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al. Powstańców Warszawy 12,

35-959 Rzeszów, Poland
email: dorotab@prz.edu.pl

Abstract. In this paper we introduce and study the split Horadam
quaternions. We give some identities, among others Binet’s formula, Cata-
lan’s, Cassini’s and d’Ocagne’s identities for these numbers.

1 Introduction

Let C be the field of complex numbers. A quaternion x is a hyper-complex
number represented by

H = {x = a0 + a1i+ a2j+ a3k : as ∈ R, s = 0, 1, 2, 3},

where {1, i, j, k} is an orthonormal basis in R4, which satisfies the quaternion
multiplication rules:

i2 = j2 = k2 = ijk = −1,

ij = k = −ji, jk = i = −kj, ki = j = −ik.

The quaternions were introduced by W. R. Hamilton in 1843.
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Another extension of the complex numbers is the algebra of split quater-
nions. The split quaternions were introduced by J. Cockle in 1849 [2]. The set
of split (or coquaternions) can be represented as

Ĥ = {y = b0 + b1i+ b2j+ b3k : bs ∈ R, s = 0, 1, 2, 3},

where {1, i, j, k} is the basis of Ĥ satisfying the following equalities

i2 = −j2 = −k2 = −1, (1)

ij = k = −ji, jk = −i = −kj, ki = j = −ik. (2)

The split quaternion can be rewritten as

y = (b0 + b1i) + (b2 + b3i)j = z1 + z2j, z1, z2 ∈ C.

The split quaternions contain nontrivial zero divisors, nilpotent elements
and idempotents. The conjugate of a split quaternion y = b0+b1i+b2j+b3k,
denoted by y, is given by y = b0 − b1i − b2j − b3k. The norm of y is defined
as

N(y) = yy = b20 + b
2
1 − b

2
2 − b

2
3. (3)

Let y1, y2 ∈ Ĥ, y1 = a1 + b1i + c1j + d1k, y2 = a2 + b2i + c2j + d2k. Then
addition and subtraction of the split quaternions is defined as follows

y1 ± y2 = (a1 ± a2) + (b1 ± b2)i+ (c1 ± c2)j+ (d1 ± d2)k.

Multiplication of the split quaternions is defined by

y1 · y2 = a1a2 − b1b2 + c1c2 + d1d2 + (a1b2 + b1a2 − c1d2 + d1c2)i (4)

+ (a1c2 + c1a2 − b1d2 + d1b2)j+ (a1d2 + d1a2 + b1c2 − c1b2)k.

For the basics on split quaternions theory, see [5].

2 The Horadam numbers

In [3] Horadam introduced a sequence {Wn} defined by the following relation

W0 = a,W1 = b, Wn = pWn−1 + qWn−2 for n ≥ 2 (5)

for arbitrary a, b, p, q ∈ Z. This sequence is a certain generalization of famous
sequences such as Fibonacci sequence {Fn} (a = 0, b = 1, p = q = 1), Lucas
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sequence {Ln} (a = 2, b = 1, p = q = 1), Jacobsthal sequence {Jn} (a = 0, b =
1, p = 1, q = 2), Pell sequence {Pn} (a = 0, b = 1, p = 2, q = 1), Pell-Lucas
sequence {PLn} (a = b = 1, p = 2, q = 1). The sequences defined by (5) are
called sequences of the Fibonacci type.

The characteristic equation associated with the recurrence (5) is

r2 − pr− q = 0.

Assuming that p2 + 4q > 0, the equation has the following roots

r1 =
p+

√
p2 + 4q

2
, r2 =

p−
√
p2 + 4q

2
. (6)

Note that

r1 + r2 = p, (7)

r1 − r2 =
√
p2 + 4q, (8)

r1r2 = − q. (9)

The Binet’s formula for the sequence {Wn} has the following form

Wn =
(b− ar2)r

n
1 − (b− ar1)r

n
2

r1 − r2
.

Let

α =
b− ar2
r1 − r2

, β =
b− ar1
r1 − r2

. (10)

Then
Wn = αrn1 − βr

n
2 . (11)

In the next section we will use the following result.

