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Abstract. We study two extensions of notions related to perfect num-
bers. One is the extension of “superperfect” numbers, the other one is
a new notion called “aperfect” numbers. As particular cases, many re-
sults involving the arithmetical functions σ, σ∗, σ∗∗, ϕ, ϕ∗, ψ and their
compositions are presented in a unitary way.

1 Introduction

Let σ(n) denote the sum of distinct divisors of the positive integer n. It
is well-known that n is called perfect if σ(n) = 2n. Euclid and Euler have
determined all even perfect numbers (see [8] for history of this theorem) by
showing that they are of the form n = 2k · q, where q = 2k+1 − 1 is a prime
(k ≥ 1). Prime numbers of the form 2a − 1 are called Mersenne primes, and
it is one of the most difficult open problems of mathematics the proof of the
infinitude of such primes. Up to now, only 46 Mersenne primes are known
(see e.g. http://www.mersenne.org/). On the other hand, no odd perfect
number is known ([3]). In 1969 D. Suryanarayana [10] defined the so-called
superperfect numbers n, having the property σ(σ(n)) = 2n; and he and H. J.
Kanold [4] obtained the general form of even superperfect numbers. All odd
superperfect numbers must be perfect squares, but we do not know if there
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exists at least one such number.
In what follows we denote by N the non-zero positive integers: N = {1, 2, . . .}.
We call a g function multiplicative, if g(ab) = g(a)g(b) for all a, b ≥ 1, with
(a, b) = 1.
In what follows, we denote by σ∗(n) the sum of unitary divisors of n, i.e.
those divisors d|n, with the property (d, n/d) = 1. A divisor d of n is called
bi-unitary if the greatest common unitary divisor of d and n/d is 1. It is
well-known that (see e.g. [2], [8]) σ∗ and σ∗∗ are multiplicative functions, and

σ∗(pα) = pα + 1, (1)

σ∗∗(pβ) =

{
1+ p+ . . .+ p2α − pα, if β = 2α

1+ p+ . . .+ p2α+1 = σ(pα), if β = 2α+ 1
, (2)

where p is an arbitrary prime and α ≥ 1 is a positive integer.
Clearly, σ is also a multiplicative function and

σ(pα) = 1+ p+ . . .+ pα, (3)

for any prime p and α ≥ 1.
The Euler’s totient function is a multiplicative function with

ϕ(pα) = pα−1
· (p− 1), (4)

while its unitary analogue is a multiplicative function with

ϕ∗(pα) = pα − 1, (5)

(see e.g. [2], [9]).
Finally, Dedekind’s arithmetical function ψ is a multiplicative function with
the property

ψ(pα) = pα−1
· (p+ 1), (6)

(see e.g. [3], [7]).
In what follows, we shall call a number n “f-perfect”, if

f(n) = 2n (7)
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Thus the classical perfect numbers are the σ-perfect numbers, while the su-
perperfect numbers are in fact σ ◦ σ-perfect numbers.
In 1989 the first author [6] determined all even ψ◦σ-perfect numbers. In fact,
he proved that for all even n one has

ψ
(

σ(n)
)

≥ 2n, (8)

with equality only if n = 2k, where 2k+1 − 1 is a Mersenne prime. Since
σ(m) ≥ ψ(m) for all m, from (8) we get:

σ
(

σ(n)
)

≥ ψ
(

σ(n)
)

≥ 2n for n = even, (9)

an inequality, which refines in fact the Kanold-Suryanarayana theorem.
We note the contrary to the σ ◦ σ-perfect numbers; at least one odd solution
to ψ ◦ σ-perfect numbers is known, namely n = 3.

2 Extensions of even superperfect numbers

The main result of this section is contained in the following.

