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1 Introduction

The problem of finding the metric dimension of a graph was first studied by
Harary and Melter [7]. Determining the metric dimension of a graph as an
NP-complete problem has attracted many graph theorists and it has appeared
in various applications of graph theory, for example pharmaceutical chemistry
[5], robot navigation [8], combinatorial optimization [14] and so on. Recently,
there was much work done in computing the metric dimension of graphs as-
sociated with algebraic structures. Calculating the metric dimension for the
commuting graph of a dihedral group was done in [1], for the zero-divisor
graphs of commutative rings in [9, 10, 12], for the compressed zero-divisor
graphs of commutative rings in [13], for total graphs of finite commutative
rings in [6], for some graphs of modules in [11] and for annihilator graphs of
commutative rings in [15]. Motivated by these papers, we study the metric
dimension of another graph associated with a commutative ring.

Throughout this paper, all rings are assumed to be commutative with iden-
tity. The sets of all zero-divisors, nilpotent elements and maximal ideals are
denoted by Z(R), Nil(R) and Max(R), respectively. For a subset T of a ring R

we let T∗ = T \{0}. An ideal with non-zero annihilator is called an annihilating-
ideal. The set of annihilating-ideals of R is denoted by A(R). For every subset
I of R, we denote the annihilator of I by Ann(I). A non-zero ideal I of R is
called essential if I has a non-zero intersection with every other non-zero ideal
of R. The set of essential annihilating-ideal ideals of R is denoted by Ess(R).
The ring R is said to be reduced if it has no non-zero nilpotent element. Some
more definitions about commutative rings can be find in [2, 4].

We use the standard terminology of graphs following [18]. Let G = (V, E)
be a graph, where V = V(G) is the set of vertices and E = E(G) is the set of
edges. We recall that a graph is connected if there exists a path connecting
any two distinct vertices. The distance between two distinct vertices x and
y, denoted by d(x, y), is the length of the shortest path connecting them (if
such a path does not exist, then we set d(x, y) = ∞). The diameter of a
connected graph G, denoted by diam(G), is the maximum distance between
any pair of vertices of G. For a vertex x in G, we denote the set of all vertices
adjacent to x by N(x) and N[x] = N(x) ∪ {x}. A k-partite graph is one whose
vertex set can be partitioned into k subsets so that an edge has both ends
in no subset. A complete k-partite graph is a k-partite graph in which each
vertex is adjacent to every vertex that is not in the same subset. The complete
bipartite (i.e., 2-partite) graph with part sizes m and n is denoted by Km,n.
If m = 1, then the bipartite graph is called star. A graph in which each
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pair of vertices is joined by an edge is called a complete graph and use Kn

to denote it with n vertices and its complement is denoted by Kn (possibly
n is zero). Also, a cycle of order n is denoted by Cn. A subset of vertices
S ⊆ V(G) resolves a graph G, and S is a resolving set of G, if every vertex is
uniquely determined by its vector of distances to the vertices of S. In general,
for an ordered subset S = {v1, v2, . . . , vk} of vertices in a connected graph G

and a vertex v ∈ V(G) \ S of G, the metric representation of v with respect
to S is the k-vector D(v|S) = (d(v, v1), d(v, v2), . . . , d(v, vk)). The set S is
a resolving set for G if D(u|S) = D(v|S) implies that u = v, for all pair
of vertices, v, u ∈ V(G) \ S. A resolving set S of minimum cardinality is the
metric basis for G, and the number of elements in the resolving set of minimum
cardinality is the metric dimension of G. We denote the metric dimension of
a graph G by dimM(G). Let G be a connected graph such that |V(G)| ≥ 2.
Two distinct vertices u and v are distance similar, if d(u, x) = d(v, x), for all
x ∈ V(G) \ {u, v}. It can be easily checked that two distinct vertices u and v

are distance similar if either u − v 6∈ E(G) and N(u) = N(v) or u − v ∈ E(G)
and N[u] = N[v].

