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On the distribution of q-additive functions

under some conditions III.
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Abstract. The existence of the limit distribution of a q-additive func-
tion over the set of integers characterized by the sum of digits is investi-
gated.

1 Introduction

Notation

N, R, C, as usual denote the set of natural, real and complex numbers, respec-
tively. Let N0 = N ∪ {0}.

q-additive and q-multiplicative functions

Let q ≥ 2 be an integer, the q-ary expansion of n ∈ N0 is defined as

n =

∞∑

j=0

εj (n)qj, (1)

where the digits εj (n) are taken from Aq = {0, 1, . . . , q − 1}. It is clear that
the right hand side of (1) is finite.

Let Aq be the set of q-additive, and Mq be the set of q-multiplicative
functions.
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116 I. Kátai

f : N0→ R belongs to Aq if f (0) = 0 and

f (n) =

∞∑

j=0

f
(

εj (n)qj
)

(n ∈ N0) . (2)

We say that g : N0→ C belongs to Mq, if g (0) = 1,

g (n) =

∞∏

j=0

g
(

εj (n) qj
)

(n ∈ N0) . (3)

Let M̄q ⊆ Mq be the set of those q-multiplicative functions g, for which
|g (n) | = 1 (n ∈ N0).

Let βh (n) =
∑

εj(n)=h

1 (h = 1, . . . , q − 1) , α (n) =
∞∑

j=0

εj (n). We say that

f ∈ Aq has a limit distribution, if

lim
x→∞

1

x
#{n ≤ x|f (n) < y} (= G (y)) (4)

exists for almost all y, and G is a distribution function, i.e. it is monotonic,
furthermore lim

y→−∞
G (y) = 0, lim

y→∞
G (y) = 1.

H. Delange [1] proved that f ∈ Aq has a limit distribution if and only the
series

∞∑

j=0

∑

a∈Aq

f
(

aqj
)

, (5)

∞∑

j=0

∑

a∈Aq

f2
(

aqj
)

(6)

are convergent. He proved that for some g ∈ M̄q, the limit

lim
x→∞

1

x

∑

n≤x

g (n) = M (g)

exists and M (g) 6= 0, if and only if

mj :=
1

q

∑

c∈Aq

g
(

cqj
)

6= 0 (j = 0, 1, 2, . . .) (7)
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and
∞∑

j=0

(1 − mj) =

∞∑

j=0

1

q





∑

c∈Aq

(

1 − g
(

cqj
))



 (8)

is convergent. Furthermore,

M (g) =

∞∏

j=0

mj, (9)

if (7) holds and (8) is convergent.

Distribution of q-additive functions under the conditions that

βh (n) are fixed.

For some fixed N, let r1, . . . , rq−1 be such nonnegative integers for which r1 +

· · · + rq−1 ≤ N. Let r0 = N − (r1 + · · · + rq−1) , r = (r1, r2, . . . , rq−1).
Let

SN (r) =
{

n < qN|βh (n) = rh, h = 1, . . . , q − 1
}

. (10)

Then

M (N|r) = #SN (r) =
N!

r0!r1! . . . rq−1!
. (11)

In [2] we proved the following

Lemma 1 Let f ∈ Aq, EN =
∑

b∈Aq

rb

N

N−1∑

j=0

f
(

bqj
)

,

∆N (r) =
1

M (N|r)

∑

n∈SN(r)

(f (n) − EN)2
. (12)

Then

∆N (r) < c

N−1∑

j=0

q−1∑

b=0

f2
(

bqj
)

, (13)

c is a constant which may depend only on q.

We shall prove

Theorem 1 Let g ∈ M̄q, assume that

∞∑

j=0

∑

b∈Aq

(

1 − g
(

bqj
))

(14)
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is convergent. Let λ0, λ1, . . . , λq−1 be positive numbers, such that λ0 + · · · +

λq−1 = 1. Let

H (g|λ0, . . . , λq−1) :=

∞∏

j=0





∑

b∈Aq

λjg
(

bqj
)



 . (15)

If r(N) =
(

r
(N)

1 , . . . r
(N)

q−1

)

is such a sequence for which
r
(N)

j

N
→ λj

(j = 1, . . . , q − 1), then

lim
N→∞

1

M
(

N|r(N)
)

∑

n<qN

n∈SN(r(N))

g(n) = H (g|λ0, . . . , λq−1) . (16)

Hence we obtain

Theorem 2 Let f ∈ Aq, assume that (5),(6) are convergent. Let λ0, . . . , λq−1

be positive numbers such that λ0+ · · ·+λq−1 = 1. Let η0, η1 . . . be independent

random variables, P
(

ηl = f
(

bql
))

= λb (b ∈ Aq).

