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Abstract. In the present paper we shall introduce some generalized dif-
ference Cesàro sequence spaces of fuzzy real numbers defined by Musielak-
Orlicz function and λ-convergence. We make an effort to study some topo-
logical and algebraic properties of these sequence spaces. Furthermore,
some inclusion relations between these sequence spaces are establish.

1 Introduction and preliminaries

Fuzzy set theory as compared to other mathematical theories is perhaps the
most easily adaptable theory to practice. The main reason is that a fuzzy
set has the property of relativity, variability and inexactness in the definition
of its elements. Instead of defining an entity in calculus by assuming that
its role is exactly known, we can use fuzzy sets to define the same entity by
allowing possible deviations and inexactness in its role. This representation
suits well the uncertainties encountered in practical life, which make fuzzy
sets a valuable mathematical tool. The concepts of fuzzy sets and fuzzy set
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operations were first introduced by Zadeh [23] and subsequently several au-
thors have discussed various aspects of the theory and applications of fuzzy
sets such as fuzzy topological spaces, similarity relations and fuzzy orderings,
fuzzy measures of fuzzy events, fuzzy mathematical programming. Matloka [7]
introduced bounded and convergent sequences of fuzzy numbers and studied
some of their properties.

A fuzzy number is a fuzzy set on the real axis, i.e., a mapping X : Rn → [0, 1]
which satisfies the following four conditions:

1. X is normal, i.e., there exist an x0 ∈ Rn such that X(x0) = 1,

2. X is fuzzy convex, i.e., for x, y ∈ Rn and 0 ≤ λ ≤ 1, X(λx + (1 − λ)y) ≥
min[X(x), X(y)],

3. X is upper semi-continuous; i.e., if for each ε > 0, X−1([0, a+ ε)) for all
a ∈ [0, 1] is open in the usual topology of Rn,

4. The closure of {x ∈ Rn : X(x) > 0}, denoted by [X]0, is compact.

Let C(Rn) = {A ⊂ Rn : A is compact and convex}. The spaces C(Rn) has a
linear structure induced by the operations

A+ B = {a+ b, a ∈ A, b ∈ B}

and
λA = {λa : a ∈ A}

for A,B ∈ C(Rn) and λ ∈ R. The Hausdorff distance between A and B of
C(Rn) is defined as

δ∞(A,B) = max{sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖},

where ‖.‖ denotes the usual Euclidean norm in Rn. It is well known that
(C(Rn), δ∞) is a complete (non separable) metric space.

For 0 < α ≤ 1, the α-level set, Xα = {x ∈ Rn : X(x) ≥ α} is a non empty
compact convex, subset of Rn, as is the support X0. Let L(Rn) denote the set
of all fuzzy numbers. The linear structure of L(Rn) induces addition X+Y and
scalar multiplication λX, λ ∈ R, in terms of α-level sets by

[X+ Y]α = [X]α + [Y]α

and
[λX]α = λ[X]α.
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Define for each 1 ≤ q <∞
dq(X, Y) =

{∫ 1
0

δ∞(Xα, Yα)qdα
}1/q

and d∞(X, Y) = sup
0<α≤1

δ∞(Xα, Yα). Clearly d∞(X, Y) = lim
q→∞dq(X, Y) with

dq ≤ dr if q ≤ r. Moreover (L(Rn), d∞) is a complete, separable and locally
compact metric space. We denote by w(f) the set of all sequences X = (Xk)
of fuzzy numbers. For more details about sequence spaces and fuzzy sequence
spaces one can refer to [14, 15, 16, 17, 22].

Mursaleen and Noman (see [9, 10]) introduced the notion of λ-convergent
and λ-bounded sequences as follows:
Let w be the set of all complex sequences x = (xk). Let λ = (λk)

∞
k=1 be strictly

increasing sequence of positive real numbers tending to infinity as

0 < λ0 < λ1 < .... and λk →∞ as k→∞
and said that a sequence x = (xk) ∈ w is λ-convergent to the number L, called
the λ-limit of x if Λm(x)→ L as m→∞, where

Λm(x) =
1

λm

m∑
k=1

(λk − λk−1)xk.