Let R be a commutative ring with identity and A(R) be the set of ideals with
non-zero annihilator. The strongly annihilating-ideal graph of R is defined as
the graph SAG(R) with the vertex set A(R)∗ = A(R) \ {0} and two distinct
vertices I and J are adjacent if and only if I∩Ann(J) 6= (0) and J∩Ann(I) 6= (0).
This graph was first introduced and studied in [16, 17]. It is worthy to mention
that strongly annihilating-ideal graph is a generalization of annihilating-ideal
graph. The annihilating-ideal graph of R, denoted by AG(R), is a graph with
the vertex set A(R)∗ and two distinct vertices I and J are adjacent if and only if
IJ = 0 (see [3] for more details). In this paper, we study the metric dimension
of SAG(R) and we provide some metric dimension formulas for SAG(R).

2 Metric dimension of a strongly annihilating-ideal
graph of a reduced ring

Let R be a commutative ring. In this section, we provide a metric dimension
formula for a strongly annihilating-ideal graph when R is reduced.

Lemma 1 Let R be a ring which is not an integral domain. Then dimM(SAG(R))
is finite if and only if R has only finitely many ideals.

Proof. One side is clear. To prove the other side, suppose that dimM(SAG(R))
is finite and let W = {I1, I2, . . . , In} be the metric basis for SAG(R), where n
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is a non-negative. By [16, Theorem 2.1], diam(SAG(R)) ≤ 2 and so for every
I ∈ A(R)∗\W, there are (2+1)n possibilities for D(I|W). Thus |A(R)∗| ≤ 3n+n

and hence R has only finitely many ideals. �

If R is a reduced ring with finitely many ideals, then by [2, Theorem 8.7], R is
a direct product of finitely many fields. Using this fact, we prove the following
result.

Theorem 1 Let R be a reduced ring which is not an integral domain. If
dimM(SAG(R)) is finite, then:

(1) If |Max(R)| ≤ 3, then dimM(SAG(R)) = |Max(R)|− 1.
(2) If |Max(R)| ≥ 4, then dimM(SAG(R)) = |Max(R)|.

Proof. (1) Since dimM(SAG(R)) is finite, R has only finitely many ideals,
by Lemma 1. Also, since R is not an integral domain, |Max(R)| 6= 1. Hence
|Max(R)| = 2 or 3. If |Max(R)| = 2, then R ∼= F1 × F2, where Fi is a field. Thus
SAG(R) = K2 and so dimM(SAG(R)) = 1. If |Max(R)| = 3, then R ∼= F1× F2×
F3, where Fi is a field for every 1 ≤ i ≤ 3. Let W = {F1× (0)×F3, F1×F2× (0)}.
By the following figure, one may easily get
D((0)× F2 × (0)|W) = (1, 2),
D(F1 × (0)× (0)|W) = (2, 2),
D((0)× (0)× F3|W) = (2, 1),
D((0)× F2 × F3|W) = (1, 1).
So for every x, y ∈ V(SAG(R))\W, D(x|W) 6= D(y|W) and hence dimM(SAG

(R)) = 2.
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(2) Assume that |Max(R)| = n ≥ 4. By Lemma 1, R ∼= F1 × · · · × Fn, where
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Fi is a field for every 1 ≤ i ≤ n. We show that dimM(SAG(R)) = n. Indeed,
we have the following claims:

Claim 1. dimM(SAG(R)) ≥ n.

Since R ∼= F1 × · · · × Fn , by Lemma 1, dimM(SAG(R)) is finite. Let W =
{I1, I2, . . . , Ik} be the metric basis for SAG(R), where k is a positive integer.
On the other hand, by [16, Theorem 2.1], diam(SAG(R)) ∈ {1, 2}, and so for
every I ∈ A(R)∗ \W, there are 2k possibilities for D(I|W). This implies that
|A(R)∗|−k ≤ 2k. Since |A(R)∗| = 2n−2, 2n−2−k ≤ 2k and hence 2n ≤ 2k+2+k.
Since n ≥ 4, we deduce that k ≥ n. Therefore dimM(SAG(R)) ≥ n.

