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Abstract. Let k be an arbitrary field and Q a tame quiver of type D̃4.
Consider the path algebra kQ and the category of finite dimensional right
modules mod-kQ. We determine the Hall polynomials Fzxy associated to
indecomposable modules of defect ∂z = −2, ∂x = ∂y = −1 or dually
∂z = 2, ∂x = ∂y = 1.

1 Introduction

Classical Hall algebras associated with discrete valuation rings were intro-
duced by Steinitz and Hall to provide an algebraic approach to the classical
combinatorics of partitions. The multiplication is given by Hall polynomials
which play an important role in the representation theory of the symmetric
groups and the general linear groups. In 1990 Ringel defined Hall algebras for
a large class of rings, namely finitary rings, including in particular path alge-
bras of quivers over finite fields. Far reaching analogues of the classical ones,
these Ringel-Hall algebras provided a new approach to the study of quantum
groups using the representation theory of finite dimensional algebras. They
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can also be used successfully in the theory of cluster algebras or to investigate
the structure of the module category.

In case of Ringel-Hall algebras corresponding to Dynkin quivers and tame
quivers we know due to Ringel and Hubery, that the structure constants of
the multiplication are again polynomials in the number of elements of the
base field. These are the generalized Hall polynomials. If we are looking at
Hall polynomials associated to indecomposable modules, the classical ones
are just 0 or 1, the generalized ones in the Dynkin case are also known and
have degree up to 5, however we do not have too much information about
the generalized ones in the tame case. The first lists of particular tame Hall
polynomials were given by the authors in [6] and in [7]. In [6] we presented
all the tame Hall polynomials associated to indecomposable modules of defect
−1, 0, 1. In [7] we listed the tame Hall polynomials corresponding to exact
sequences of the form 0 → P → R → I → 0, where P is a preprojective, I a
preinjective indecomposable and R is a homogeneous module of dimension δ
(the minimal radical vector of the tame quiver).

In this paper we restrict ourselves to the tame quiver of type D̃4 and deter-
mine all the tame Hall polynomials Fzxy associated to indecomposable modules
of defect ∂z = −2, ∂x = ∂y = −1 or dually ∂z = 2, ∂x = ∂y = 1.

2 Preliminaries

We begin with some facts related to representations of tame quivers. For a
detailed description we refer to [1, 2, 3].

Let Q = (Q0, Q1) be a tame quiver without oriented cycles. Suppose that
the vertex set Q0 has n elements and for an arrow α ∈ Q1 we denote by
t(α), h(α) ∈ Q0 the tail and head of α. The Euler form of Q is a bilinear form
on ZQ0 ∼= Zn given by 〈x, y〉 =

∑
i∈Q0

xiyi −
∑
α∈Q1

xt(α)yh(α). Its quadratic
form qQ (called Tits form) is independent from the orientation of Q and in
the tame case it is positive semidefinite with radical Zδ, where δ is a minimal
positive imaginary root of the corresponding Kac-Moody root system (which
is also the minimal radical vector of the Tits form). The defect of x ∈ ZQ0 is
then ∂x = 〈δ, x〉.

Let k be a field. The category mod-kQ will be identified with the category
rep-kQ of the finite dimensional k-representations of the quiver. We will denote
by [M] the isomorphism class of the module M, by αM the number of its
automorphisms, by dimM ∈ Q0 ∼= Zn its dimension vector and by ∂M =
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∂(dimM) its defect. Using the Euler form one has for X, Y ∈ mod-kQ

〈dimX, dimY〉 = dimk Hom(X, Y) − dimk Ext1(X, Y).

For dimk Hom(X, Y) we will use the notation (X, Y).
The indecomposable modules in mod-kQ are of three types: preprojectives

(having negative defect), preinjectives (having positive defect) and regulars
(having zero defect).

