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Abstract. In this note, we discuss the definitions of the difference se-
quences defined earlier by Kızmaz (1981), Et and Çolak (1995), Malkowsky
et al. (2007), Başar(2012), Baliarsingh (2013, 2015) and many others.
Several authors have defined the difference sequence spaces and studied
their various properties. It is quite natural to analyze the convergence of
the corresponding sequences. As a part of this work, a convergence anal-
ysis of difference sequence of fractional order defined earlier is presented.
It is demonstrated that the convergence of the fractional difference se-
quence is dynamic in nature and some of the results involved are also
inconsistent. We provide certain stronger conditions on the primary se-
quence and the results due to earlier authors are substantially modified.
Some illustrative examples are provided for each point of the modifica-
tions. Results on certain operator norms related to the difference operator
of fractional order are also determined.
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1 Introduction

Recently, one of the most interesting areas of research in Mathematics is the
study of difference operators and related sequence spaces which has been
attracted in different areas of Mathematical sciences especially in applied
and computational fields involving calculus, matrix and approximation the-
ory. The idea of difference sequence spaces plays a key role in most of the
scientific problems involving the spectral properties of bounded linear oper-
ators(see [2, 7, 11, 15, 16, 28, 29, 30]), related topological structures (see
[3, 4, 19, 20, 22, 26, 27]), matrix transformations(see [5, 12, 18, 19, 21, 23]),
compact operators (see [1, 14, 24, 25]), fractional calculus [8, 9, 10], etc.

In fact, the study of all the ideas discussed earlier is only feasible and even
possible if the related sequences are convergent.

Let x = (xk) be any sequence in w, the family of all real valued sequences.
Let N be the set of all positive integers and N0 = N∪ {0}. A sequence x = (xk)
is said to be of order kα, i.e., xk = O(kα) if for a positive constant C, we can
write

|xk| ≤ Ckα, k = 0, 1, 2, 3, . . . .

By `∞, c and c0, we denote the spaces of all bounded, convergent and null
sequences, respectively, normed by

‖x‖∞ = sup
k

|xk|.

We use the notation `p, (1 ≤ p <∞) for the space of all p−summable sequence
with the norm

‖x‖p =

( ∞∑
k=0

|xk|
p

)1/p
.

The 1st order difference sequence space X(∆) for X ∈ {`∞, c, c0} was intro-
duced by Kızmaz [20] using forward difference operator ∆, where

∆xk = xk − xk+1, (k ∈ N0). (1)

Later on, this idea has been generalized to the case of difference sequence
spaces of integer order m by Et and Çolak [17] using the operator ∆m and

∆mxk =

m∑
i=0

(−1)i
(
m

i

)
xk+i, (k ∈ N0). (2)
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Using Euler gamma function for a proper fraction α, the fractional difference
sequence ∆αx of order α was defined by Baliarsingh [4](see also [5, 6]) as

∆αxk =

∞∑
i=0

(−1)i
Γ(α+ 1)

i!Γ(α− i+ 1)
xk+i, (k ∈ N0). (3)

By taking inverse transform ∆−α on the sequence x = (xk), we write the Eqn.
(3) as

∆−αxk = xk + αxk+1 +
α(α+ 1)

2!
xk+2 +

α(α+ 1)(α+ 1)

3!
xk+3 + . . . (4)

An infinite series has no meaning unless it converges. It is important to men-
tion that in the previous papers, the convergence of the fractional difference
sequence defined by (3) and (4) have been presumed without taking any fur-
ther investigations. Now, in particular, we illustrate the following examples
regarding the convergence of these series:

Example 1 Let α be a proper fraction and x = (xk) be the convergent sequence
defined by xk =

1
3k

for all k ∈ N0. Then, we can easily calculate

∆αxk =

∞∑
i=0

(−1)i
Γ(α+ 1)

i!Γ(α− i+ 1)

1

3k+i
=
1

3k

(
2

3

)α
=

2α

3k+α
→ 0 as k→∞,

and

∆−αxk =

∞∑
i=0

α(α+ 1) . . . (α+ i− 1)

Γ(i+ 1)

1

3k+i
=
1

3k

(
2

3

)−α

=
3α−k

2α
→ 0 as k→∞.