Theorem 1 Let n, p, q be integers such that n ≥ 0, p2 + 4q > 0. Then

n−1∑
l=0

Wl =
Wn + qWn−1 + a(p− 1) − b

p+ q− 1
. (12)

Proof. Using formula (11), (7) and (9), we get

n−1∑
l=0

Wl =

n−1∑
l=0

(αrl1 − βr
l
2) = α

1− rn1
1− r1

− β
1− rn2
1− r2
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=
α− β− (αr2 − βr1) − (αrn1 − βr

n
2 ) + r1r2(αr

n−1
1 − βrn−12 )

1− (r1 + r2) + r1r2

=
α− β− (αr2 − βr1) −Wn − qWn−1

1− p− q
.

By simple calculations we have α− β = a, αr2 − βr1 = ap− b. Hence

n−1∑
l=0

Wl =
Wn + qWn−1 + a(p− 1) − b

p+ q− 1
.

�

Numbers of the Fibonacci type appear in many subjects of mathematics.
In [4] Horadam defined the Fibonacci and Lucas quaternions. In [1] the split
Fibonacci quaternions Qn and split Lucas quaternions Tn were introduced by
the following relations

Qn = Fn + iFn+1 + jFn+2 + kFn+3,

Tn = Ln + iLn+1 + jLn+2 + kLn+3,

where Fn, Ln is nth Fibonacci and Lucas number, resp. and {i, j, k} is the
standard basis of split quaternions. In the literature there are many gener-
alizations of the Fibonacci and Lucas sequences, among others k-Fibonacci
sequence {Fk,n}, k-Lucas sequence {Lk,n}, defined for k ∈ N in the following
way

Fk,0 = 0, Fk,1 = 1, Fk,n = kFk,n−1 + Fk,n−2 for n ≥ 2,

Lk,0 = 2, Lk,1 = k, Lk,n = kLk,n−1 + Lk,n−2 for n ≥ 2.

Some interesting results for the split k-Fibonacci and split k-Lucas quaternions
can be found in [6]. In [7] the authors studied split Pell quaternions SPn and
split Pell-Lucas quaternions SPLn defined by

SPn = Pn + iPn+1 + jPn+2 + kPn+3,

SPLn = PLn + iPLn+1 + jPLn+2 + kPLn+3,

where Pn and PLn is nth Pell and Pell-Lucas number, resp.
We will focus on split Horadam quaternions. We will present some identities

for the split Horadam quaternions, which generalize the results for the split
Fibonacci quaternions, the split Lucas quaternions, the split Pell quaternions
and the split Pell-Lucas quaternions.
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3 The split Horadam quaternions

For n ≥ 0 define the split Horadam quaternion Hn by

Hn =Wn + iWn+1 + jWn+2 + kWn+3, (13)

where Wn is the nth Horadam number and i, j, k are split quaternionic units
which satisfy the multiplication rules given by (1) and (2).

By (5) and (13) we obtain

H0 = a+ bi+ j(pb+ qa) + k(p2b+ pqa+ qb)

H1 = b+ i(pb+ qa) + j(p
2b+ pqa+ qb) + k(p3b+ p2qa+ 2pqb+ q2a)

H2 = pb+ qa+ i(p2b+ pqa+ qb) + j(p3b+ p2qa+ 2pqb+ q2a)

+ k(p4b+ p3qa+ 2pq(pb+ qa) + p2qb+ q2b). (14)

For any n ≥ 0 we obtain the norm of Hn.

Proposition 1 Let n, p, q be integers such that n ≥ 0, p2 + 4q > 0. Then

N(Hn) = (1− q2 − p2q2)W2
n + (1− p2 − (p2 + q2)2)W2

n+1

− 2pq(1+ p2 + q)WnWn+1.

Proof. Using formula (3) and (13), we get

N(Hn) =W
2
n +W

2
n+1 −W

2
n+2 −W

2
n+3

=W2
n +W

2
n+1 − (pWn+1 + qWn)

2 −
(
(p2 + q)Wn+1 + pqWn)

)2
=W2

n +W
2
n+1 − (p2W2

n+1 + 2pqWnWn+1 + q
2W2

n)

− ((p2 + q)2W2
n+1 + 2pq(p

2 + q)WnWn+1 + p
2q2W2

n).

By simple calculations we get the result. �

By (13) we get a recurrence relation for the split Horadam quaternions.