Theorem 1 Let f, g : N → N be two arithmetic functions having the following
properties:

1. g is multiplicative

2. f(ab) ≥ af(b) for all a, b ≥ 1

3. g(m) ≥ m, with equality only for m = 1

4. f
(

g(2k)
)

≥ 2k+1, with equality only if 2k+1 − 1 ∈ A, where A is a set of
positive integers

Then for all even n one has

f
(

g(n)
)

≥ 2n, (10)

and all even f ◦ g-perfect numbers are of the form 2k, where 2k+1 − 1 ∈ A.
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Proof. Let n = 2k ·m with m = odd, be an even integer. By condition 1. one
has g(n) = g(2k)g(m), so by 2. we can write that f

(

g(n)
)

= f
(

g(2k)g(m)
)

≥

g(m)f
(

g(2k)
)

. Since g(m) ≥ m (by 3.) and f
(

g(2k)
)

≥ 2k+1 (by 4.), we get
that f

(

g(m)
)

≥ 2n, so (10) follows. For equality we must have g(m) = 1

and f
(

g(2k)
)

= 2k+1, so m = 1 and 2k+1 − 1 ∈ A. This finishes the proof of
Theorem 1. �

Remark 1 If at least one of the inequalities 2.–4. is strict, then in (10) one
has strict inequality. As a consequence, n cannot be an even f ◦ g-perfect
number.

Corollary 1 (Sándor [6])
All even ψ ◦ σ-perfect numbers n have the form n = 2k, where 2k+1 − 1 is
prime.

– The first ψ ◦ σ-perfect numbers are: 2 = 21, 3, 4 = 22, 16 = 24, 64 = 26,
4096 = 212, 65536 = 216, 262144 = 218, where 22 − 1 = 3, 23 − 1 = 7,
25 − 1 = 31, 27 − 1 = 127, 213 − 1 = 8191, 217 − 1 = 131071, 219 − 1 = 524287

are Mersenne primes.
– Put f(n) = ψ(n) and g(n) = σ(n) in Theorem 1. Then property 2. is

known (see e.g. [7]), while 3. and 4. are well known. Since for t > 1 one has
ψ(t) ≥ t + 1, with equality only for t = prime, by σ(2k) = 2k+1 − 1, we get
A = set of primes of the form 2k+1 − 1.

Corollary 2 (Sándor [6])
The only even σ ◦ψ-perfect number n is n = 2.

– Put f(n) = σ(n) and g(n) = ψ(n) in Theorem 1. Then properties 1.–3.
are well-known; for 4. one has ψ(2k) = 2k−1 ·3; so σ(2k−1 ·3) = ((2k−1) ·4) ≥

2k+1 ⇔ 2k ≥ 2. Thus k = 1 and A = {3}.

Corollary 3 (Kanold-Suryanarayana [4])
All even σ ◦ σ-perfect numbers n have the form n = 2k, where 2k+1 − 1 is
prime.

– The first σ ◦ σ-perfect numbers are:
2 = 21, 4 = 22, 16 = 24, 64 = 26, 4096 = 212, 65536 = 216, 262144 = 218,
1073741824 = 230, 1152921504606846976 = 260, where 22 − 1 = 3, 23 − 1 = 7,
25 − 1 = 31, 27 − 1 = 127, 213 − 1 = 8191, 217 − 1 = 131071, 219 − 1 = 524287,
231 − 1 = 2147483647, 261 − 1 = 2305843009213693951 are Mersenne primes.

– This also follows from inequality (10) for f(n) = σ(n) and g(n) = ψ(n),
but a direct proof applies for f(n) = g(n) = σ(n).
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Corollary 4 (Sándor [6])
There is no even ψ ◦ψ-perfect number.

– Put f(n) = g(n) = ψ(n). Since inequality 4. will be strict, inequality (10)
holds true also with strict inequality.

Remark 2 In [6] it is proved also that the only odd ψ ◦ ψ-perfect number is
n = 3.

Corollary 5 The only even σ ◦ σ∗∗-perfect number n is n = 2.
– Let f(n) = σ(n) and g(n) = σ∗∗(n) in Theorem 1. Clearly 3. holds true,

as more generally it is known that (see e.g. [1], [8]):

σ∗∗(m) ≥ m+ 1 for m > 1, (11)

with equality only for m = p or m = p2 (p = prime).
Now, let k be odd. Then σ∗∗(2k) = σ(2k) = 2k+1 − 1 and σ(σ∗∗(2k)) =

σ(2k+1 − 1) ≥ 2k+1, with equality only if 2k+1 − 1 = prime. For k ≥ 3, as k is
odd, clearly k+ 1 is even, so it is immediate that 2k+1 − 1 ≡ 0 (mod 3). Thus
we must have k = 1, i.e. n = 2 is a solution.
When k is even, put k = 2a. Then σ∗∗(2k) = σ∗∗(22a) = 1+ 2+ . . .+ 2a−1 +

2a+1 + . . .+ 22a

︸ ︷︷ ︸
2a+1

·(1+2+...+2a−1)

= (1+2+ · · ·+2a−1) · (1+2a+1) = (2a−1)(2a+1+1). Thus,

σ(σ∗(2k)) = σ((2a − 1) · (2a+1 + 1)) ≥ (2a − 1)σ(2a − 1) ≥ (2a+1 + 1) · 2a >

22a+1 = 2k+1, so inequality 4) is strict for k even number.

