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On the distribution of g-additive functions
under some conditions III.
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Abstract. The existence of the limit distribution of a g-additive func-
tion over the set of integers characterized by the sum of digits is investi-
gated.

1 Introduction

Notation
N, R, C, as usual denote the set of natural, real and complex numbers, respec-
tively. Let No = N U {0}.
g-additive and g-multiplicative functions
Let q > 2 be an integer, the g-ary expansion of n € Ny is defined as
i .
n=> ¢(n)d, (1)
=0

where the digits ¢; (n) are taken from Agq ={0,1,...,q — 1}. It is clear that
the right hand side of (1) is finite.

Let Aq be the set of g-additive, and Mg be the set of g-multiplicative
functions.
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116 1. Katai

f:No — R belongs to Aq if f(0) =0 and

fm) =Y f(5md) meNoy. (2)
j=0
We say that g : Ng — C belongs to My, if g (0) =1,
o) =JTo(esmia’) (neno. 3)
=0

Let Mq C Mg be the set of those g-multiplicative functions g, for which
lgm)[=1 (n e Np).
g (n)=h
f € Aq has a limit distribution, if

™3

g5 (n). We say that
0

—.

.1
lim —#{n <xf(n) <y} (=G(y)) (4)
X—00 X
exists for almost all y, and G is a distribution function, i.e. it is monotonic,
furthermore lim G(y)=0, lim G(y)=1.
y——00 y—00
H. Delange [1] proved that f € A has a limit distribution if and only the

> Y f(ad). (5)

j=0 acAq
e .
> Y (ad) (6)
j=0 a€Aq
are convergent. He proved that for some g € Mg, the limit
li 1 =M
Jim — > g(n)=M(g)
n<x
exists and M (g) # 0, if and only if

mj::;Zg(cqj>7éO =012 (7)

CEAq



On the distribution of g-additive functions under some conditions III. 117

and
o o -] .
(T—-mj)=) — 1—g(cd (8)
L-mi=3 | X (1-o(e))
is convergent. Furthermore,
j=0

if (7) holds and (8) is convergent.

Distribution of g-additive functions under the conditions that
B (n) are fixed.

For some fixed N, let 71,...,74—1 be such nonnegative integers for which 1 +
et Tg < N. Let 1o = N — (17 +"'—|—Tq,]) , T = (r1,r2,...,rq,1).
Let

S (1) ={n<aMBn(m) =rn, h=1,...,a=1}. (10)
Then
M (NIr) = #Sn (1) = 1)
SN T o g
In [2] we proved the following
N—1 ,
Lemma 1 Let f€ Aq, En= Y & X f(bd),
beAq  j=0
! 2
Mn) = o X (Fm)—Ew (12)
nes (r)
Then
N—1qg-—1 _
An(r)<e )y > f(vd), (13)
j=0 b=0

c is a constant which may depend only on (.
We shall prove
Theorem 1 Let g € Mg, assume that

i > (1-9(vd)) (14)

j=0 beEAL
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is convergent. Let Ao,A1,...,Aq—1 be positive numbers, such that Ao + --- +
Ag—1=1. Let
i .
Higho, - Aqt) =TT [ 3 Mo (bq]) . (15)
i=0 \ beAq
N _ (NN o
If v\ = (T] ,...Tq_1> is such a sequence for which =g — A\
G=1,...,9—1), then
i 1
lm s Y g =Hlghe. . Aq 1) (16)

N—oo M (N|I(N))

n<gqN
TIGSN (l(N])

Hence we obtain

Theorem 2 Let f € Ag, assume that (5),(6) are convergent. Let Ao, ..., Aq—1

be positive numbers such that Ao+ ---+Aq—1 = 1. Let o, M1 ... be independent
random variables, P (m =f (bql)) =N (beAy).

Let
O=> mn, (17)
1=0
FA(U):P(@<U)»A:(}\1)))\q%) (18)

From the 3 series theorem of Kolmogorov it follows that the sum (17) is con-
vergent with probability 1, thus F) (y) exists.

N

)

If %~ — A (G=0,...,q9—1), then

1

. N (N) _
]\}gnoo YRR (Nr(N))#{n< qn € Sy (I >> f(n) <y} =T (y),

if Yy is a continuity point of Fj.
Fa is continuous, if f (bqj) = 0 holds for infinitely many elements of{bqjlj =
0,1,2,...,b € Aq}.