The sequence x = (xk) ∈ w is λ-bounded if supm |Λm(x)| <∞. It is well known
[11] that if limm xm = a in the ordinary sense of convergence, then

lim
m

1

λm

(
m∑
k=1

(λk − λk−1)|xk − a|

)
= 0.

This implies that

lim
m

|Λm(x) − a| = lim
m

|
1

λm

m∑
k=1

(λk − λk−1)(xk − a)| = 0

which yields that limmΛm(x) = a and hence x = (xk) ∈ w is λ-convergent
to a.

Definition 1 A fuzzy real number X is a fuzzy set on R, i.e. a mapping X :
R → I(= [0, 1]) associating each real number t with its grade of membership
X(t).
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Definition 2 A fuzzy real number X is called convex if X(t) ≥ X(s)∧ X(r) =
min(X(s), X(r)), where s < t < r.

Definition 3 If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy real
number X is called normal.

Definition 4 A fuzzy real number X is said to be upper semi continuous if for
each ε > 0, X−1([0, a+ ε)), for all a ∈ I, is open in the usual topology of R.

The class of all upper semi-continuous, normal, convex fuzzy real numbers is
denoted by R(I).

Definition 5 For X ∈ R(I), the α-level set Xα, for 0 < α ≤ 1 is defined by
Xα = {t ∈ R : X(t) ≥ α}. The 0-level, i.e. X0 is the closure of strong 0-cut, i.e.
X0 = cl{t ∈ R : X(t) > 0}.

Definition 6 The absolute value of X ∈ R(I), i.e. |X| is defined by

|X|(t) =

{
max{X(t), X(−t)}, for t ≥ 0
0, otherwise.

Definition 7 For r ∈ R, r ∈ R(I) is defined as

r(t) =

{
1, if t = r
0, if t 6= r.

Definition 8 The additive identity and multiplicative identity of R(I) are de-
noted by 0 and 1 respectively. The zero sequence of fuzzy real numbers is de-
noted by θ.

Definition 9 Let D be the set of all closed bounded intervals X = [XL, XR].
Define d : D × D −→ R by d(X, Y) = max{|XL − YL|, |XR − YR|}. Then clearly
(D,d) is a complete metric space.
Define d : R(I)×R(I) by d(X, Y) = sup

0<α≤1
d(Xα, Yα), for X, Y ∈ R(I). Then it is

well known that (R(I), d) is a complete metric space.

Definition 10 A sequence X = (Xk) of fuzzy numbers is said to be convergent
to a fuzzy number X0, if for every ε > 0 there exists a positive integer k0 such
that d(Xk, X0) < ε, for all k ≥ k0.

Definition 11 A sequence X = (Xk) of fuzzy numbers is said to be bounded if
the set {Xk : k ∈ N} of fuzzy numbers is bounded.
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Definition 12 A sequence space E is said to be solid(or normal) if (Yn) ∈ E
whenever (Xn) ∈ E and |Yn| ≤ |Xn| for all n ∈ N.

Definition 13 Let X = (Xn) be a sequence, then S(X) denotes the set of all
permutations of the elements of (Xn) i.e. S(X) = {(Xπ(n)) : π is a permutation
of N}. A sequence space E is said to be symmetric if S(X) ⊂ E for all X ∈ E.

Definition 14 A sequence space E is said to be convergence-free if (Yn) ∈ E
whenever (Xn) ∈ E and Xn = 0 implies Yn = 0.

Definition 15 A sequence space E is said to be monotone if E contains the
canonical pre-images of all its step spaces.

Lemma 1 [3] A sequence space E is normal implies E is monotone.