For P preprojective (i.e. with all its indecomposable components preprojec-
tive), I preinjective and R regular module we have Hom(R, P) = Hom(I, P) =
Hom(I, R) = Ext1(P, R) = Ext1(P, I) = Ext1(R, I) = 0. It follows that the
submodules of a preprojective module are always preprojective, preinjectives
can project only on preinjectives, a submodule of a regular module cannot
have preinjective components and a regular cannot project on preprojectives.
Preprojective and preinjective indecomposables are exceptional (i.e. their en-
domorphism space is one dimensional and they have no self extensions) and
are uniquely determined up to isomorphism by their dimension vector, which
is a positive real root of the root system of Q. Note also that the possible
defects of a preprojective indecomposable are −1 in the Ãn case, −1, −2 in
the D̃n case, −1, −2, −3 in the Ẽ6 case, −1, −2, −3, −4 in the Ẽ7 case and
−1, −2, −3, −4, −5, −6 in the Ẽ8 case.

The category of regular modules is an abelian, exact subcategory which
decomposes into a direct sum of serial categories with Auslander-Reiten quiver
of the form ZA∞/m, called tubes of rank m. These tubes are indexed by the
points of the projective line P1k, the degree of a point a ∈ P1k being denoted
by dega. A tube of rank 1 is called homogeneous, otherwise it is called non-
homogeneous. We have at most 3 non-homogeneous tubes indexed by points a
of degree dega = 1. All the other tubes are homogeneous. We assume that the
non-homogeneous tubes are labelled by some subset of {0, 1,∞}, whereas the
homogeneous tubes are labelled by the closed points of the scheme Hk = HZ⊗k
for some open integral subscheme HZ ⊂ P1Z. Let Xk ⊆ Hk be the set of points
of degree 1. The indecomposables on a homogeneous tube labelled by a ∈ Hk
are denoted by Rk(1, a) ⊂ Rk(2, a) ⊂ . . . . For a partition λ = (λ1, . . . , λn) let
Rk(λ, a) = Rk(λ1, a)⊕ · · · ⊕ Rk(λn, a). Note that the homogeneous modules of
dimension δ are up to isomorphism Rk(1, a), with a ∈ Xk. For simplicity we
will denote them by Rk(a). Note that dimk End(Rk(a)) = 1.

A module without homogeneous regular components can be described com-
binatorially, field independently, using a system of positive real roots together
with the dimension of quasi-socles for the non-homogeneous regular compo-
nents of dimension tδ. We denote this system by µ and let M(µ, k) be the cor-
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responding (up to isomorphism) unique module in mod-kQ. A Segre symbol
is a multiset σ = {(λ1, d1), . . . , (λ

r, dr)}, where λi are partitions and di ∈ N∗. It
will describe the homogeneous regular components of the module. Using the
definitions above, a decomposition symbol is pair α = (µ, σ). Given a decom-
position symbol α = (µ, σ) and a field k, we define the decomposition class
S(α, k) to be the set of isomorphism classes of modules of the formM(µ, k)⊕R,
where R = Rk(λ1, a1)⊕ · · · ⊕ Rk(λr, ar) for some distinct points a1, . . . ar ∈ Hk
such that degai = di. We also mention that for a decomposition symbol α the
polynomial nα(q) = |S(α, k)| is strictly increasing in q > 1.

Note that for k finite with q elements |Xk| = q + 1, q or q − 1 in the Ãn
case and q− 2 for other tame quivers. So if k has 2 elements and the quiver is
not of Ãn type there are no homogeneous modules of dimension δ.

For simplicity denote by x the decomposition symbol corresponding to a
preprojective (preinjective) indecomposable given by the root x. Also denote
by δ the symbol corresponding to homogeneous modules of dimension δ.