1

=9 and in the case q = 2

In [2] we proved Theorem 1 for A7 = ... =Aq
for 0 < Ay < 1.

Furthermore, in [2] we proved the following assertion.
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. N-T
Theorem A Letfe Ay, f(2)=0(1) (eN,nn=5 > f(2),
j=0

Assume that By — oo. Let pn — 0.

Then
1 fin)—k
lim N#{n<2N fin) = knn <y,x(n) :k} = (y)
N—oo (k) BN
holds uniformly as N — oo, k = kN satisfies
k_1_
N 2 PN-

In [3] we mentioned that we are able to prove that under the conditions of

Theorem A

f(n) — knn <y}_®(y) |
n

1
lim sup sup|—#<{n<2N «(n) =k,
N0 k o5, 1—5) VER 2Bny/ (1 —m)

ke (%)

This assertion is not true, the correct assertion is

. Ni] .
Theorem 3 Let f € Ay, f(ZJ) =0(1) G=0,1,2,...). Let mn = >_ f(Z)),
j=0

N-_1 ,
of = Y (f(2)—™)% Let0 <A <1,
j=0
1 f(n)—gm
FT,N (y) = T# {TI< ZN) O((Tl) =T, M <U} .
(+) N
Furthermore, let F (y) be the distribution the characteristic function @ (T) =

NI
(i) of which is given by the following formulas:

2 X
1=0
X1 = 0, Zf liSOdd, O(():],
t
< )-sz(Zm—UH (k
2m

2k
7\t
=1,2,...).

Xk = Z@ > (=nm
=1

2m<t
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Since oy is bounded as k — oo, therefore the series defining @ (T) is abso-
lutely convergent in |t| < 1.

We have
liinA FT,N (U) =Fa (y) .

N
N— o0

2 Proof of Theorem 1 and 2

Let us define f (bqj) as the argument of g (bqj), ie. g (bqj) — ¢f(bd) The
condition (8) implies the convergence of (5) and (6). We can extend f as a
g-additive function Then g (n) = etfm.

Let gm (n ]_[ g (¢5(n) @’). Thus gpm (ng™) =1 (n € Np). Let fpm (n) =

M1
'Zo f(es(m)a’); hm(n) = Y (g () Q).
):

i>M
Let M be fixed, and consider the integers n < qN*tM. Let & > 0 be
an arbitrary (small) number. We shall estimate the number of those n €
SNAM (I(N“LM)) for which |g (n) — gm (n)] > &. If n is such an integer, then
lhm ()| > 8.
Assume that M is so large that for

M+N-1
N+M o Z Z f(bq)
=M beAq

(N+M)

‘ES\T+M)’ < 2. We shall apply (12), (13) for hp (n) and E . Then, in the

right hand side of (13)

N+M—T
> Y (o)
j=M  bEA,

tends to zero as M — oco. Consequently, the following assertion is true.
Let 6 > 0,e > 0 be arbitrary constants. Then there exists such an M for
which

1
lim sup

(N+M) _
Nooo M (N + Mp(N+M)) * {“ € SN+M (I ) ‘Ig (M) —gm ()| > 5} <e

Now we estimate

1
M (N + Mr(N+M)) 2 om .

nesSnpm (xn+MI)
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Let us subdivide the integers 1 € Snim (I(N+M)) according to the digits
e0(m),...,em—1(n). Let n =t +m- g™ Then n € Snym (r™NM)| if and
only if

N+M N+M
me Sy (MM =By 1), M = B (1) (19)
For fixed t the number of the m satisfying the condition (19) is
N!

Yy (t) = ’
(Wn (1) )l_liq—o1 (r£N+M)_[51(t))!

q—1
where B (t) is so defined that ) pi(t) = M.

r{jNJrM] =0
Let NEM — 7\b. Then
Wn(t) 1 S
Snm (rNFM) (N A1) -+ (N + M) b=0 T£N+M) —Bo (t)> !
1 q—1 By (1)1 ( " )
+
(N+1)-(N+M) 2L 18
q—1
=(+onm A",
b=0
and so
1 M—1
I - j
1\}5%0 M (N + M|r(N+M)) Z gm (n) = H {Z Abg (bq )} :
r TIESN+M(I(N+M]) j=0 b

Finally, let us to tend M — oo. Then (16) follows. Theorem 1 is proved.
Theorem 2 is a direct consequence of Theorem 1.