Proposition 2 Let n, p, q be integers such that n ≥ 2, p2 + 4q > 0. Then

Hn = pHn−1 + qHn−2,

where H0, H1 are given by (14).
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Proof. By formula (13) and (5) we get

pHn−1 + qHn−2 = p(Wn−1 + iWn + jWn+1 + kWn+2)

+ q(Wn−2 + iWn−1 + jWn + kWn+1)

= pWn−1 + qWn−2 + i(pWn + qWn−1)

+ j(pWn+1 + qWn) + k(pWn+2 + qWn+1)

=Wn + iWn+1 + jWn+2 + kWn+3 = Hn,

which ends the proof. �

Theorem 2 Let n, p, q be integers such that n ≥ 0, p2 + 4q > 0. Then

(i) Hn +Hn = 2Wn,

(ii) N(Hn) = 2WnHn −H
2
n.

Proof. (i) Using the definition of the conjugate of a split quaternion we obtain
the result.
(ii) By formula (13) we have

H2n =W2
n −W

2
n+1 +W

2
n+2 +W

2
n+3

+ 2iWnWn+1 + 2jWnWn+2 + 2kWnWn+3

= −W2
n −W

2
n+1 +W

2
n+2 +W

2
n+3

+ 2(W2
n + iWnWn+1 + jWnWn+2 + kWnWn+3)

= 2Wn(Wn + iWn+1 + jWn+2 + kWn+3)

−W2
n −W

2
n+1 +W

2
n+2 +W

2
n+3

= 2WnHn −N(Hn).

Hence we get the result. �

The next theorem presents the Binet’s formula for the split Horadam quater-
nions.

Theorem 3 (Binet’s formula) Let n, p, q be integers such that n ≥ 0, p2 +
4q > 0. Then

Hn = αr̂1r
n
1 − βr̂2r

n
2 , (15)

where r1, r2, α, β are given by (6), (10), resp. and r̂1 = 1 + ir1 + jr
2
1 + kr

3
1,

r̂2 = 1+ ir2 + jr
2
2 + kr

3
2.
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Proof. By (11) we have

Hn =Wn + iWn+1 + jWn+2 + kWn+3

= αrn1 − βr
n
2 + i(αr

n+1
1 − βrn+12 ) + j(αrn+21 − βrn+22 )

+ k(αrn+31 − βrn+3)

= αrn1

(
1+ ir1 + jr

2
1 + kr

3
1

)
− βrn2

(
1+ ir2 + jr

2
2 + kr

3
2

)
= αr̂1r

n
1 − βr̂2r

n
2 .

�

Using the Binet’s formula (15), we can obtain some new identities for the
split Horadam quaternions. We will use the following lemma.

Lemma 1 Let r̂1 = 1 + ir1 + jr
2
1 + kr

3
1, r̂2 = 1 + ir2 + jr

2
2 + kr

3
2, where r1, r2

are given by (6). Then

r̂1r̂2 =1+ q+ q2 − q3 + i(p+ q2
√
p2 + 4q)

+ j(p2 + 2q− pq
√
p2 + 4q) + k(p3 + 3pq+ q

√
p2 + 4q), (16)

r̂2r̂1 =1+ q+ q2 − q3 + i(p− q2
√
p2 + 4q)

+ j(p2 + 2q+ pq
√
p2 + 4q) + k(p3 + 3pq− q

√
p2 + 4q). (17)

Proof. Using formula (4), we have

r̂1r̂2 = 1− r1r2 + (r1r2)
2 + (r1r2)

3 + i(r1 + r2 + (r1r2)
2(r1 − r2))

+ j(r21 + r
2
2 + r1r2(r

2
1 − r

2
2)) + k(r

3
1 + r

3
2 − r1r2(r1 − r2)),

r̂2r̂1 = 1− r1r2 + (r1r2)
2 + (r1r2)

3 + i(r1 + r2 − (r1r2)
2(r1 − r2))

+ j(r21 + r
2
2 − r1r2(r

2
1 − r

2
2)) + k(r

3
1 + r

3
2 + r1r2(r1 − r2)).

By (7) and (9) we get

r21 + r
2
2 = (r1 + r2)

2 − 2r1r2 = p
2 + 2q,

r31 + r
3
2 = (r1 + r2)

3 − 3r1r2(r1 + r2) = p
3 + 3pq.