Claim 2. dimM(SAG(R)) ≤ n.

For every 1 ≤ i ≤ n, let (F1, . . . , Fi−1, 0, Fi+1, . . . , Fn) = mi ∈ A(R)∗. Put
W = {m1,m2, . . . ,mn} (in fact W = Max(R)). We show that W is the resolving
set for SAG(R). To see this, let I, J ∈ V(SAG(R)) \W and I 6= J. We need only
to show that D(I|W) 6= D(J|W). Let I = (I1, I2, . . . , In) and J = (J1, J2, . . . , Jn).
Since I 6= J, Ii = 0 and Ji = Fi or Ii = Fi and Ji = 0, for some 1 ≤ i ≤ n.
Without loss of generality, assume that I1 = 0 and J1 = F1. It is easy to see
that d(I,m1) = 1 and d(J,m1) = 2. This clearly shows that D(I|W) 6= D(J|W).
Therefore dimM(SAG(R)) ≤ n.

Now, by Claims 1, 2, dimM(SAG(R)) = n, for n ≥ 4. �

3 Metric dimension of a strongly annihilating-ideal
graph of a non-reduced ring

In this section, we discuss the metric dimension of strongly annihilating-ideal
graphs for non-reduced rings. First we need to recall two lemmas from [16].

Lemma 2 [16, Lemma 2.1] Let R be a ring and I, J ∈ A(R)∗. Then the follow-
ing statements hold.

(1) If I− J is not an edge of SAG(R), then Ann(IJ) = Ann(I) or Ann(IJ) =
Ann(J). Moreover, if R is a reduced ring, then the converse is also true.

(2) If I− J is an edge of AG(R), then I− J is an edge of SAG(R).

(3) If Ann(I) * Ann(J) and Ann(J) * Ann(I), then I − J is an edge of
SAG(R). Moreover if R is a reduced ring, then the converse is also true.
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(4) Let n ≥ 1 be a positive integer. Suppose that R ∼= R1×· · ·×Rn, where Ri

is a ring, for every 1 ≤ i ≤ n, and I = (I1, . . . , In) and J = (J1, . . . , Jn)
are two vertices of SAG(R). If Ii ∩Ann(Ji) 6= (0) and Jj ∩Ann(Ij) 6= (0),
for some 1 ≤ i, j ≤ n, then I− J is an edge of SAG(R). In particular, if
Ii − Ji is an edge of SAG(Ri) or Ii = Ji and Ii ∩Ann(Ii) 6= (0), for some
1 ≤ i ≤ n, then I− J is an edge of SAG(R).

(5) If I, J ∈ Ess(R) or Ann(I),Ann(J) ∈ Ess(R), then I is adjacent to J.

(6) If dAG(R)(I, J) = 3 for some distinct I, J ∈ A(R)∗, then I− J is an edge of
SAG(R).

(7) If I − J is not an edge of SAG(R) for some distinct I, J ∈ A(R)∗, then
dAG(R)(I, J) = 2.

Lemma 3 [16, Lemma 2.2] Let R be a non-reduced ring and I be an ideal of
R such that In = (0), for some positive integer n. Then Ann(I) is an essential
ideal of R.

Remark 1 Let G be a connected graph and V1, V2, . . . , Vk be a partition of
V(G) such that for every 1 ≤ i ≤ k, if x, y ∈ Vi, then N(x) = N(y). Then
dimM(G) ≥ |V(G)|− k.

Next, we provide some formulas for the metric dimension of strongly annihilating-
ideal graphs for non-reduced rings.

Theorem 2 Suppose that R ∼= R1 × · · · × Rn, where Ri is an Artinian local
ring such that for every 1 ≤ i ≤ n, |A(Ri)

∗| = 1. Then dimM(SAG(R)) = 2n.

