
and rank(L) = rank(C) = rank(Ct), we get from (7) that rank(G) = 2(1 +
rank(C)). �
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Let Ck(e) denote an expanded cycle of length k with an expanded chord
e joining two non-adjacent expanded vertices of the cycle Ck. We have the
following observation.

Lemma 5 If G = C5(e)∪kK1 is a graph of order n shown in Figure 1, k ≥ 0,
then G ∈ Tn and η(G) = n− 4.

Proof. Let X = X1 ∪ X ′, Z = Z1 ∪ Z ′ and Y = Y1 ∪ Y ′, where Y ′ is possibly
empty. Then we see that the graph G is a tripartite graph with tripartition
(X, Y, Z). Moreover, G satisfies (1) because NX ′(Y) = ∅ and NZ ′(Y) = ∅. Also,
G[X ∪ Z] = P(X,Z), that is, G satisfies (2). Thus G ∈ Tn. Let A(G) be the
adjacency matrix of G defined by (3). By the construction of G, we see that
all rows of Ct are identical and therefore rank(C) = 1. By Corollary 4, we
conclude that η(G) = n− 4. �

X1 1

1

e

X

Z

Z

Y Y

' '

'

Figure 1: An expanded graph C5(e) ∪ kK1

The next result gives the nullity set of the graphs in Tn.

Theorem 6 Let m1,m2 and m3 be positive integers such that n = m1+m2+
m3. Then for each integer k ∈ {0, 1, . . . ,min{m1+m3−2,m2}}, there is a graph
G ∈ Tn with tripartition (X, Y, Z) such that |X| = m1, |Y| = m2, |Z| = m3 and
η(G) = n − 2(k + 1). Conversely, if G ∈ Tn with tripartition (X, Y, Z) then
η(G) = n− 2(1+ k), where k ∈ {0, 1, . . . ,min{|X|+ |Z|− 2, |Y|}}.

Proof. First, we prove that for each k ∈ {0, 1, . . . ,min{m1+m3−2,m2}}, there
is a graph G ∈ Tn with tripartition (X, Y, Z) such that |X| = m1, |Y| = m2, |Z| =
m3 and η(G) = n−2(k+1). We take three non-empty sets X = {x1, x2, . . . , xm1

},
Y = {y1, y2, . . . , ym2

} and Z = {z1, z2, . . . , zm3
}. If k = 0, we construct a graph

G = P(X,Z) ∪m2K1. Clearly, G ∈ Tn. By using Lemma 2, η(G) = n − 2. If
k > 0, we consider following two cases.
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Case 1. When k ≤ m1 − 1. Since k ≤ m2, we construct a tripartite graph G
with tripartition (X, Y, Z) that satisfies the following.

(i) G[X ∪ Z] = P(X,Z),

(ii) |NX(yi)| = 1 and NZ(yi) = ∅ for 1 ≤ i ≤ k,

(iii) NX(yi) ∩NX(yj) = ∅ for i 6= j and 1 ≤ i, j ≤ k,

(iv) d(yi) = 0 for k+ 1 ≤ i ≤ m2.

Then G ∈ Tn. Moreover, the adjacency matrix of G is given by (3), where

C =

[
Ik×k 0k×(m2−k)

0(m1+m3−k)×k 0(m1+m3−k)×(m2−k)

]
.

Then rank(C) = k. By Corollary 4, we get η(G) = n− 2(1+ k).
Case 2. When k > m1 − 1. Since k ≤ m2 and k − (m1 − 1) ≤ m3 − 1,
we construct a tripartite graph G with tripartition (X, Y, Z) that satisfies the
following.

(i) G[X ∪ Z] = P(X,Z),

(ii) |NX(yi)| = 1 for 1 ≤ i ≤ m1 − 1,

(iii) |NZ(yi)| = 1 for m1 ≤ i ≤ k,

(iv) NX(yi) ∩NX(yj) = ∅ for i 6= j and 1 ≤ i, j ≤ m1 − 1,

(v) NZ(yi) ∩NZ(yj) = ∅ for i 6= j and m1 ≤ i, j ≤ k,

(vi) d(yi) = 0 for k+ 1 ≤ i ≤ m2.

Then G ∈ Tn. Moreover, the adjacency matrix of G is given by (3), where

C =
I(m1−1)×(m1−1) 0(m1−1)×(k−m1+1) 0(m1−1)×(m2−k)

01×(m1−1) 01×(k−m1+1) 01×(m2−k)

0(k−m1+1)×(m1−1) I(k−m1+1)×(k−m1+1) 0(k−m1+1)×(m2−k)

0(m1+m2−1−k)×(m1−1) 0(m1+m2−1−k)×(k−m1+1) 0(m1+m2−1−k)×(m2−k)

 .