Hence

r̂1r̂2 = 1+ q+ q2 − q3 + i(p+ q2
√
p2 + 4q)

+ j(p2 + 2q− pq
√
p2 + 4q) + k(p3 + 3pq+ q

√
p2 + 4q),
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r̂2r̂1 = 1+ q+ q2 − q3 + i(p− q2
√
p2 + 4q)

+ j(p2 + 2q+ pq
√
p2 + 4q) + k(p3 + 3pq− q

√
p2 + 4q).

�

Corollary 1

r̂1r̂2 + r̂2r̂1 = 2(1+ q+ q2 − q3 + pi+ j(p2 + 2q) + k(p3 + 3pq)). (18)

Theorem 4 (Catalan’s identity) Let n,m, p, q be integers such that n ≥ m,
p2 + 4q > 0. Then

Hn−mHn+m −H2n = αβ(−q)n−m[(−q)m(r̂1r̂2 + r̂2r̂1) − r
2m
2 r̂1r̂2 − r

2m
1 r̂2r̂1],

where α,β, r̂1r̂2 + r̂2r̂1, r̂1r̂2, r̂2r̂1 are given by (10), (18), (16), (17), resp.

Proof. By (15) we get

Hn−mHn+m −H2n =(αr̂1r
n−m
1 − βr̂2r

n−m
2 )(αr̂1r

n+m
1 − βr̂2r

n+m
2 )

− (αr̂1r
n
1 − βr̂2r

n
2 )(αr̂1r

n
1 − βr̂2r

n
2 )

=αβ(r1r2)
n−m[(r1r2)

m(r̂1r̂2 + r̂2r̂1)

− r2m2 r̂1r̂2 − r
2m
1 r̂2r̂1].

Using formula (9), we obtain

Hn−mHn+m −H2n = αβ(−q)n−m
(
(−q)m(r̂1r̂2 + r̂2r̂1) − r

2m
2 r̂1r̂2 − r

2m
1 r̂2r̂1

)
.

�

Corollary 2 (Cassini’s identity) Let n, p, q be integers such that n ≥ 0, p2+
4q > 0. Then

Hn−1Hn+1 −H
2
n = −αβ(−q)n−1

(
q(r̂1r̂2 + r̂2r̂1) + r

2
2r̂1r̂2 + r

2
1r̂2r̂1

)
.

Note that for p = q = 1 we get the Cassini’s identity for the split Fibonacci
quaternions Qn and the split Lucas quaternions Tn ([1]).

Corollary 3 Let n ≥ 1 be an integer. Then

(i) Qn−1Qn+1 −Q
2
n = (−1)n(2Q1 − 2i− 3k),
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(ii) Tn−1Tn+1 − T
2
n = 5(−1)n+1(2Q1 − 2i− 3k).

Proof. (i) Using Lemma 1, for p = q = 1 we get

r̂1r̂2 = 2+ (1+
√
5)i+ (3−

√
5)j+ (4+

√
5)k,

r̂2r̂1 = 2+ (1−
√
5)i+ (3+

√
5)j+ (4−

√
5)k,

r̂1r̂2 + r̂2r̂1 = 4+ 2i+ 6j+ 8k.

Hence and by Corollary 2 we have

Qn−1Qn+1 −Q
2
n = −

1

5
(−1)n−1[4+ 2i+ 6j+ 8k

+
3−
√
5

2
(2+ (1+

√
5)i+ (3−

√
5)j+ (4+

√
5)k)

+
3+
√
5

2
(2+ (1−

√
5)i+ (3+

√
5)j+ (4−

√
5)k)]

= (−1)n(2+ 4j+ 3k) = (−1)n(2Q1 − 2i− 3k).

We omit the proof of (ii). �

Proposition 3 Let n, p, q be integers such that n ≥ 0, p2 + 4q > 0. Then

Hn+1Hn−1 −H
2
n = −αβ(−q)n−1

(
q(r̂1r̂2 + r̂2r̂1) + r

2
1r̂1r̂2 + r

2
2r̂2r̂1

)
.

For p = 2 and q = 1 we get the Cassini’s identity for the split Pell quater-
nions SPn and the split Pell-Lucas quaternions SPLn ([7]).