Proof. Assume that X = (R1, 0, . . . , 0) and Y = (I1, 0, . . . , 0), where I1 ∈
A(R1)

∗. By Part 4 of Lemma 2, it is easy to see that N(X) = N(Y). This implies
that if W is the metric basis for SAG(R), then X ∈ W or Y ∈ W. Without
loss of generality, we may assume that X ∈W. Similarly, we may assume that
W1 ⊆W, where W1 = {(R1, 0, . . . , 0), (0, R2, 0, . . . , 0), . . . , (0, . . . , 0, Rn)}.

Now, assume that X = (0, R2, . . . , Rn) and Y = (I1, R2, . . . , Rn), where I1 ∈
A(R1)

∗. It is easy to see that N(X) = N(Y) and so if W is the metric basis for
SAG(R), then X ∈ W or Y ∈ W. Without loss of generality, we may assume
that X ∈W. Similarly, we may assume that W2 ⊆W, where

W2 = {(0, R2, . . . , Rn), (R1, 0, R3, . . . , Rn), . . . , (R1, . . . , Rn−1, 0)}.

Since |W1| = |W2| = n and W1 ∪W2 ⊆W, |W| ≥ 2n. We show that |W| ≤ 2n.
For this, it is enough to show that W is a resolving set and consequently it is
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the metric basis for the graph SAG(R). Let X, Y 6∈W, X 6= Y, X = (I1, . . . , In)
and Y = (J1, . . . , Jn). We show that D(X|W) 6= D(Y|W). Since X 6= Y, for some
1 ≤ i ≤ n, we conclude that Ii 6= Ji. Without loss of generality, one may
assume that I1 ⊃ J1. We have the following cases:

Case 1. I1 = R1.

Subcase 1. For some 2 ≤ j ≤ n, Jj 6= 0. In this case, Z − Y is an edge of
SAG(R) but Z − X is not an edge of SAG(R), where Z = (R1, 0, . . . , 0). Since
Z ∈W, we deduce that D(X|W) 6= D(Y|W).

Subcase 2. For every 2 ≤ j ≤ n, Jj = 0. Since I1 = R1 and (R1, 0, . . . , 0) ∈W,
for some 2 ≤ i ≤ n, Ii 6= 0. If Ii = Ri, for some 2 ≤ i ≤ n, then Z−Y is an edge
of SAG(R) but Z−X is not an edge of SAG(R), where Z = (0, . . . , 0, Ri, 0 . . . , 0).
So we can let for every 2 ≤ i ≤ n, Ii 6= Ri. Now, without loss of generality,
we may assume that I2 6= 0. Obviously, Z − X is an edge of SAG(R) but
Z − Y is not an edge of SAG(R), where Z = (R1, 0, R3 . . . , Rn). Since Z ∈ W,
D(X|W) 6= D(Y|W).

Case 2. I1 6= R1. Since I1 6= R1, J1 6= R1. Also, since X 6= Y, we may let

I1 ∈ A(R1)
∗ and J1 = 0. If Ii 6= Ri, for some 2 ≤ i ≤ n, then Z − X is an edge

of SAG(R) but Z − Y is not an edge of SAG(R), where Z = (0, R2, R3 . . . , Rn).
Since Z ∈ W, D(X|W) 6= D(Y|W). So let X = (I1, R2, . . . , Rn). Since J1 = 0

and Y /∈ W, for some 2 ≤ i ≤ n, Ji ∈ A(R1)
∗. Without loss of generality, we

may assume that J2 ∈ A(R2)
∗. If Ji 6= 0, for some 3 ≤ i ≤ n, then we put

Z = (0, R2, . . . , Ri−1, 0, Ri+1, . . . , Rn). It is not hard to check that Z − Y is an
edge of SAG(R) but Z − X is not an edge of SAG(R). If for every 3 ≤ i ≤ n,
Ji = 0, then we put Z = (R1, R2, . . . , 0, . . . , 0). In both cases we have that
D(X|W) 6= D(Y|W). Therefore, |W| ≤ 2n. �

Theorem 3 Suppose that R ∼= R1 × · · · × Rn, where Ri is an Artinian local
ring such that for every 1 ≤ i ≤ n, |A(Ri)

∗| ≥ 2. Then dimM(SAG(R)) =
|A(R)∗|− 3n + 2.