The notion of difference sequence spaces was introduced by Kizmaz [4], who
studied the difference sequence spaces `∞(∆), c(∆) and c0(∆). The notion
was further generalized by Et and Çolak [1] by introducing the spaces `∞(∆n),
c(∆n) and c0(∆

n). Another type of generalization of the difference sequence
spaces is due to Tripathy and Esi [19] who studied the spaces `∞(∆nm), c(∆

n
m)

and c0(∆
n
m). Let m,n be non-negative integers, then we have sequence spaces

Z(∆nm) = {x = (xk) ∈ w : (∆nmxk) ∈ Z}

for Z = c, c0 and `∞, where ∆nmx = (∆nmxk) = (∆n−1m xk − ∆
n−1
m xk+1) and

∆0mxk = xk for all k ∈ N, which is equivalent to the following binomial repre-
sentation

∆nmxk =

n∑
v=0

(−1)v
(
n

v

)
xk+mv. (1)

Taking m = 1, we get the spaces `∞(∆n), c(∆n) and c0(∆
n) studied by Et

and Çolak [1]. Taking m = n = 1, we get the spaces `∞(∆), c(∆) and c0(∆)
introduced and studied by Kizmaz [4].

Definition 16 Ng and Lee [12] defined the Cesàro sequence spaces Xp of non-
absolute type as follows:

x = (xk) ∈ Xp if and only if σ(x) ∈ `p, 1 ≤ p <∞,
where σ(x) =

(
1
n

n∑
k=1

xk

)∞
n=1

.
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Orhan [13] defined the Cesàro difference sequence spaces Xp(Λ), for 1 ≤ p <∞
and studied their different properties and proved some inclusion results. He
also obtained the duals of these sequence spaces.

Musaleen et al. [8] defined the second difference Cesàro sequence spaces
Xp(Λ

2), for 1 ≤ p < ∞ and studied their different topological properties
and proved some inclusion results. They also calculated their duals sequence
spaces.

Later on, Tripathy et al. [20] further introduced new types of difference
Cesàro sequence spaces as C∞(∆nm), O∞(∆nm), Cp(∆

n
m), Op(∆

n
m) and `∞(∆nm),

for 1 ≤ p <∞.
For m = 1, the spaces Cp(∆

n) and C∞(∆nm) are studied by Et [2].
An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing

and convex such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as
x −→ ∞. An Orlicz function M is said to satisfy ∆2-condition for all values
of x, if there exists a constant K > 0, M(Lx) ≤ KLM(x), for all x > 0 and
for L > 1. If convexity of the Orlicz function is replaced by subadditivity i.e.
M(x+y) ≤M(x)+M(y), then this function is called as modulus function [18].

Lindenstrauss and Tzafriri [5] used the idea of Orlicz function to define the
following sequence space,

`M =

{
x = (xk) ∈ w :

∞∑
k=1

M

(
|xk|

ρ

)
<∞, for some ρ > 0

}
is known as an Orlicz sequence space. The space `M is a Banach space with
the norm

||x|| = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|

ρ

)
≤ 1
}
.

Also it was shown in [5] that every Orlicz sequence space `M contains a sub-
space isomorphic to `p(p ≥ 1). A sequence M = (Mk) of Orlicz functions is
said to be Musielak-Orlicz function (see [6]).

Let m,n ≥ 0 be fixed integers, M = (Mk) be a Musielak-Orlicz function
and p = (pk) be a bounded sequence of positive real numbers. In this paper
we define the following generalized difference Cesàro sequence spaces of fuzzy
real numbers:

CF(M, Λ,∆nm, p) ={
X=(Xk) ∈ w(F) :

∞∑
i=1

(
1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, 0)

ρ

)))pk
<∞, for some ρ > 0

}
,



162 K. Raj, S. Pandoh

CF∞(M, Λ,∆nm, p) ={
X=(Xk) ∈ w(F) : sup

i

1

i

(
i∑
k=1

Mk

(
d(Λk∆

n
mXk, 0)