3 Some lemmas

Lemma 2 (Wintner, Frechet-Shohat) Let F,,(z) (n=1,2,...) be a se-
quence of distribution functions. For each non-negative integer k let

X = nlgléoj Z*dFn (2)
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ezist. Then there is a subsequence Ty, (z) (Mg <mz <---) which converges
weakly to a limiting distribution F (z) for which

ock:J Z%dF(z) (k=0,1,2,...).

Moreover, if the set of moments oy determine F(z) uniquely, then as 1 — oo
the distributions Fr, (z) converge weakly to F(z).

Lemma 3 In the notations of Lemma 2 let the series

1

¢ (1) = Zoq(if!)

1=0

converge absolutely in a disc of complex T values in |t| < ¢, ¢ > 0. Then the oy
determine the distribution function F (W) uniquely. Moreover, the characteristic
function @ (t) of this distribution had the above representation in the disc
IT| < t, and can be analytically continued into the strip |Im(t)| < T.

The proof of Lemma 2 can be found in [5] while the proof of Lemma 3 is
given in [6]. (Vol. L., page 60).

4 Proof of Theorem 3

Let N
my = ;0 f (zl) : (20)
F(2) =f(2) - (21)

N—1

_ 2
o () = )_ZO F (zl) , (22)
JOR @
Then .

o (G) =Y G2 (zi) —1 (24)



On the distribution of g-additive functions under some conditions III. 123

Let

1

(T) n<2N

x(n)=r

Ty depends on N and on T, also. Let

] lim T,

Xy = f! NLI)%O k-
N

We shall prove that oy exists for every k € N, and that the function ¢ (1) in
Lemma 3 with these o is regular in a circle |T| < ¢, ¢ > 0. It is enough to prove
that o is bounded. The theorem will follow from Lemma 2, 3 immediately.
It is clear that T; =0 and so «; = 0.
We observe that

S o) () () o
1, k€01, ,N=1} )1, -+t

B {0(1), if  minjy > 2,
- )

on (1), if minj; > 2 and maxj; >3,

Since max|G (21)\ < =< 7 — 0 (N —oo), O'ZN (G) = 1, this assertion is
clear.

Let Dn:={0,1,...,N—1}
Let us consider sums of type

l,...,L
Ayi= ) B(_" ’,t>G(zu1)---G(zuv) (27)
L 1 I, -0t
Toeeos t
RRERAY
where 1y,..., L, us,...,u, run over all possible distinct choices of 1i,..., Ly,
Ug,...,uy, € DN, min jp >2
=1,...t

.....

B ) =e ) e () k() e
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Assume that v = 1. Let us sum G (2"1) over all possible values, u; € Dy \

L, W
We have

)t

< STRRRN P
SRR EpE (50 5)e (@),

and so A, = 0 (N — oo) follows from (26). Let now v = 2.
We obtain that

Z G(Zuz):—G<21‘)_..._G(21t>_G(2u1)

up @l lg)
uyF#ug
and so ) )
Ay = Z B<,1""’,t>G2(2u‘)—l—oN(]).
1 Teou Iyt
3150 it

Let v > 2. For fixed 1y,..., 1, uq,...,uy_7 the variable u, run over Dy \
({ty, ..., L U{uq,...,uy—1}). Since

3 i) :—ZG(Zli) CGQW) G2,

Wy j=1
we have

Av:— Z B(“""’Lt)G(Zu‘)...G(Zu"])(G(Zw)-f—...—{—G(ZU’V‘))

]:1 _____ }t j1a"'vjt
)2 EEEEN Jt
+ON(])a
and so
Ay=—(-1) ) B(h""’?t)(sz(zltﬂ)G(zm)...e(zuv2)
LT )1, -0t
1ot beg
J1seees it,2
Toeens Uy, 2
‘I’ON(]).

Thus the sum A, can be substituted by (v — 1) sums of type A,_5, with the
error on (1).

Let us continue the reduction. We obtain that A, = on (1), if v is an odd
number, furthermore, A, = on (1), if jinlaxtlj > 3.