Proof. If R is local, then Lemma 3 implies that SAG(R) is complete and hence
dimM(SAG(R)) = |A(R)∗| − 1. So let R ∼= R1 × · · · × Rn and n ≥ 2. Assume
that
X = (I1, . . . , In), Y = (J1, . . . , Jn) are vertices of SAG(R). Define the relation

∼ on V(SAG(R)) as follows: X ∼ Y, whenever, the following two conditions
hold.

(1) “Ii = 0 if and only if Ji = 0” for every 1 ≤ i ≤ n.
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(2) “0 6= Ii ⊆ Nil(Ri) if and only if 0 6= Ji ⊆ Nil(Ri)” for every 1 ≤ i ≤ n.
It is easily seen that ∼ is an equivalence relation on V(SAG(R)). By [X], we

mean the equivalence class of X. Let X1 and X2 be two elements of [X]. Since
X1 ∼ X2, by Part 4 of Lemma 2, N(X1) = N(X2). This, together with the fact
that the number of equivalence classes is 3n − 2 and Remark 1, implies that

dimM(SAG(R)) ≥ |A(R)∗|− (3n − 2) = |A(R)∗|− 3n + 2.

We show that
dimM(SAG(R)) ≤ |A(R)∗|− 3n + 2.

Let
A = {(I1, . . . , In) ∈ V(SAG(R)) | Ii ∈ {0,Nil(Ri), . . . , Ri} for every 1 ≤ i ≤ n}

and W = A(R)∗ \A.
It is shown that W is a resolving set and consequently it is the metric basis

for the graph SAG(R). To see this, let X, Y ∈ A and X 6= Y. We show that
D(X|W) 6= D(Y|W). Let X = (I1, . . . , In) and Y = (J1, . . . , Jn). Since X 6= Y,
for some 1 ≤ i ≤ n, Ii 6= Ji. Without loss of generality, we may assume that
I1 ⊃ J1. We have the following cases:

Case 1. I1 = R1.

Subcase 1. J1 = 0. In this case Z−X is an edge of SAG(R) but Z−Y is not an
edge of SAG(R), where Z = (I′1, R2, . . . , Rn) and I′1 ∈ A(R1)

∗ \ {Nil(R1)}. Since
Z ∈W, D(X|W) 6= D(Y|W). Subcase 2. J1 = Nil(R1). In this case Z−Y is an

edge of SAG(R) but Z− X is not an edge of SAG(R), where Z = (J′1, 0, . . . , 0),
J′1 ∈ A(R1)

∗ and J′1 6= Nil(R1). Since Z ∈W, D(X|W) 6= D(Y|W).

Case 2. I1 = Nil(R1).

Since I1 6= J1 and I1 ⊇ J1, J1 = 0. Hence Z − X is an edge of SAG(R) but
Z − Y is not an edge of SAG(R), where Z = (J′1, R2, . . . , Rn) and J′1 ∈ A(R1)

∗

and J′1 6= Nil(R1). Since Z ∈W, D(X|W) 6= D(Y|W). Therefore,

dimM(SAG(R)) ≤ |W|.

Since |A| = 3n − 2, |W| = |A(R)∗|− (3n − 2) = |A(R)∗|− 3n + 2. Therefore,

dimM(SAG(R)) ≤ |A(R)∗|− 3n + 2.

�

Next, we provide some upper and lower bounds for the metric dimension of
strongly annihilating-ideal graphs for some other classes of non-reduced rings.
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Theorem 4 Suppose that R ∼= R1 × · · · × Rn × Fn+1 × · · · × Fn+m, where Ri is
an Artinian local ring such that |A(Ri)| = 2 for every 1 ≤ i ≤ n and Fi is a
field for every 1+n ≤ i ≤ n+m. Then n+m ≤ dimM(SAG(R)) ≤ 2n+m− 2.