Example 2 Let x = (xk) be the constant sequence with xk = 1 for all k ∈ N0.
Although the sequence x = (xk) is convergent, but for a proper fraction α,
∆αxk → 0 as k→∞ whereas, ∆−αxk →∞ as k→∞.
Example 3 Let x = (xk) be the oscillating sequence, defined by xk = (−1)k

for all k ∈ N0. Clearly, the sequence x = (xk) is divergent and for a proper
fraction α, we have

∆αxk =

{
2α, (k is even)
−2α, (k is odd),

and

∆−αxk =

{
2−α, (k is even)
−2−α, (k is odd)

are also divergent.
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Example 4 Let x = (xk) be the divergent sequence defined by xk = k for all
k ∈ N0. Although the sequence x = (xk) is divergent, but for an integer α > 1,
∆αxk → 0 as k → ∞ whereas, ∆−αxk → ∞ as k → ∞. For a proper fraction
α, both of the difference sequences go to ∞ as k→∞.

It is remarked that the infinite series defined in (3) and (4) need not be
convergent for any arbitrary sequence x = (xk) and any proper fraction α.
Therefore, it is quite difficult to study and analyze the behaviors of the re-
lated sequence spaces for fractional cases. As the convergence of the difference
sequence ∆αx depends on the nature and behavior of the sequence x and the
value α, it has been observed that the properties such as linearity and ex-
ponent rules of the difference operator ∆α are violating in certain particular
cases. As a consequence of these violations, it is concluded that Theorems 1,
2 and 3 due to [4, 5] are not stable and need certain additional conditions in
order to provide their substantial modifications.

The primary objective of this note is to study the convergence of the frac-
tional difference sequences, the dynamic nature of the fractional difference
operator ∆α in detail and apply the same to modify Theorems 1, 2 and 3 of
[4, 5]. Now, we analyze the convergence of the difference sequence ∆αx for
different choice of α in detail, (i.e., α > 0, α < 0 and α ∈ N) by using the
following theorems.

2 Main results

Theorem 1 The series defined in (3) is convergent for any α = n ∈ N if the
sequence x = (xk) is convergent. The converse of the statement may not hold
in general.

Proof. Let x = (xk) be a convergent sequence. Then for given ε > 0, there
exists a natural number N and real or complex number l such that, for every
k ≥ N, we have |xk − l| < ε. Now, we have

|∆nxk| =

∣∣∣∣∣
n∑
i=0

(−1)i
(
n

i

)
xk+i

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=0

(−1)i
(
n

i

)
xk+i −

n∑
i=0

(−1)i
(
n

i

)
l+

n∑
i=0

(−1)i
(
n

i

)
l

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=0

(−1)i
(
n

i

)
(xk+i − l) + l

n∑
i=0

(−1)i
(
n

i

)∣∣∣∣∣
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≤
n∑
i=0

(−1)i
(
n

i

)
|(xk+i − l)|+ |l|

∣∣∣∣∣
n∑
i=0

(−1)i
(
n

i

)∣∣∣∣∣
≤ ε

n∑
i=0

(−1)i
(
n

i

)
= 0, for every k ≥ N.

Therefore, |∆nxk|→ 0 as k→∞. For the converse part we take the following
counter example:

For a natural number m, consider the sequence x = (xk), defined by xk = k
m

for all k ∈ N0. Clearly, x = (xk) is divergent, but its associated difference
sequence is

∆nxk =

n∑
i=0

(−1)i
(
n

i

)
(k+ i)m

= km −

(
n

1

)[
km +

(
m

1

)
km−1 +

(
m

2

)
+ · · ·+

(
m

m

)]
+

(
n

2

)[
km + 2

(
m

1

)
km−1 + 22

(
m

2

)
+ · · ·+

(
m

m

)
2m
]
+ . . .

+ (−1)n
(
n

n

)[
km + n

(
m

1

)
km−1 + n2

(
m

2

)
+ · · ·+

(
m

m

)
nm
]

= km
[
1−

(
n

1

)
+

(
n

2

)
−

(
n

3

)
+ · · ·+ (−1)n

]
+ km−1

(
m

1

)[
−

(
n

1

)
+ 2

(
n

2

)
− 3

(
n

3

)
+ · · ·+ n(−1)n

]
+ km−2

(
m

2

)[
−

(
n

1

)
+ 22

(
n

2

)
− 32

(
n

3

)
+ · · ·+ n2(−1)n

]
+ . . .