Let

Θ =

∞∑

l=0

ηl, (17)

Fλ (y) := P (Θ < y) , λ = (λ1, . . . , λq−1) . (18)

From the 3 series theorem of Kolmogorov it follows that the sum (17) is con-

vergent with probability 1, thus Fλ (y) exists.

If
r
(N)

j

N
→ λj (j = 0, . . . , q − 1), then

lim
N→∞

1

M
(

N|r(N)
)#
{

n < qN|n ∈ SN

(

r(N)
)

, f (n) < y
}

= Fλ (y) ,

if y is a continuity point of Fλ.

Fλ is continuous, if f
(

bqj
)

6= 0 holds for infinitely many elements of
{
bqj|j =

0, 1, 2, . . . , b ∈ Aq

}
.

In [2] we proved Theorem 1 for λ1 = . . . = λq−1 = 1
q
, and in the case q = 2

for 0 < λ1 < 1.
Furthermore, in [2] we proved the following assertion.
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Theorem A Let f ∈ A2, f
(

2j
)

= O (1) (j ∈ N), ηN = 1
N

N−1∑

j=0

f
(

2j
)

,

B2
N :=

1

4

N−1∑

j=0

(

f
(

2j
)

− ηN

)2

.

Assume that BN→∞. Let ρN→ 0.

Then

lim
N→∞

1
(

N
k

)#

{

n < 2N

∣

∣

∣

∣

f (n) − kηN

BN

< y, α (n) = k

}

= Φ (y)

holds uniformly as N→∞, k = k(N) satisfies
∣

∣

∣

∣

k

N
−

1

2

∣

∣

∣

∣

< ρN.

In [3] we mentioned that we are able to prove that under the conditions of
Theorem A

lim
n→∞

sup
k
N
∈[δ,1−δ]

sup
y∈R

∣

∣

∣

∣

∣

1
(

N
k

)#

{

n < 2N, α (n) = k,
f (n) − kηN

2BN

√

(1 − η) η
< y

}

− Φ (y)

∣

∣

∣

∣

∣

.

This assertion is not true, the correct assertion is

Theorem 3 Let f ∈ A2, f
(

2j
)

= O (1) (j = 0, 1, 2, . . .) . Let mN =
N−1∑

j=0

f
(

2j
)

,

σ2
N =

N−1∑

j=0

(

f
(

2j
)

− mN

N

)2
. Let 0 < λ < 1,

Fr,N (y) =
1
(

N
r

)#

{

n < 2N, α (n) = r,
f (n) − r

N
mN

σN

< y

}

.

Furthermore, let Fλ (y) be the distribution the characteristic function ϕλ (τ) =
∞∑

l=0

αl
(iτ)l

l!
of which is given by the following formulas:

αl = 0, if l is odd, α0 = 1,

α2k =

2k∑

t=1

λt

t!2t

∑

2m≤t

(−1)m

(

t

2m

)

· 22m (2m − 1) !! (k = 1, 2, . . .).
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Since α2k is bounded as k → ∞, therefore the series defining ϕλ (τ) is abso-

lutely convergent in |τ| < 1.

We have

lim
r
N
→λ

N→∞

Fr,N (y) = Fλ (y) .

2 Proof of Theorem 1 and 2

Let us define f
(

bqj
)

as the argument of g
(

bqj
)

, i.e. g
(

bqj
)

= eif(bqj). The
condition (8) implies the convergence of (5) and (6). We can extend f as a
q-additive function. Then g (n) = eif(n).

Let gM (n) =
M−1∏

j=0

g
(

εj (n)qj
)

. Thus gM

(

nqM
)

= 1 (n ∈ N0). Let fM (n) =

M−1∑

j=0

f
(

εj (n) qj
)

; hM (n) =
∑

j≥M

f
(

εj (n) qj
)

.

Let M be fixed, and consider the integers n < qN+M. Let δ > 0 be
an arbitrary (small) number. We shall estimate the number of those n ∈

SN+M

(

r(N+M)
)

for which |g (n) − gM (n) | ≥ δ. If n is such an integer, then
|hM (n) | ≥ δk.

Assume that M is so large that for

E
(N+M)

M :=

M+N−1∑

j=M

∑

b∈Aq

f
(

bqj
)

∣

∣

∣E
(N+M)

M

∣

∣

∣ < δ
4
. We shall apply (12), (13) for hM (n) and E

(N+M)

M . Then, in the

right hand side of (13)
N+M−1∑

j=M

∑

b∈Aq

f2
(

bqj
)

tends to zero as M→∞. Consequently, the following assertion is true.
Let δ > 0, ε > 0 be arbitrary constants. Then there exists such an M for

which

lim sup
N→∞

1

M
(

N + M|r(N+M)
)#

{

n ∈ SN+M

(

r(N+M)
)

∣

∣

∣

∣

|g (n) − gM (n) | > δ

}

< ε.