=1,
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We can write

1 1 N—-1 . K
Te = )= Y G <e)~ (n) -zl) (29)
(T‘) a(n)=r (r) n<2mn j=0
n<2N a(n)=r
k *
= ) v(EN) Y G(2W)...G(2™),
t=1 Up ..y Wy
where * indicates that the summation is over those uj,...,ux € Dy, for
which the number of distinct element of uj,...,ux is t, and v (t,N) = — -

N
T—1 r—(t—1)

N—1T"""N—(t—1)
The sum Z* can be rewritten in the form ) | where the multi-

Ly <...<lg
i1, jt

plicity of the occurrence of ly is jn, thus j; +--- +jr = k. It is clear that
G (21‘))1 ...G (2“)]L occurs for

<k> <k—i1) <k—(i1+"'+it—1)>
i1 2 ) it

. Thus v (t,N) = At +on (1).

_ k! . (k—ji)! (k=014 +je1))!
jil(k—i1) 0 (k=01 +i2)) b2l je!
k!
il el

distinct choices of uq,...,u as G (2%1)...G (2" ). Thus

G(zl] )jl G(zlt)jt
AT T

Tk = Zt:] v (t) N) k' Zl] <..<lg

I it

(30)

k t,N A A
= k! Zt:] v(t! )ZL!<...<Lt (]—]! 3l

In the last sum 1y, ..., Lt run over all those elements of Dy for which 1, # 1,,,
if u#wv. ' .
Let E(j1,...,j1) = >_ G (211)]] ...G (21‘)]t. As we have seen earlier,

J1sees it
E (51,...,j1) — 0 if maxj, > 3, or if #{ulj, = 1} = odd number. Hence we

obtain that T, — 0 if k is odd. Thus o = 0 for odd k. Let us write now 2k
into the place of k.
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Then
*  E(1,...,7
T = ZK'Z > 7(“, .3t)+0N(1)
t! 12Kk )1+ )t
where * indicates that we have to sum over those j1,...,jt for which j, =1, 2.
It is clear that E (j1,...,j¢) is symmetric in the variables, i.e. E (jm,,...,jm.) =
E(G1,...,j¢) if mq,..., m¢ is a permutation of {1,...,t}.
Let

h m
ah,ng<z,...,z, 1,...,1).

Ifj1 + - +j¢ = 2k, then 2h+m = 2k, t = h + m, thus

2k

1
o= 2003 YR Y (L) onenton @)
h<t

t=1

It is clear that

Oho = Z G (2“)2,,_@ (21h)2

Uyerln
~{Z )} e,

Furthermore, as we observed earlier, ohm — 0 (N — oo) if m =odd.
Let m = 2. We have

On2= Y ( ) G2<21h)G(2“1)G(2“2)
— T @)

Z—Gh+1,o+0N(1) =—1+on(1).

G2 (zlh) 22w 4 on (1)

Let m = 2v,v > 2.

onav= Y G(2M)..G*(2%)G(2M)...G ).
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Since G (2%2v) should be summed over Dy \ {11, ..., U{ur...,usy_1}, and
2v—1
so Y G(2%v)=-3Y G(2%)— Y G(2%), we obtain that
w2y 1
Ohov=—(2v—=1) ony12nv—1yton(1) (v=T1,2,...).

Thus we have

opo=1+on(1), onx=-T+on(1),
Oh4 =—3 -0Ohy12=3+on(1),
Oh6 =9 0Oht14=—3-5+on(1),

and in general

Ohov = (—1)Y (2v=1)11 + on(1).

Here 2m—1)!!=2m—-1)(2m—3)...-3-1.
Let us write t —h = 2m in (31). Then

t) 1 t 0\ 22m
h)2rOmeh = o ) o Oham

22m
:(1)m<2m> 2m—1)!14+on (1),

2t
and so

2k

= (21 A Z ( )zZm (2m—1) 1+ on (1).

t=1 t2 2m<

Let us apply Lemma 3. In the notation of Lemma 3 we have
oK = hm Tk
oo (2K)!
At 2m
Z - (= 22m. (2m— 1)1,
2m<t

We shall prove that oy is bounded as 2k — oco. Indeed

2m-11 1 2Zm<]
(2m)!  2mm!’ 2t — 7
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thus

At Zm -1
x| < Z Z & 2m)]
2m<t

1
<Z}‘t D G I

t=1 2m<t

Here m = 0 can be occur, 0! = 1.
We obtain that
|062k\ < cA

with some c, ¢ may depend on A.
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