+ km−m

(
m

m

)[
−

(
n

1

)
+ 2m

(
n

2

)
− 3m

(
n

3

)
+ · · ·+ nm(−1)n

]

=


0, (n > m)

n!, (n = m)∞, (n < m)

.

Therefore, we conclude that for n ≥ m the difference sequence (∆n(km))k is
convergent while the primary sequence x = (km) is divergent. �
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Theorem 2 The series defined in (3) is convergent for any proper fraction
α > 0 if the sequence x = (xk) is convergent. The converse of the statement is
true if the sequence involving infinite series

∞∑
i=k

(
i− k+ α− 1

i− k

)
∆α(xi) converges. (5)

Proof. The proof of the sufficient part is similar to that of Theorem (1), hence
omitted.

For the necessary part we assume that the difference sequence ∆αxk and the
infinite series

∑∞
i=k

(
i−k+α−1
i−k

)
∆α(xi) converge for all k ∈ N0. Let α be a proper

fraction, i.e., 0 < α < 1. On simplifying (5), we obtain that

∞∑
i=k

(
i− k+ α− 1

i− k

)
∆α(xi)

=

(
α− 1

0

)
∆α(xk) +

(
α

1

)
∆α(xk+1) +

(
α+ 1

2

)
∆α(xk+2) + . . .

= xk −

(
α

1

)
xk+1 +

(
α

2

)
xk+2 −

(
α

3

)
xk+3 + . . .

+

(
α

1

)[
xk+1 −

(
α

1

)
xk+2 +

(
α

2

)
xk+3 −

(
α

3

)
xk+4 + . . .

]
+

(
α+ 1

2

)[
xk+2 −

(
α

1

)
xk+3 +

(
α

2

)
xk+4 −

(
α

3

)
xk+5 + . . .

]
+ . . .

= xk.

Thus, from the hypothesis, the sequence (xk) is convergent. However, from
Example 5, it is noticed that for a unbounded sequence x = (xk) with xk = k
for all k ∈ N0, for a proper fraction α, corresponding difference sequence
∆αxk →∞, as k→∞. This completes the proof. �

Theorem 3 The series defined in (4) is convergent for any proper α > 0 or
α = n ∈ N0 if the sequence x = (xk) is convergent with xk = O(k−α−1). The
converse of the statement is true if the sequence involving infinite series

∞∑
i=k

(−1)i−k
(
α

i− k

)
∆−α(xi) converges. (6)

Proof. We know that the infinite series in (4) represents the inverse fractional
difference sequence of the sequence (xk), thus it always suggests the idea analog
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to integration or summation. Since the equation is a sum of infinite terms with
all positive coefficients of xk, most of the cases it gives ∞ even if the primary
sequence is convergent. As a result, we need to consider strictly the order of
the convergence of the primary sequence (xk) in such a way that the final sum
of the series (4) will be dominated.

Let us consider the convergent sequence x = (xk) with xk = O(k−α−1) and
α > 0. Then, there exists a constant M such that

sup
k

|xk| ≤
M

kα+1
.

In fact, the above sequence is a null sequence and the corresponding inverse
difference sequence is given below:

∆−αxk =

∞∑
i=0

α(α+ 1) . . . (α+ i− 1)

Γ(i+ 1)
xk+i

= xk + αxk+1 +
α(α+ 1)

2!
xk+2 +

α(α+ 1)(α+ 1)

3!
xk+3 + . . .

≤ M

kα+1

(
1+ α+

α(α+ 1)

2!
+
α(α+ 1)(α+ 1)

3!
+ . . .

)
.

The right hand side of the above equation is tending to 0 as k → ∞. The
equation contains two terms out of which the term M

kα+1
is dominating since it

contains (α + 1) as power of 1/k whereas other term contains α, only, which
is a constant. It is rapidly tending to 0 as comparison to the rate at which the
other term goes to ∞. The converse part of this theorem is similar to that of
Theorem 5. �

Theorem 4 Let α > 0 be either a fraction or a natural number and ∆α : w→
w is a linear operator provided the series in (3) is convergent.

Theorems (1), (2) and (3) can be verified in the light of the above theorem,
it can be shown that most of the results are not satisfied in general.