Now we estimate

1

M
(

N + M|r(N+M)
)

∑

n∈SN+M(r(n+M))

gM (n) .
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Let us subdivide the integers n ∈ SN+M

(

r(N+M)
)

according to the digits

ε0 (n) , . . . , εM−1 (n). Let n = t + m · qM. Then n ∈ SN+M

(

r(N+M)
)

, if and
only if

m ∈ SN

(

r
(N+M)

1 − β1 (t) , . . . , r
(N+M)

q−1 − βq−1 (t)
)

. (19)

For fixed t the number of the m satisfying the condition (19) is

(ΨN (t) :=)
N!

∏q−1
i=0

(

r
(N+M)

i − βi (t)
)

!
,

where β0 (t) is so defined that
q−1∑

i=0

βi (t) = M.

Let
r
(N+M)

b

N+M
→ λb. Then

ΨN (t)

SN+M

(

r(N+M)
) =

1

(N + 1) · · · (N + M)

q−1∏

b=0

r
(N+M)

b !
(

r
(N+M)

b − βb (t)
)

!

=
1

(N + 1) · · · (N + M)

q−1∏

b=0

βb(t)−1∏

l=0

(

r
(N+M)

b − l
)

= (1 + ON (1))

q−1∏

b=0

λ
βb(t)

b ,

and so

lim
N→∞

1

M
(

N + M|r(N+M)
)

∑

n∈SN+M(r(N+M))

gM (n) =

M−1∏

j=0

{
∑

b

λbg
(

bqj
)

}

.

Finally, let us to tend M→∞. Then (16) follows. Theorem 1 is proved.
Theorem 2 is a direct consequence of Theorem 1.

3 Some lemmas

Lemma 2 (Wintner, Frechet-Shohat) Let Fn (z) (n = 1, 2, . . .) be a se-

quence of distribution functions. For each non-negative integer k let

αk = lim
n→∞

∫∞

−∞
zkdFn (z)
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exist. Then there is a subsequence Fnj
(z) (n1 < n2 < · · · ) which converges

weakly to a limiting distribution F (z) for which

αk =

∫∞

−∞
zkdF (z) (k = 0, 1, 2, . . .) .

Moreover, if the set of moments αk determine F (z) uniquely, then as n→∞
the distributions Fn (z) converge weakly to F (z).

Lemma 3 In the notations of Lemma 2 let the series

ϕ (τ) =

∞∑

l=0

αl
(iτ)l

l!

converge absolutely in a disc of complex τ values in |τ| < c, c > 0. Then the αk

determine the distribution function F (u) uniquely. Moreover, the characteristic

function ϕ (t) of this distribution had the above representation in the disc

|τ| < t, and can be analytically continued into the strip |Im (t) | < τ.

The proof of Lemma 2 can be found in [5] while the proof of Lemma 3 is
given in [6]. (Vol. I., page 60).

4 Proof of Theorem 3

Let

mN =

N−1∑

j=0

f
(

2j
)

, (20)

F
(

2j
)

= f
(

2j
)

−
mN

N
, (21)

σ2
N (f) =

N−1∑

j=0

F2
(

2j
)

, (22)

G
(

2j
)

=
F
(

2j
)

σN (f)
. (23)

Then

σ2
N (G) =

N−1∑

j=0

G2
(

2j
)

= 1. (24)
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Let

Tk :=
1
(

N
r

)

∑

n<2N

α(n)=r

Gk (n) . (25)

Tk depends on N and on r, also. Let

αk :=
1

k!
lim

N→∞
r
N
→∞

Tk.

We shall prove that αk exists for every k ∈ N, and that the function ϕ (τ) in
Lemma 3 with these αk is regular in a circle |τ| < c, c > 0. It is enough to prove
that αk is bounded. The theorem will follow from Lemma 2, 3 immediately.

It is clear that T1 = 0 and so α1 = 0.
We observe that

∑

l1,...,lt∈{0,1,...,N−1}

G
(

2l1
)j1

. . . G
(

2lt
)jt

κ

(

l1, . . . , lt

j1, . . . , jt

)

(26)

=

{
O (1) , if min jl ≥ 2,

oN (1) , if min jl ≥ 2 and max jl ≥ 3,

if 0 ≤ κ
(

l1,...,lt
j1,...,jt

)

≤ 1.