Proof. Suppose that W = {I1, I2, . . . , Ik} be the metric basis for SAG(R),
for some non-negative integer k. Since diam(SAG(R)) ≤ 2, there are exactly
(2)k possibilities for D(I|W), for every I ∈ A(R)∗ \ W. On the other hand,
since |A(R)∗| = 3n2m − 2, we must have 3n2m − 2− k ≤ 2k. This implies that
n+m ≤ k. Hence n+m ≤ dimM(SAG(R)). It is shown that dimM(SAG(R)) ≤
2n+m − 2. Let
W = {(I1, . . . , In+m) ∈ V(SAG(R)) | Ii ∈ {0, R1, . . . , Rn, F1, . . . , Fm} for every

1 ≤ i ≤ n+m}.
We show that W is a resolving set for SAG(R). For this, let X, Y ∈ A(R)∗\W

and X 6= Y. We show that D(X|W) 6= D(Y|W). Let X = (I1, . . . , In+m) and
Y = (J1, . . . , Jn+m). Since X 6= Y, Ii 6= Ji, for some 1 ≤ i ≤ n+m.

We have the following cases:

Case 1. For some n+ 1 ≤ i ≤ n+m, Ii 6= Ji.

Without loss of generality, we may assume that i = n + m, In+m = Fn+m

and Jn+m = 0. Now, put Z = (R1, . . . , Rn, Fn+1 . . . , Fn+m−1, 0). Since for some
1 ≤ i ≤ n, Ii ∈ A(Ri)

∗, one may easily see that Z − X is an edge of SAG(R)
but Z− Y is not an edge of SAG(R). Since Z ∈W, D(X|W) 6= D(Y|W).

Case 2. For every n+ 1 ≤ i ≤ n+m, Ii = Ji.

Since Ii 6= Ji, for some 1 ≤ i ≤ n, one can let J1 ⊂ I1. Thus we have the
following subcases:

Subcase 1. J1 = 0 and I1 ∈ A(R1)
∗.

Since J1 = 0, for some 2 ≤ i ≤ n, Ji ∈ A(Ri)
∗. Hence one can let J2 ∈ A(R2)

∗.
If for some 2 ≤ i ≤ n, Ii 6= Ri or for some 1 +m ≤ i ≤ n +m, Ii 6= Fi, then
put Z = (0, R2, R3 . . . , Rn, Fn+1, . . . , Fn+m). Z − X is an edge of SAG(R) but
Z − Y is not an edge of SAG(R). Since Z ∈ W, D(X|W) 6= D(Y|W). So we let
X = (I1, R2 . . . , Rn, Fn+1, . . . , Fn+m) Similarly, if for some 3 ≤ i ≤ n, Ji 6= Ri

or for some 1 + m ≤ j ≤ n + m, Ji 6= Fi, then without loss of generality,
we may assume that J3 6= R3. Then put Z = (0, 0, R3 . . . , Rn, Fn+1, . . . , Fn+m).
Thus Z − Y is an edge of SAG(R) but Z − X is not an edge of SAG(R). Since
Z ∈ W, D(X|W) 6= D(Y|W). Now, let X = (I1, R2 . . . , Rn, Fn+1, . . . , Fn+m)
and Y = (0, J2, R3, . . . , Rn, Fn+1, . . . , Fn+m). Put Z = (0, R2, 0 . . . , 0, 0, . . . , 0).
Therefore, Z − Y is an edge of SAG(R) but Z − X is not an edge of SAG(R).
Since Z ∈W, D(X|W) 6= D(Y|W).
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Subcase 2. J1 = 0 and I1 = R1.

Since J1 = 0, for some 2 ≤ i ≤ n, Ji ∈ A(Ri)
∗. Hence one may let J2 ∈ A(R2)

∗.
Assume that Z = (R1, 0, . . . , 0). Thus Z − Y is an edge of SAG(R) but Z − X

is not an edge of SAG(R) (note that since Z ∈ W, Z 6= X). This implies that
D(X|W) 6= D(Y|W).