ρ

))pk
<∞, for some ρ > 0

}
,

`F(M, Λ,∆nm, p) ={
X = (Xk) ∈ w(F) :

∞∑
k=1

(
Mk

(
d(Λk∆

n
mXk, 0)

ρ

))pk
<∞, for some ρ > 0

}
,

OF(M, Λ,∆nm, p) ={
X=(Xk) ∈ w(F) :

∞∑
i=1

1

i

(
i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, 0)

ρ

)))pk
<∞, for some ρ > 0

}
,

OF∞(M, Λ,∆nm, p) ={
X = (Xk) ∈ w(F) : sup

i

1

i

i∑
k=1

Mk

(
d(Λk∆

n
mXk, 0)

ρ

)pk
<∞, for some ρ > 0

}
.

Lemma 2 [21] Let 1 ≤ p <∞. Then,
(i) The space CFp(M) is a complete metric space with the metric,

η1(X, Y) = inf

{
ρ > 0 :

( ∞∑
i=1

1

i

i∑
k=1

(
M

(
d(Xk, Yk)

ρ

))p) 1
p

≤ 1

}
.

(ii) The space CF∞(M) is a complete metric space with the metric,

η2(X, Y) = inf

{
ρ > 0 : sup

i

1

i

i∑
k=1

(
M

(
d(Xk, Yk)

ρ

)
≤ 1

}
.

(iii) The space `Fp(M) is a complete metric space with the metric,

η3(X, Y) = inf

{
ρ > 0 :

( ∞∑
k=1

(
M

(
d(Xk, Yk)

ρ

))p) 1
p

≤ 1

}
.

(iv) The space OFp(M) is a complete metric space with the metric,

η4(X, Y) = inf

{
ρ > 0 :

( ∞∑
i=1

1

i

i∑
k=1

(
M

(
d(Xk, Yk)

ρ

))p) 1
p

≤ 1

}
.
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(v) The space OF∞(M) is a complete metric space with the metric,

η5(X, Y) = inf

{
ρ > 0 : sup

i

1

i

i∑
k=1

(
M

(
d(Xk, Yk)

ρ

)
≤ 1

}
.

The following inequality will be used throughout the paper. Let p = (pk)
be a sequence of positive real numbers with 0 < pk ≤ supk pk = H and let
K = max

{
1, 2H−1

}
. Then, for the factorable sequences (ak) and (bk) in the

complex plane, we have

|ak + bk|
pk ≤ K(|ak|pk + |bk|

pk). (2)

Also |ak|
pk ≤ max

{
1, |a|H

}
for all a ∈ C.

The main aim of this paper is to study some topological properties and
prove some inclusion relations between above defined sequence spaces.

2 Main results

Theorem 1 Let M = (Mk) be a Musielak-Orlicz function and p = (pk) be
a bounded sequence of positive real numbers. Then the classes of sequences
CF(M, Λ,∆nm, p), C

F∞(M, Λ,∆nm, p), `
F(M, Λ,∆nm, p), O

F(M, Λ,∆nm, p) and
OF∞(M, Λ,∆nm, p) are linear spaces over the field R of real numbers.

Proof. We shall prove the result for the space CF(M, Λ,∆nm, p) and for other
spaces, it will follow on applying similar arguments. Suppose X = (Xk), Y =
(Yk) ∈ CF(M, Λ,∆nm, p) and α,β ∈ R. Then there exit positive real numbers
ρ1, ρ2 such that

∞∑
i=1

(
1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, 0)

ρ1

)))pk
<∞, for some ρ1 > 0

and

∞∑
i=1

(
1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mYk, 0)

ρ2

)))pk
<∞, for some ρ2 > 0.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). SinceM = (Mk) is a non-decreasing and convex
so by using inequality (2), we have
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∞∑
i=1

(
1

i

i∑
k=1

(
Mk

(
d(αΛk∆

n
mXk + βΛk∆

n
mYk, 0)