Since maxl |G
(

2l
)

| ≤ c
σN(f)

→ 0 (N→∞) , σ2
N (G) = 1, this assertion is

clear.
Let DN := {0, 1, . . . , N − 1}.

Let us consider sums of type

Av :=
∑

l1,...,lt
j1,...,jt

u1,...,uv

B

(

l1, . . . , lt

j1, . . . , jt

)

G (2u1) · · ·G (2uv ) (27)

where l1, . . . , lt, u1, . . . , uv run over all possible distinct choices of l1, . . . , lt,

u1, . . . , uv ∈ DN, min
l=1,...,t

jl ≥ 2

B

(

l1, . . . , lt

j1, . . . , jt

)

= G
(

2l1
)j1

· · ·G
(

2lt
)jt

κ

(

l1, . . . , lt

j1, . . . , jt

)

, (28)

0 ≤ κ
(

l1,...,lt
j1,...,jt

)

.
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Assume that v = 1. Let us sum G (2u1) over all possible values, u1 ∈ DN \

{l1, . . . , lt}.
We have

A1 = −

t∑

j=1

∑

l1,...,lt
j1,...,jt

B

(

l1, . . . , lt

j1, . . . , jt

)

G
(

2lj
)

,

and so Av→ 0 (N→∞) follows from (26). Let now v = 2.
We obtain that

∑

u2 /∈{l1,...,lt }

u2 6=u1

G (2u2) = −G
(

2l1
)

− · · · − G
(

2lt
)

− G (2u1)

and so

A2 =
∑

l1,...,lt,u1
j1,...,jt

B

(

l1, . . . , lt

j1, . . . , jt

)

G2 (2u1) + oN (1) .

Let v > 2. For fixed l1, . . . , lt, u1, . . . , uv−1 the variable uv run over DN \

({l1, . . . , lt} ∪ {u1, . . . , uv−1}). Since

∑

uv

G (2uv) = −

t∑

j=1

G
(

2lj
)

− G (2u1) − · · · − G (2uv−1) ,

we have

Av = −
∑

l1,...,lt
j1,...,jt

B

(

l1, . . . , lt

j1, . . . , jt

)

G (2u1) . . . G (2uv−1) (G (2u1) + . . . + G (2uv−1))

+oN (1) ,

and so

Av = − (v − 1)
∑

l1,...,lt,lt+1
j1,...,jt ,2

u1,...,uv−2

B

(

l1, . . . , lt

j1, . . . , jt

)

G2
(

2lt+1

)

G (2u1) . . . G (2uv−2)

+oN (1) .

Thus the sum Av can be substituted by (v − 1) sums of type Av−2, with the
error oN (1).

Let us continue the reduction. We obtain that Av = oN (1), if v is an odd
number, furthermore, Av = oN (1), if max

j=1,...,t
lj ≥ 3.
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We can write

Tk =
1
(

N
r

)

∑

α(n)=r

n<2N

Gk (n) =
1
(

N
r

)

∑

n<2n

α(n)=r






N−1∑

j=0

G
(

εj (n) · 2j
)






k

(29)

=

k∑

t=1

ν (t, N)
∑∗

u1,...,uk

G (2u1) . . . G (2uk ) ,

where ∗ indicates that the summation is over those u1, . . . , uk ∈ DN, for

which the number of distinct element of u1, . . . , uk is t, and ν (t, N) =
r

N
·

r − 1

N − 1
. . .

r − (t − 1)

N − (t − 1)
. Thus ν (t, N) = λt + oN (1).

The sum
∑∗

u1,...,uk

can be rewritten in the form
∑

l1<...<lt
j1,...,jt

, where the multi-

plicity of the occurrence of lh is jh, thus j1 + · · · + jt = k. It is clear that

G
(

2l1
)j1 . . . G

(

2lt
)jt occurs for

(

k

j1

)(

k − j1

j2

)

. . .

(

k − (j1 + · · · + jt−1)

jt

)

=
k!

j1! (k − j1) !
·

(k − j1) !

(k − (j1 + j2)) !j2!
. . .

(k − (j1 + · · · + jt−1)) !

jt!

=
k!

j1!j2! . . . jt!

distinct choices of u1, . . . , uk as G (2u1) . . . G (2uk ). Thus

Tk =
∑k

t=1 ν (t, N)k!
∑

l1<...<lt
j1,...,jt

G(2l1 )
j1

j1!
. . .

G(2lt)
jt

jt!
(30)

= k!
∑k

t=1
ν(t,N)

t!

∑
l1<...<lt
j1,...,jt

G(2l1 )
j1

j1!
. . .

G(2lt)
jt

jt!
.