Subcase 3. J1 ∈ A(R1)
∗ and I1 = R1. If Ji 6= 0, for some 2 ≤ i ≤ n, then one

may assume that J2 6= 0. Suppose that Z = (R1, 0, . . . , 0). Then Z−Y is an edge
of SAG(R) but Z−X is not an edge of SAG(R). Hence D(X|W) 6= D(Y|W). Let
Y = (J1, 0, . . . , 0). Since X 6∈ W, for some 2 ≤ i ≤ n, Ii ∈ A(Ri)

∗. So, we can
let I2 ∈ A(R2)

∗. If Ii 6= 0, for some 3 ≤ i ≤ n, then we can assume that I3 6= 0.
If we put Z = (R1, R2, 0, . . . , 0), then we easily get D(X|W) 6= D(Y|W). Finally,
if X = (R1, I2, 0, . . . , 0) and Y = (J1, 0, . . . , 0), then D(X|W) 6= D(Y|W). Since
Z − X is an edge of SAG(R) but Z − Y is not an edge of SAG(R), where Z =
(R1, 0, R3, 0 . . . , 0). Therefore, dimM(SAG(R)) ≤ |W|. Since |W| = 2n+m − 2,
dimM(SAG(R)) ≤ 2n+m − 2. �

We end this paper with the following example.

Example 1 (1) Let R = Z4 × Z2. Then SAG(R) = C4 and hence dimM(SAG
(R)) = 2. Also, in Theorem 4, n = m = 1, and so dimM(SAG(R)) = 2.

(2) Let R = Z4×Z2×Z2 and dimM(SAG(R)) = k. We show that 3 ≤ k ≤ 6.
Since diam(SAG(R)) ≤ 2 and |A(R)∗| = 10, 10 − k ≤ 2k. Thus k ≥ 3. Let
W = {((2),Z2,Z2), ((2), 0,Z2), ((2),Z2, 0), ((2), 0, 0)}. Then
D((Z4, 0, 0)|W) = (1, 1, 1, 2),
D((Z4,Z2, 0))|W) = (1, 1, 2, 2),
D((Z4, 0,Z2))|W) = (1, 2, 1, 2),
D((0,Z2,Z2)|W) = (2, 1, 1, 1),
D((0,Z2, 0)|W) = (2, 1, 2, 1),
D((0, 0,Z2)|W) = (2, 2, 1, 1).
Therefore, W is a resolving set for SAG(R) and hence k ≤ 6.
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[6] D. Dolžan, The metric dimension of the total graph of a finite commuta-
tive ring, Canad. Math. Bull., 59 (2016), 748–759.

[7] F. Harary and R. A. Melter, On the metric domension of a graph, Ars
Combin., 2 (1976), 191–195.

[8] S. Khuller, B. Raghavachari, A. Rosenfeld, Localization in graphs, Tech-
nical report CS-TR-3326, University of Maryland at College Park, 1994.

[9] S. Pirzada, R. Raja and S. P. Redmond, Locating sets and numbers of
graphs associated to commutative rings, J. Algebra Appl. 13:7 (2014):
1450047 18 pp.

[10] S. Pirzada, R. Raja, On the metric domension of a zero-divisor graph,
Communications in Algebra, 45:4 (2017), 1399–1408.

[11] S. Pirzada, Rameez Raja, On graphs associated with modules over com-
mutative rings, J. Korean. Math. Soc., 53 (2016), 1167–1182.

[12] R. Raja, S. Pirzada and S. P. Redmond, On Locating numbers and codes
of zero-divisor graphs associated with commutative rings, J. Algebra
Appl., 15:1 (2016): 1650014 22 pp.

[13] S. Pirzada, M. Imran Bhat, Computing metric dimension of compressed
zero divisor graphs associated to rings, Acta Univ. Sapientiae, Mathemat-
ica, 10 (2) (2018), 298–318.



On the metric dimension of strongly annihilating-ideal graphs . . . 369
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