ρ3

)))pk

=

∞∑
i=1

(
1

i

i∑
k=1

(
Mk

(
d(αΛk∆

n
mXk, 0)

ρ3
+
d(βΛk∆

n
mYk, 0)

ρ3

)))pk

≤
∞∑
i=1

(
1

i

i∑
k=1

1

2pk

(
Mk

(
d(αΛk∆

n
mXk, 0)

ρ1

)
+Mk

(
d(βΛk∆

n
mYk, 0)

ρ2

)))pk

≤ K

∞∑
i=1

(
1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, 0)

ρ1

)))pk

+ K

∞∑
i=1

(
1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mYk, 0)

ρ2

)))pk
< ∞.

Thus, αX + βY ∈ CF(M, Λ,∆nm, p). This proves that CF(M, Λ,∆nm, p) is a
linear space. �

Proposition 1 The classes of sequences CF(M, Λ,∆nm, p), C
F∞(M, Λ,∆nm, p),

`F(M, Λ,∆nm, p), O
F(M, Λ,∆nm, p) and OF∞(M, Λ,∆nm, p) are metric spaces

with respect to the metric,

f(X, Y) =

mn∑
k=1

d(Xk, 0) + η(Λk∆
n
mXk, Λk∆

n
mYk),

where Z = CF, CF∞, OF, OF∞, `F.
Proof. The proof of the proposition is direct consequence of the Proposition
3.1 [21]. �

Theorem 2 Let Z(M) be a complete metric space with respect to the metric
η, the space Z(M, Λ,∆nm, p) is a complete metric space with respect to the
metric,

f(X, Y) =

mn∑
k=1

d(Xk, 0) + η(Λk∆
n
mXk, Λk∆

n
mYk),

where Z = CF, CF∞, OF, OF∞, `F.
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Proof. Let (X(u)) be a Cauchy sequence in Z(M, Λ,∆nm, p) such that (X(u)) =

(X
(u)
n )∞n=1. Then for ε > 0, there exists a positive integer n0 = n0(ε) such that

f(X(u), X(v)) < ε for all u, v ≥ n0.

By the definition of f, we get

mn∑
r=1

d(X
(u)
r , X

(v)
r ) + η(Λk∆

n
mX

(u)
k , Λk∆

n
mX

(v)
k ) < ε, for all u, v ≥ n0 (3)

=⇒ mn∑
r=1

d(X
(u)
r , X

(v)
r ) < ε ∀ u, v ≥ n0

=⇒ d(X
(u)
r , X

(v)
r ) < ε ∀ u, v ≥ n0, r = 1, 2, 3, ...,mn.

Hence, (X
(u)
r ) is a Cauchy sequence in R(I), so it is convergent in R(I) by the

completeness property of R(I), for r = 1, 2, 3, ...,mn.
Let

lim
u→∞X(u)

r = Xr, for r = 1, 2, 3, ...,mn. (4)

Next, we have

η(Λk∆
n
mX

(u)
k , Λk∆

n
mX

(v)
k ) < ε for all u, v ≥ n0

which implies that (Λk∆
n
mX

(u)
k ) is a Cauchy sequence in Z(M), SinceM = (Mk)

is continuous function and so it is convergent in Z(M) by the completeness
property of Z(M).

Let lim
u
Λk∆

n
mX

(u)
k = Yk (say), in Z(M), for each k ∈ N. We have to prove

lim
u
X(u) = X and X ∈ Z(M, Λ,∆nm, p).

For k = 1, we have from equation (1) and (4),

lim
u
X
(u)
mn+1 + Xmn+1, for m ≥ 1, n ≥ 1.

Proceeding in this way of induction, we get

lim
u
X
(u)
k + Xk, for each k ∈ N.