Corollary 4 Let n ≥ 1 be an integer. Then

SPn+1SPn−1 − SP
2
n = (−1)n(2+ 4i+ 2j+ 16k),

SPLn+1SPLn−1 − SPL
2
n = (−1)n−1(4+ 8i+ 4j+ 32k).

Theorem 5 (d’Ocagne’s identity) Let m,n, p, q be integers such that n ≥ 0,
p2 + 4q > 0. Then

HnHm+1 −Hn+1Hm =
(−q)m(b− ar2)(b− ar1)

r1 − r2

(
rn−m1 r̂1r̂2 − r

n−m
2 r̂2r̂1

)
,

where r̂1r̂2, r̂2r̂1 are given by (16), (17), resp.
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Proof. By (15) we get

HnHm+1 −Hn+1Hm = (αr̂1r
n
1 − βr̂2r

n
2 )(αr̂1r

m+1
1 − βr̂2r

m+1
2 )

− (αr̂1r
n+1
1 − βr̂2r

n+1
2 )(αr̂1r

m
1 − βr̂2r

m
2 )

= αβ(r1 − r2) (r
n
1 r
m
2 r̂1r̂2 − r

m
1 r

n
2 r̂2r̂1)

= αβ(r1 − r2)(r1r2)
m
(
rn−m1 r̂1r̂2 − r

n−m
2 r̂2r̂1

)
=

(b− ar2)(b− ar1)(−q)
m

r1 − r2

(
rn−m1 r̂1r̂2 − r

n−m
2 r̂2r̂1

)
.

�
In the next theorem we give a summation formula for the split Horadam

quaternions.

Theorem 6 Let n, p, q be integers such that n ≥ 0, p2 + 4q > 0. Then

n∑
l=0

Hl =
Hn+1 + qHn + (ap− a− b)(1+ i+ j+ k)

p+ q− 1
−ia− j(a+ b) − k(a+ b+ pb+ qa).

Proof. By formula (12) we get

n∑
l=0

Hl =

n∑
l=0

Hl + i

n∑
l=0

Hl+1 + j

n∑
l=0

Hl+2 + k

n∑
l=0

Hl+3

=
1

p+ q− 1
[Wn+1 + qWn + a(p− 1) − b+ i(Wn+2 + qWn+1 + a(p− 1) − b)

+ j(Wn+3 + qWn+2 + a(p− 1) − b) + k(Wn+4 + qWn+3 + a(p− 1) − b)]

− iW0 − j(W0 +W1) − k(W0 +W1 +W2).

Hence we obtain
n∑
l=0

Hl =
1

p+ q− 1
[Wn+1 + iWn+2 + jWn+3 + kWn+4

+ q(Wn + iWn+1 + jWn+2 + kWn+3 + (ap− a− b)(1+ i+ j+ k)]

− ia− j(a+ b) − k(a+ b+ pb+ qa)

=
Hn+1 + qHn + (ap− a− b)(1+ i+ j+ k)

p+ q− 1

− ia− j(a+ b) − k(a+ b+ pb+ qa).

�
For p = q = 1 and a = 0, b = 1 we get the result for the split Fibonacci

quaternions Qn ([1]).
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Corollary 5
n∑
l=1

Ql = Qn+2 −Q2.

Now we will give the generating function of the split Horadam quaternions.

Theorem 7 The generating function of the split Horadam quaternions is

f(x) =
H0 + (H1 − pH0)x

1− px− qx2
.

Proof. Let f(x) = H0 +H1x+H2x
2 + . . .+Hnx

n + . . .. Then

pxf(x) = pH0x+ pH1x
2 + pH2x

3 + . . .+ pHn−1x
n + . . .

qx2f(x) = qH0x
2 + qH1x

3 + qH2x
4 + . . .+ qHn−2x

n + . . . .

Hence, by Proposition 2, we get

f(x) − pxf(x) − qx2f(x)

= H0 + (H1 − pH0)x+ (H2 − pH1 − qH0)x
2 + . . .

= H0 + (H1 − pH0)x.

Thus

f(x) =
H0 + (H1 − pH0)x

1− px− qx2
.

Moreover, by (14) we obtain

H0 = a+ ib+ j(pb+ qa) + k(p2b+ pqa+ qb),

H1 − pH0 = b− pa+ iqa+ jqb+ k(pqb+ q2a).

�
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