Then rank(C) = k. Corollary 4 gives η(G) = n− 2(1+ k).
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Conversely, we show that if G ∈ Tn with tripartition (X, Y, Z), then η(G) =
n−2(1+k) where k ∈ {0, 1, . . . ,min{|X|+|Z|−2, |Y|}}. By Corollary 4, rank(G) =
2(1+rank(C)). By (1), there are at least two zero rows in C. This implies that
rank(C) ≤ min{|X|+ |Z|− 2, |Y|}. The result is true by setting rank(C) = k. �

From Corollary 4, for each graph G ∈ Tn with A(G) defined by (3), we can
write

η(G) = n− 2(1+ rank(C)). (8)

The next result is a direct consequence of Lemma 2.

Theorem 7 For a graph G ∈ Tn with tripartition (X, Y, Z), η(G) = n − 2 if
and only if G = P(X,Z) ∪ |Y|K1.

Proof. Let G ∈ Tn with tripartition (X, Y, Z) and η(G) = n − 2. Then from
equation (8), we have rank(C) = 0. That is, d(y) = 0 for all y ∈ Y. Thus
G = P(X,Z) ∪ |Y|K1. Conversely, suppose that G = P(X,Z) ∪ |Y|K1. Using
Lemma 1, we see that η(G) = n− 2. �

Theorem 8 Let G ∈ Tn with tripartition (X, Y, Z) and n ≥ 4. Then η(G) =
n− 4 if and only if G is a graph H possibly with some isolated vertices, where
H is an expanded path of length 4 or the expanded graph C5(e).

Proof. Let G ∈ Tn with tripartition (X, Y, Z) and η(G) = n− 4. Let A(G) be
the adjacency matrix of G defined by (3). Then by (8), we have rank(C) = 1,
that is, rank(L) = 1. This means that there is only one independent row, say,
Ly0 in L, where y0 ∈ Y is the vertex corresponding to Ly0 . Then for each y ∈ Y,
either N(y) = N(y0) or N(y) = ∅. Let Y1 ⊆ Y is the set of all vertices of Y
with non-zero degree. We have the following three cases.
Case 1. When NZ(Y1) = ∅. In this case, N(Y1) ⊆ X. By condition (1), N(Y1) 6=
X. We partition X, Y and Z into Y1, N(Y1), Z and X \ N(Y1). Then G can
be drawn as an expanded path P(Y1, N(Y1), Z, X \N(Y1)) possibly with some
isolated vertices in Y \ Y1.
Case 2. When NX(Y1) = ∅. In this case, N(Y1) ⊆ Z. By condition (1), N(Y1) 6=
Z. We partition X, Y and Z into Y1, N(Y1), X and Z \ N(Y1). Then G can
be drawn as an expanded path P(Y1, N(Y1), X, Z \N(Y1)) possibly with some
isolated vertices in Y \ Y1.
Case 3. When NX(Y1) 6= ∅ and NZ(Y1) 6= ∅. We can partition X into X1 and
X ′, such that X1 = NX(Y1) and X ′ = X \X1. Similarly, we can partition Z into
Z1 and Z ′, such that Z1 = NZ(Y1) and Z ′ = Z \Z1. Then, using condition (2),
one can draw the graph G as an expanded graph C5(e) (shown in Figure 1).
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There are possibly some isolated vertices in Y ′, where Y ′ = Y \ Y1.

Y Z X - N(Y ) N(Y )

Y X Z - N(Y ) N(Y )1 1

1

1

11

Figure 2: Two expanded paths P(Y1, N(Y1), Z, X\N(Y1)) and P(Y1, N(Y1), X, Z\
N(Y1)) of length 4

Conversely, let G be drawn as an expanded path of length 4 possibly with
some isolated vertices. Then Lemma 1 yields that η(G) = n− 4. Furthermore,
if G can be drawn as C5(e) with some isolated vertices, then using Lemma 5,
we get η(G) = n− 4. �

4 Some graphs in Tn with nullity n− 6

In this section, we consider some graphs in Tn, n ≥ 6, with nullity n− 6. Let
G ∈ Tn with tripartition (X, Y, Z) and let X ′ = X \NX(Y). Note that X ′ 6= ∅ by
(1). We assume that

G[NX(Y) ∪ Y] = P(NX(Y), Y). (9)

The following result gives a characterization of a graph G in Tn, n ≥ 6

satisfying (9) and η(G) = n− 6.