We mention next some needed facts about Ringel-Hall algebras. Suppose
that k is finite. We consider the rational Ringel-Hall algebra H(kQ) of the
algebra kQ. Its Q-basis is formed by the isomorphism classes [M] from mod-kQ
and the multiplication is defined by [N1][N2] =

∑
[M] F

M
N1N2

[M]. The structure

constants FMN1N2
= |{U ⊆ M| U ∼= N2, M/U ∼= N1}| are called Ringel-Hall

numbers. The associativity of the Ringel-Hall algebra follows from the equality∑
[N] F

M
N1N

FNN2N3
=

∑
[N] F

N
N1N2

FMNN3
.

Hubery proved the existence of generalized Hall polynomials in tame cases
with respect to the decomposition classes.

Theorem 1 ([4]) Given decomposition symbols α,β and γ, there exists a ra-
tional polynomial Fγαβ such that for any finite field k with |k| = q,

F
γ
αβ(q) =

∑
A∈S(α,k)
B∈S(β,k)

FCAB for all C ∈ S(γ, k)

and moreover

nγ(q)F
γ
αβ(q) = nα(q)

∑
B∈S(β,k)
C∈S(γ,k)

FCAB for all A ∈ S(α, k),

nγ(q)F
γ
αβ(q) = nβ(q)

∑
A∈S(α,k)
C∈S(γ,k)

FCAB for all B ∈ S(β, k).
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Remark 1 The polynomials Fzrx or Fzyr where r is the symbol of a homogeneous
regular will denote in our article Hubery’s polynomial divided by nr(q), which
is again a polynomial.

We list now the known tame Hall polynomials associated to indecomposables
(see the introduction).

Proposition 1 ([6, 7]) We have the following:

a) Suppose we limit ourselves to defects in {−1, 0, 1}. For two roots x, y
with ∂x = ∂y = −1 and 〈x, y〉 > 0 we have that Fyrx = 1 for any symbol
r corresponding to regular indecomposables of dimension y− x. This du-
alizes for roots with defect 1. For roots x, y with ∂x = −1, ∂y = 1 and
〈x, y〉 6= 0 we have that Fryx = 1

q−1αr for any symbol r corresponding to
regular indecomposables of dimension y − x (where αr is the number of
automorphisms). For three symols corresponding to regular indecompos-
ables the Hall polynomial is classical so it is 0 or 1. In all the other cases
the Hall polynomial is 0.

b) Let x be a positive real root with ∂x < 0. Then Fδδ−xx = h−∂x, where

h1 = 1,

h2 = q− 3,

h3 = q
2 − 5q+ 7,

h4 = q
3 − 6q2 + 15q− 14,

h5 = q
4 − 7q3 + 22q2 − 37q+ 26,

h6 = q
5 − 7q4 + 22q3 − 45q2 + 62q− 39.

We end this section with a well known lemma:

Lemma 1 Let P and P ′ be preprojective indecomposables with ∂P = −1. Then
every nonzero morphism f : P → P ′ is a monomorphism.

3 Reductions

From now on we suppose that Q is of D̃4 type.
Our aim is to determine the tame Hall polynomials Fzxy associated to in-

decomposable modules of defect ∂z = −2, ∂x = ∂y = −1 or dually ∂z = 2,
∂x = ∂y = 1.
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Using reflection functors (and the fact that Hall numbers are preserved via
these functors) one can see that we only need to consider a particularly oriented
quiver of D̃4 type (see for example [6] for all the details).

By the arguments above we will consider the quiver Q ′ of D̃4 type with all
arrows pointing to a non-central vertex (say vertex 1, the central vertex being
5). Thus the unique sink in Q ′ is 1 (one of the marginal vertexes):

2

��

3

��
Q ′ : 5

��
1 4

^^

We end this section with the main tool, which will provide us the recursions
permitting to compute the Ringel-Hall numbers above.

Proposition 2 [5] Let X, Y, Z ∈ mod-kQ where Q is an arbitrary quiver and
k is finite. Denote by sYX the number of submodules of Y isomorphic to X, by fYX
the number of submodules of Y with factor isomorphic to X, by eYX the number
of epimorphisms from Y to X, by αX the number of automorphisms of X and
by hXY the number of morphisms from X to Y. Then we have the following
formula:

eYX = hYX −
∑

Z∈mod-kQ
dimZ<dimX

fYZαZs
X
Z.