Theorem 5 For any proper fractions α,α1 and α2, in general we have

(i) ∆α1(∆α2xk) 6= ∆α1+α2(xk) and ∆α2(∆α1xk) 6= ∆α1+α2(xk),

(ii) ∆α(∆−αxk) 6= xk and ∆−α(∆αxk) 6= xk,

Proof. We prove theorem by using suitable counter examples.
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Example 5 Consider the sequence x = (xk), defined by xk = k for all k ∈ N0.
Clearly it is a divergent sequence. Let us take α1 = 1/2 = α2 and therefore,
α1 + α2 = 1. Then, we can calculate

∆α2xk = (∆1/2k)k = k−

(
1/2

1

)
(k+ 1) +

(
1/2

2

)
(k+ 2) −

(
1/2

3

)
(k+ 3) + . . .

= k

[
1−

(
1/2

1

)
+

(
1/2

2

)
−

(
1/2

3

)
+ . . .

]
−
1

2

[
1−

(
−1/2

1

)
+

(
−1/2

2

)
−

(
−1/2

3

)
+ . . .

]
=∞.

Now, ∆α1(∆α2(xk)) = ∆1/2(∆1/2(k)) = ∆1/2(∞) = ∞, but ∆α1+α2(xk) =
∆1/2+1/2(k) = ∆(k) = k − (k + 1) = −1. Interchanging α1 and α2 in above
expression we can prove the second condition. This completes the proof of
Part (i) of Theorem 5.

Example 6 Let us consider the sequence x = (xk), defined by xk = r for all
k ∈ N0 and r ∈ R, the set of all real numbers. Clearly, x = (xk) is a convergent
sequence. Taking α = 1/2, we have

∆−αxk = (∆−1/2r)k = r

[
1−

(
−1/2

1

)
+

(
−1/2

2

)
−

(
−1/2

3

)
+ . . .

]
=∞.

Thus, the left hand side of 1st equation of Part (ii) is ∆α(∆−α(xk)) = ∆
1/2(∆−1/2

(r)) = ∆1/2(∞) = ∞, whereas the right hand side is xk = r. Again by inter-
changing the positions of α and −α, it is also noticed that

∆αxk = (∆1/2r)k = r

[
1−

(
1/2

1

)
+

(
1/2

2

)
−

(
1/2

3

)
+ . . .

]
= 0.

Now, the left hand side of the second equation of Part (ii) can be found as
∆−α(∆α(xk)) = ∆−1/2(∆1/2(r)) = ∆−1/2(0) = 0 which is not equal to the right
hand side i.e., xk = r. This completes the proof of Part (ii) of Theorem 5.

�

Above examples conclude that linearity and exponent rules involving the
fractional difference operator ∆α for any sequence in w are not uniformly
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posed. Eventually, these rules are deviating due to lack of convergence of re-
lated infinite series. In fact, the convergence of the related infinite series is
completely depending on the nature of the primary sequence (xk) and the
choice of the values of α. It is understood that if the primary sequence (xk)
and the value α are suitably chosen then obviously, this deviation can be re-
stricted to a given domain. This idea suggests that Theorems 1, 2 and 3 of [4]
need relevant modifications and the modified results are as follows.

Theorem 6 For any positive proper fractions α,α1 and α2, we have

(i) Let the sequence x = (xk) be convergent, then

∆α1(∆α2(xk)) = ∆
α1+α2(xk) = ∆

α2(∆α1(xk)),

(ii) Let the sequence (∆−αxk) be convergent, then

∆α(∆−αxk) = xk,

(iii) Let the sequence (∆αxk) be of O(k−α−1) , then

∆−α(∆αxk) = xk.

Combining all points, Theorem 6 can be restated as follows:

Remark 1 Let α > 0 and β be a real such that α + β > 0 and the sequence
(xk) be of O(k−m−1), where m = min(|α|, |β|), then

∆α(∆β(xk)) = ∆
α+β(xk) = ∆

β(∆α(xk)).

Corollary 1 For any n ∈ N, let ∆−n be the negative integral difference oper-
ator, then

(i) ∆−1(xk) =

∞∑
i=1

xk+i, if the sequence (xk) is convergent with xk = O(k−2),

(ii) ∆−2(xk) =

∞∑
i=1

(i + 1)xk+i, if the sequence (xk) is convergent with xk =

O(k−3),

(iii) ∆−3(xk) =

∞∑
i=1

(si)xk+i, where si =

i∑
j=1

j, if the sequence (xk) is convergent

with xk = O(k−4).
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To next, we discuss some operator norms involving the difference operator of
fractional order.