Also, limuΛk∆
n
mX

(u)
k = Λk∆

n
mXk for each k ∈ N. Now, taking v → ∞ and

fixing u, it follows from (3),

mn∑
r=1

d(X
(u)
r , Xr) + η(Λk∆

n
mX

(u)
k , Λk∆

n
mXk) < ε, for all u, v ≥ n0.



166 K. Raj, S. Pandoh

=⇒ f(X(u), X) < ε, for all u ≥ n0.

Therefore, we have lim
u
X(u) = X.

Now, we show that X ∈ Z(M, Λ,∆nm, p). Since

f(Λk∆
n
mXk, 0) ≤ f(Λk∆nmX

(i)
k , Λk∆

n
mXk) + f(Λk∆

n
mX

(i)
k , 0) <∞.

=⇒ X ∈ Z(M, Λ,∆nm, p). Hence, Z(M, Λ,∆nm, p) is a complete metric space. �

Proposition 2 Let 1 ≤ p = sup
k
pk <∞. Then,

(i) The space CF(M, Λ,∆nm, p) is a complete metric space with the metric,

f1(X, Y) =

mn∑
r=1

d(Xr, Yr)+inf

{
ρ > 0 :

( ∞∑
i=1

1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, Λk∆

n
mYk)

ρ

))p) 1
p

≤ 1

}
.

(ii) The space CF∞(M, Λ,∆nm, p) is a complete metric space with the metric,

f2(X, Y) =

mn∑
r=1

d(Xr, Yr) + inf

{
ρ > 0 : sup

i

1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, Λk∆

n
mYk)

ρ

))pk
≤ 1

}
.

(iii) The space `F(M, Λ,∆nm, p) is a complete metric space with the metric,

f3(X, Y) =

mn∑
r=1

d(Xr, Yr) + inf

{
ρ > 0 :

( ∞∑
k=1

(
Mk

(
d(Λk∆

n
mXk, Λk∆

n
mYk)

ρ

))p) 1
p

≤ 1

}
.

(iv) The space OF(M, Λ,∆nm, p) is a complete metric space with the metric,

f4(X, Y) =

mn∑
r=1

d(Xr, Yr)+inf
{
ρ > 0 :

( ∞∑
i=1

1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, Λk∆

n
mYk)

ρ

))p) 1
p

≤ 1
}
.
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(v) The space OF∞(M, Λ,∆nm, p) is a complete metric space with the metric,

f5(X, Y) =

mn∑
r=1

d(Xr, Yr) + inf

{
ρ > 0 : sup

i

1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, Λk∆

n
mYk)

ρ

))pk
≤ 1

}
.

Proof. The proof directly comes from ([21], Proposition 3.2). �

Theorem 3 (a) `F(M, Λ,∆nm, p) ⊂ OF(M, Λ,∆nm, p) ⊂ CF∞(M, Λ,∆nm, p) and
the inclusions are strict.
(b) Z(M, Λ,∆n−1m , p) ⊂ Z(M, Λ,∆nm, p) (in general Z(M, Λ,∆im, p) ⊂ Z(M, Λ,

∆nm, p) for i = 1, 2, 3..., n− 1), for Z = CF, CF∞, OF, OF∞, `F.
(c) OF∞(M, Λ,∆nm, p) ⊂ CF∞(M, Λ,∆nm, p) and the inclusion is strict.

Proof. We shall prove the result for the space Z = C∞ only and others can
be proved in the similar way. Let (Xk) ∈ CF∞(M, Λ,∆n−1m , p). Then, we have

sup
i

1

i

(
i∑
k=1

Mk

(
d(Λk∆

n−1
m Xk, 0)

ρ

))pk
<∞, for some ρ > 0.

Now, we have

sup
i

1

i

(
i∑
k=1

Mk

(
d(Λk∆

n
mXk, 0)

2ρ

))pk

= sup
i

1

i

(
i∑
k=1

Mk

(
d(Λk∆

n−1
m Xk −Λk∆

n−1
m Xk+1, 0)

2ρ

))pk

≤ sup
i

1

2

(
1

i

(
i∑
k=1

Mk

(
d(Λk∆

n−1
m Xk, 0)

2ρ

)))pk

+ sup
i

1

2

(
1

i

(
i∑
k=1

Mk

(
d(Λk∆

n−1
m Xk+1, 0)

2ρ

)))pk
< ∞.