In the last sum l1, . . . , lt run over all those elements of DN for which lu 6= lv,
if u 6= v.

Let E (j1, . . . , jt) =
∑

l1,...,lt
j1,...,jt

G
(

2l1
)j1 . . . G

(

2lt
)jt . As we have seen earlier,

E (j1, . . . , jt) → 0 if max ju ≥ 3, or if #{u|ju = 1} = odd number. Hence we
obtain that Tk → 0 if k is odd. Thus αk = 0 for odd k. Let us write now 2k

into the place of k.



126 I. Kátai

Then

T2k = (2k) !

2k∑

t=1

ν (t, N)

t!

∑∗

j1+···+jt=2k

E (j1, . . . , jt)

j1! . . . jt!
+ oN (1)

where ∗ indicates that we have to sum over those j1, . . . , jt for which jν = 1, 2.

It is clear that E (j1, . . . , jt) is symmetric in the variables, i.e. E (jm1
, . . . , jmt) =

E (j1, . . . , jt) if m1, . . . , mt is a permutation of {1, . . . , t}.
Let

σh,m = E

(

h
←−−−→
2, . . . , 2,

m
←−−−→
1, . . . , 1

)

.

If j1 + · · · + jt = 2k, then 2h + m = 2k, t = h + m, thus

T2k = (2k) !

2k∑

t=1

ν (t, N)

t!

∑

h≤t

(

t

h

)

1

2h
σh,t−h + oN (1) . (31)

It is clear that

σh,0 =
∑

l1,...,lh

G
(

2l1
)2

. . . G
(

2lh
)2

=
{∑

G2
(

2l
)}h

= 1 + oN (1) .

Furthermore, as we observed earlier, σh,m→ 0 (N→∞) if m =odd.
Let m = 2. We have

σh,2 =
∑

l1,...,lh,u1,u2

G2
(

2l1
)

. . . G2
(

2lh
)

G (2u1)G (2u2)

= −
∑

l1,...,lh,u1

G2
(

2l1
)

. . . G2
(

2lh
)

G2 (2u1) + oN (1)

= −σh+1,0 + oN (1) = −1 + oN (1) .

Let m = 2ν, ν ≥ 2.

σh,2ν =
∑

l1,...,lh
u1,...,u2ν

G2
(

2l1
)

. . . G2
(

2lh
)

G (2u1) . . . G (2u2ν ) .
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Since G (2u2ν ) should be summed over DN \ {l1, . . . , lh} ∪ {u1 . . . , u2ν−1}, and

so
∑

u2ν

G (2u2ν ) = −
∑

G
(

2li
)

−
2ν−1∑

1

G (2uj), we obtain that

σh,2ν = − (2ν − 1)σh+1,2(ν−1) + oN (1) (ν = 1, 2, . . .) .

Thus we have

σh,0 = 1 + oN (1) , σh,2 = −1 + oN (1) ,

σh,4 = −3 · σh+1,2 = 3 + oN (1) ,

σh,6 = −5 · σh+1,4 = −3 · 5 + oN (1) ,

and in general

σh,2ν = (−1)ν (2ν − 1) !! + oN (1) .

Here (2m − 1) !! = (2m − 1) (2m − 3) . . . · 3 · 1.

Let us write t − h = 2m in (31). Then

(

t

h

)

1

2h
σh,t−h =

(

t

2m

)

22m

2t
σh,2m

= (−1)m

(

t

2m

)

22m

2t
(2m − 1) !! + oN (1) ,

and so

T2k = (2k) !

2k∑

t=1

λt ·
1

t!2t

∑

2m≤t

(−1)m

(

t

2m

)

22m · (2m − 1) !! + oN (1) .

Let us apply Lemma 3. In the notation of Lemma 3 we have

α2k = lim
N→∞

T2k

(2k) !

=

2k∑

t=1

λt

t!2t

∑

2m≤t

(−1)m

(

t

2m

)

22m · (2m − 1) !!.

We shall prove that α2k is bounded as 2k→∞. Indeed

(2m − 1) !!

(2m) !
=

1

2mm!
,

22m

2t
≤ 1,
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thus

|α2k| ≤

2k∑

t=1

λt

t!

∑

2m≤t

t! (2m − 1) !!

(2m) ! (t − 2m) !

≤

2k∑

t=1

λt
∑

2m≤t

1

(t − 2m) ! (2mm!)
.

Here m = 0 can be occur, 0! = 1.
We obtain that

|α2k| < cλ

with some c, c may depend on λ.

Acknowledgement

The European Union and the European Special Fund have provided financial
support to the project under the agreement TÁMOP-4.2.1/B-0.9/1/KMR-
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