Let A = (ank) be an infinite matrix with ank ≥ 0 for all n, k ∈ N0. Then we
have the following theorems on operator norms via the infinite matrix A:

Theorem 7 Let X ∈ {c0, c, `∞}. Then the infinite matrix A is a bounded op-
erator from X to X(∆α) if

M = sup
n

{ ∞∑
k=0

∣∣∣∣∣
∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,k

∣∣∣∣∣
}
<∞

and
‖A‖(∞,∆α) =M.

Proof. Suppose X = `∞ and x ∈ X. Then, we have

‖Ax‖(∞,∆α) = sup
n

∣∣∣∣∣
∞∑
k=0

∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,kxk

∣∣∣∣∣
≤ sup

n

{ ∞∑
k=0

∣∣∣∣∣
∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,kxk

∣∣∣∣∣
}

≤M‖x‖∞.
Also, for x = e = (1, 1, 1, . . . ), we have

‖Ae‖(∞,∆α) = sup
n

∣∣∣∣∣
∞∑
k=0

∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,k

∣∣∣∣∣
= sup

n

{ ∞∑
k=0

∣∣∣∣∣
∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)

∣∣∣∣∣an+i,k
}

=M.

This proves the result. �

Theorem 8 The infinite matrix A is a bounded operator from `1 to `1(∆
α) if

M = sup
k

{ ∞∑
n=0

∣∣∣∣∣
∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,k

∣∣∣∣∣
}
<∞,

and
‖A‖(1,∆α) =M.
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Proof. Suppose that x ∈ `1 and A be an infinite matrix, then

‖Ax‖(1,∆α) =
∞∑
n=0

∣∣∣∣∣
∞∑
k=0

∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,kxk

∣∣∣∣∣
≤

∞∑
n=0

∞∑
k=0

∣∣∣∣∣
∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,kxk

∣∣∣∣∣
≤

∞∑
k=0

∞∑
n=0

∣∣∣∣∣
∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,k

∣∣∣∣∣ |xk|
≤M‖x‖1.

Now, for the sequence x = e(m)(having 1 at m-th place and 0 otherwise), one
can get

‖Ae(m)‖(1,∆α) =
∞∑
n=0

∣∣∣∣∣
∞∑
k=0

∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,kxk

∣∣∣∣∣
=

∞∑
n=0

∣∣∣∣∣
∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,m

∣∣∣∣∣
=M.

This concludes the proof. �

Theorem 9 The infinite matrix A is a bounded operator from `p, (1 ≤ p <∞)
to `p(∆

α) if

Mp = sup
k

{ ∞∑
n=0

∣∣∣∣∣
∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,k

∣∣∣∣∣
p}

<∞,
and

‖A‖p(p,∆α) =Mp.

Proof. This follows from the proof of Theorem 8. �

Theorem 10 The identity matrix I is a bounded operator from X to X(∆α)
for X ∈ {c, c0, `∞, `1} and

‖I‖(∞,∆α) = ‖I‖(1,∆α) = 2α.
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Proof. Suppose the infinite matrix A = I, then from Theorem 7, we can write

Mn =

∞∑
k=0

∣∣∣∣∣
∞∑
i=0

(−α)(−α+ 1) . . . (−α+ i− 1)

Γ(i+ 1)
an+i,k

∣∣∣∣∣
=

∞∑
k=n

∣∣∣∣(−α)(−α+ 1) . . . (−α+ k− n− 1)

Γ(k− n+ 1)

∣∣∣∣ .
Therefore, we have

‖I‖(∞,∆α) = sup
n
Mn = 2α.

Similarly, using Theorem 8, one can prove ‖I‖(1,∆α) = 2α. �

Conclusion

We have investigated some idea on the convergence of difference sequence for
fractional-order which may be very similar to that of integer orders but most
of the cases they are nonuniform and dynamic in nature. As an application
of this idea, some existing results in the literature have been modified. Cer-
tain operator norms involving the difference operator of fractional order is
determined.

In the next study, we will extend this idea to the case of the statistical
convergence of difference sequence and study the variations in the cases of
integer and fractional orders.
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