Theorem 9 Let G ∈ Tn with tripartition (X, Y, Z), n ≥ 6. Assume that G
satisfies (9) and η(G) = n − 6. Then G has one of the following expanded
decomposition.

(1) C5(e), P2,

(2) C5(e), C3, P2,

(3) 2C5(e), 2P2,

(4) C5(e), C3, 2P2.
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Proof. Let G ∈ Tn with tripartition (X, Y, Z) satisfying (9) and η(G) = n− 6,
n ≥ 6. Let X ′ = X \NX(Y) and Z ′ = Z \NZ(Y). From (1), we see that X ′ and
Z ′ are nonempty. Let A(G) be the adjacency matrix of G defined by (3). Since
η(G) = n − 6, using Corollary 4, we have rank(L) = 2. This implies that L
has two independent rows, say, Ly1 and Ly2 , where y1, y2 ∈ Y. Using (1) and
(9), the columns of L corresponding to the vertices of X are constant. Then
for each y ∈ Y, either Ly = Ly1 or Ly = Ly2 . Thus we partition Y into Y1 and
Y2, where

Y1 = {y ∈ Y | Ly = Ly1}, Y2 = {y ∈ Y | Ly = Ly2}.

Note that NZ(y) = NZ(Y1) for each y ∈ Y1, and NZ(y) = NZ(Y2) for each
y ∈ Y2. Since rank(L) = 2, either NZ(Y1) 6= ∅ or NZ(Y2) 6= ∅. Without loss
of generality, assume that NZ(Y1) 6= ∅ and NZ(Y1) 6⊆ NZ(Y2). The following
three cases are possible.

Case 1. When NZ(Y1) ∩NZ(Y2) = ∅.
If NZ(Y2) = ∅, then NZ(Y) = NZ(Y1). We draw the graph G as an expanded
graph on six expanded vertices X1 = NX(Y), X

′, Z1 = NZ(Y), Z
′, Y1 and Y2.

Here Y ′ is possibly empty. The graph is shown in Figure 3 (i). In this case, we
can decompose the graph G into C5(e) and P2.

If NZ(Y2) 6= ∅, we partition NZ(Y) into Z1 = NZ(Y1) and Z2 = NZ(Y2). We
draw the graph G as an expanded graph on seven expanded vertices X1 =
NX(Y), X

′, Z1 = NZ(Y1), Z2 = NZ(Y2), Z
′, Y1 and Y2. The graph is shown in

Figure 3 (ii). In this case, the graph can be decomposed into C5(e), C3 and
P2.

Case 2. When NZ(Y1) ∩NZ(Y2) 6= ∅ and NZ(Y2) 6⊆ NZ(Y1).
Let Z1 = NZ(Y1) ∩NZ(Y2), Z2 = NZ(Y1) \NZ(Y2) and Z3 = NZ(Y2) \NZ(Y1).
Then Z ′, Z1, Z2 and Z3 form a partition of Z. The graph can be drawn as an
expanded graph on eight expanded vertices X1 = NX(Y), X

′, Z1, Z2, Z3, Z
′,

Y1 and Y2. The graph is shown in Figure 4 (i). In this case, the graph G can
be decomposed into 2C5(e) and 2P2.

Case 3. When NZ(Y1) ∩NZ(Y2) 6= ∅ and NZ(Y2) ⊆ NZ(Y1).
We draw the graph G as an expanded graph on seven expanded vertices X1 =
NX(Y), X

′, Z1 = NZ(Y2), Z2 = NZ(Y1) \NZ(Y2), Z
′, Y1 and Y2. The graph is

shown in Figure 4 (ii). The graph G can be decomposed into C5(e), C3 and
2P2. �
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X1 1

1

Z

Y 2Y

Z X' '

X1

1

1

Z

Y 2Y

Z X' '

2Z

(i) (ii)

Figure 3: Graphs drawn in Case 1 with N(Y1) ∩N(Y2) = ∅

X1
1

1

Z

Y 2Y

Z X' '

2Z
3Z

X1
1

1

Z

Y 2Y

Z X' '

2Z

(i) (ii)

Figure 4: Graphs drawn in Case 2 and Case 3 with N(Y1) ∩N(Y2) 6= ∅

5 Conclusion

We studied n-vertex tripartite graphs satisfying (1) and (2). We obtained
the nullity set of this class of n-vertex tripartite graphs and characterized
them with nullity n− 4. It will be interesting to consider a more general class
of n-vertex tripartite graphs and to characterize them with their nullity. In
Theorem 9, we characterized those n-vertex tripartite graphs whose nullity is
n− 6 and that satisfy (1), (2) and (9). We are not sure about the converse of
Theorem 9 and it is left as an open problem.
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