Proceeding in this way, we have Z(M, Λ,∆im, p) ⊂ Z(M, Λ,∆nm, p), for 0 ≤
i < n, for Z = CF, CF∞, OF, OF∞, `F. �
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Theorem 4 (a) If 1 ≤ p < q <∞, then
(i) CF(M, Λ,∆nm, p) ⊂ CF(M, Λ,∆nm, q);
(ii) `F(M, Λ,∆nm, p) ⊂ `F(M, Λ,∆nm, q);
(b) CF(M, Λ, p) ⊂ CF(M, Λ,∆nm, p) for all m ≥ 1 and n ≥ 1.

Proof. (i) We shall prove the result for the space CF(M, Λ,∆nm, p) and others
can be proved in the similar way. Let X ∈ CF(M, Λ,∆nm, p). Then there exists
ρ > 0 such that

∞∑
i=1

(
1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, 0)

ρ

)))pk
<∞.

This implies that

1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, 0)

ρ

))pk
< 1

for sufficiently large values of i. Since (Mk) is non-decreasing, we get

∞∑
i=1

(
1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, 0)

ρ

)))qk

≤
∞∑
i=1

(
1

i

i∑
k=1

(
Mk

(
d(Λk∆

n
mXk, 0)

ρ

)))pk
<∞.

Thus, X ∈ CF(M, Λ,∆nm, q). This completes the proof. �

Theorem 5 Let M = (Mk), M ′ = (M ′k) and M ′′ = (M ′′k ) be Musielak-
Orlicz functions satisfying ∆2−condition. Then for Z = CF, CF∞, OF, OF∞, `F,
we have
(i) Z(M ′, Λ,∆nm, p) ⊆ Z(M◦M ′, Λ,∆nm, p).
(ii) Z(M ′, Λ,∆nm, p) ∩ Z(M ′′, Λ,∆nm, p) ⊆ Z(M ′ +M ′′, Λ,∆nm, p).

Proof. Let (Xk) ∈ Z(M ′, Λ,∆nm, p). For ε > 0, there exists η > 0 such that
ε =M(η). Then,

M ′k

(
d(Λk∆

n
mXk, L)

ρ

)pk
< η, for some ρ > 0, L ∈ R(I).
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Let Yk =M
′
k

(
d(Λk∆

n
mXk,L)
ρ

)pk
, for some ρ > 0, L ∈ R(I). Since M = (Mk) is

continuous and non-decreasing, we get

Mk(Yk) =Mk

(
M ′k

(
d(Λk∆

n
mXk, L)

ρ

)pk
< Mk(η) = ε, for some ρ > 0.

=⇒ (Xk) ∈ Z(M◦M ′, Λ,∆nm, p).
(ii) Let (Xk) ∈ Z(M ′, Λ,∆nm, p) ∩ Z(M ′′, Λ,∆nm, p). Then,

M ′k

(
d(Λk∆

n
mXk, L)

ρ

)pk
< ε, for some ρ > 0, L ∈ R(I)

and

M ′′k

(
d(Λk∆

n
mXk, L)

ρ

)pk
< ε, for some ρ > 0, L ∈ R(I).

The rest of the proof follows from the equality

(M ′k +M
′′
k )

(
d(Λk∆

n
mXk, L)

ρ

)pk

= M ′k

(
d(Λk∆

n
mXk, L)

ρ

)pk
+M ′′k

(
d(Λk∆

n
mXk, L)

ρ

)pk
< ε+ ε = 2ε, for some ρ > 0

which implies that (Xk) ∈ Z(M ′+M ′′, Λ,∆nm, p). This completes the proof. �
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