Moreover eYX = αXf
Y
X.

4 Recursions and Hall polynomials

Consider the quiver Q ′ and the indecomposable preprojectives P0, P
′, P with

dimP = dimP0+dimP ′ and ∂P0 = ∂P
′ = −1, ∂P = −2. Let S1 be the projective

simple corresponding to the unique sink 1. The rest of the indecomposable
preprojectives are:

� P2(n) the indecomposable preprojective (of defect −2) with dimension
vector (1, 0, 0, 0, 1) + nδ;
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� P1i1 (n) (for i = 1, 4) the indecomposable preprojectives (of defect −1)
of dimensions (0, 0, 0, 0, 1) + nδ, (1, 1, 0, 0, 1) + nδ, (1, 0, 1, 0, 1) + nδ,
(1, 0, 0, 1, 1) + nδ;

� P2i1 (n) (for i = 1, 4) the indecomposable preprojectives (of defect −1)
of dimensions (2, 1, 1, 1, 2) + nδ, (1, 0, 1, 1, 2) + nδ, (1, 1, 0, 1, 2) + nδ,
(1, 1, 1, 0, 2) + nδ.

The segment of the preprojective component of the Auslander-Reiten quiver
which we will use is the following:

P111 (n)

��

P211 (n)

��

P211 (2n− 1)

��

P111 (2n)

P121 (n)

!!

P221 (n)

!!

P221 (2n− 1)

!!

P121 (2n)

· · · P2(2n)

HH

AA

��

��

P2(2n+ 1)

FF

==

!!

��

P2(2n+ 2) · · · P2(4n− 1)

DD

::

$$

��

P2(4n)

GG

@@

��

��

· · ·

P131 (n)

==

P231 (n)

==

P231 (2n− 1)

==

P131 (2n)

P141 (n)

FF

P241 (n)

FF

P241 (2n− 1)

FF

P141 (2n)

Proposition 3 FPP ′P0
= gn−1(q), where n = 〈dimP0, dimP〉 = 〈dimP,dimP ′〉

and
gn = Xn − 3Xn−1 + · · ·+ (−1)n−1(2n− 1)X+ (−1)n(n+ 1)

(with g0 = 1 and g−1 = 0).

Proof. First of all note that n = 〈dimP0, dimP〉 = 〈dimP0, dimP0 + dimP ′〉 =
1 + 〈dimP0, dimP ′〉 = 〈dimP0 + dimP ′, dimP ′〉 = 〈dimP,dimP ′〉. Also if n =
〈dimP0, dimP〉 = (P0, P) = 0, then FPP ′P0

= 0 = g−1.
We will use induction on n ≥ 1. For n = 1, the assertion is trivial since n =

1 = 〈dimP0, dimP〉 = (P0, P). Using successive Auslander-Reiten translations,
the fact that the modules are indecomposable preprojectives and dimP =
dimP0+dimP ′, one can see that FPP ′P0

= FP2P1S1 , where n = 1 = 〈dimP0, dimP〉 =
〈dimS1, dimP2〉 = (dimP2)1. This means (looking at the dimensions) that P2 =
P2(0), and P1 = P

11
1 (0), so FPP ′P0

= FP2P1S1 = 1.
Suppose the assertion is true for values under n and prove it for n.
Using again successive Auslander-Reiten translations, one can see (as above)

that FPP ′P0
= FP2P1S1 , where n = 〈dimP0, dimP〉 = 〈dimS1, dimP2〉 = (dimP2)1.
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By Proposition 2 we have that

eP2P1 = hP2P1 −
∑

Z∈mod-kQ ′

dimZ<dimP1

fP2Z αZs
P1
Z .

Note that FP2P1S1 = fP2P1 =
e
P2
P1
αP1

=
e
P2
P1
q−1 and hP2P1 = q(P2,P1). Also if there is a

monomorphism Z → P1 and an epimorphism P2 → Z it follows that Z = 0

or Z is a indecomposable preprojective of defect −1 such that (Z, P1) 6= 0

and (P2, Z) 6= 0 (here we use the fact that submodules of preprojectives are
preprojective and a preprojective of defect −2 can’t project on a different pre-
projective of defect −2). Using the fact that the indecomposable preprojectives
are directing, one can see that in the Auslander-Reiten quiver Z follows after
P2 and precedes P1.

Suppose n = 2m. Denote by g ′2m = f
P2(2m)

P111 (2m)
.

Using the previous formula and observations and the Auslander-Reiten seg-
ment presented above, performing all the calculations we obtain:

g ′2m = f
P2(2m)

P111 (2m)

=
q2m+1 − 1

q− 1
−

∑
i=1,4

j=0,m−1

f
P2(2m)

P1i1 (m+j)
s
P111 (2m)

P1i1 (m+j)
−

∑
i=1,4

j=0,m−1

f
P2(2m)

P2i1 (m+j)
s
P111 (2m)

P2i1 (m+j)
(1)

By Lemma 1 we have that

s
P111 (2m)

P1i1 (m+j)
=
q(P

1i
1 (m+j),P111 (2m)) − 1

q− 1

where (P111 (m + j), P111 (2m)) = m − j + 1 and (P1i1 (m + j), P111 (2m)) = m − j
for i = 2, 4. Also

s
P111 (2m)

P2i1 (m+j)
=
q(P

2i
1 (m+j),P111 (2m)) − 1

q− 1

where (P211 (m + j), P111 (2m)) = m − j − 1 and (P2i1 (m + j), P111 (2m)) = m − j
for i = 2, 4.

The kernel of an epimorphism P2(2m) → Pli1 (m+ j) is preprojective and of
defect −1, so it is indecomposable and unique. Denote it by X. This implies

that f
P2(2m)

Pli1 (m+j)
= F

P2(2m)

Pli1 (m+j)X
. Using the induction hypothesis one can deduce that

F
P2(2m)

P1i1 (m+j)X
= g2j(q) and F

P2(2m)

P2i1 (m+j)X
= g2j+1(q), since 〈P2(2m), P1i1 (m + j)〉 =

2j+ 1 and 〈P2(2m), P2i1 (m+ j)〉 = 2j+ 2.
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Substituting everything in (1) we obtain:

g ′2m =
q2m+1 − 1

q− 1
−
qm+1 − 1

q− 1
g0(q)

−
∑

j=1,m−1

qm−j+1 − 1

q− 1
(g2j(q) + 3g2j−1(q) + 3g2j−2(q) + g2j−3(q))

− 3g2m−1(q) − 3g2m−2(q) − g2m−3(q).

In case n = 2m + 1 a similar recursion can be obtained for g ′2m+1. More
precisely we get:

g ′2m+1 =
q2m+2 − 1

q− 1
−
qm+1 − 1

q− 1
(g1(q) + 3g0(q))

−
∑

j=1,m−1

qm−j+1 − 1

q− 1
(g2j+1(q) + 3g2j(q) + 3g2j−1(q) + g2j−2(q))

− 3g2m(q) − 3g2m−1(q) − g2m−2(q).

By direct calculation we get that g ′2m = g2m(q) and g ′2m+1 = g2m+1(q) that
is, g ′n = gn(q) for all n. �

Remark 2 Based on calculations done with a computer we conjecture that
the polynomials above are irreducible (as integer polynomials).
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[4] A. Hubery, Hall polynomials for affine quivers, Represent. Theory, 14
(2010), 355–378.

[5] C. M. Ringel, Hall algebras, in: Topics in algebra, Banach Center Publ.,
26 (1990), 433–447.
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