3 Aperfect numbers

The equality f(n) = n + 2, for f(n) > n is a kind of additive analogue of
f(n) = n · 2, i.e. of classical perfect numbers. We shall call a number n f-plus
aperfect (aperfect = “additive perfect”), if

f(n) = n+ 2. (12)

This notion also extends the notion of perfect numbers. Put e.g. f(n) =

σ(n) − n+ 2. Then σ(n) = 2n, so we obtain again the perfect numbers.
Similary, for f(n) < n we have a similar notion. We call n f-minus aperfect, if

f(n) = n− 2. (13)
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We can state the following general result:

Theorem 2 Let f, g : N → N be two arithmetic functions such that g(n) ≥

n + 1 for n > 1, with equality only for n = pα (p prime, α ≥ 1 integer) and
f(m) ≥ m + 1, for m > 1, with equality only for m = qβ (q prime, β ≥ 1

integer). Then one has the inequality

f
(

g(n)
)

≥ n+ 2 (14)

for all n, and n is f ◦ g-plus aperfect only if the prime powers pα and qβ

satisfy the equation

g(pα) = qβ. (15)

Proof. From the stated conditions, one can write f
(

g(n)
)

≥ g(n) + 1 ≥

(n + 1) + 1 = n + 2. One has equality only if n = pα and g(n) = qβ, i.e.
g(pα) = qβ, which means equality (15). �

Corollary 6 (Sándor [6])
All σ ◦ σ∗-plus aperfect numbers n have form n = 2s, where 2s + 1 is a prime
(i.e. Fermat prime, s = 2a ).

– The first σ ◦ σ∗-plus aperfect numbers are: 2 = 21, 4 = 22, 16 = 24,
256 = 28, 65536 = 216, where 21+1 = 3, 22+1 = 5, 24+1 = 17, 28+1 = 257,
216 + 1 = 65537 are Fermat primes.

– Let f(n) = σ(n), g(n) = σ∗(n). Then (15) may be written as σ∗(pα) = qβ.
Since σ(m) = m + 1 only for m = prime, we have β = 1, thus pα + 1 = q.
For p ≥ 3, pα + 1 is even number, so we must have p = 2, i.e. q = 2α + 1.
Since n = pα = 2α, then result follows.

Corollary 7 All σ∗ ◦ σ-plus aperfect numbers are n = 2, or have the form
n = 2k − 1, where 2k − 1 is a Mersenne prime.

– The first σ∗ ◦ σ-plus aperfect numbers are: 2, 22 − 1 = 3, 23 − 1 = 7,
25 − 1 = 31, 27 − 1 = 127, 213 − 1 = 8191, 217 − 1 = 131071, 219 − 1 = 524287

(Mersenne primes).
– Let f(n) = σ∗(n), g(n) = σ(n) in Theorem 2. Then (15) has the form

σ(pα) = qβ. Since α = 1, one has p+ 1 = qβ, i.e. p = qβ− 1. For q ≥ 3 this
is even, so we must have q = 2, when p = 2β − 1 is Mersenne prime. When
q = 3 for β = 1 we get the prime 2, the first σ∗ ◦ σ-plus aperfect number.
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Corollary 8 The only σ ◦ σ-plus aperfect number n is n = 2.
– Let f(n) = g(n) = σ(n). Then we get α = β = 1 so σ(p) = q, i.e.

p+ 1 = q with p, q This is possible only for p = 2, q = 3.

Corollary 9 The only σ∗∗ ◦ σ∗∗-plus aperfect numbers n are n = 2, 3, 4.
– Since the equality σ∗∗(n) = n + 1 is satisfied only if n = p or n = p2 (p

prime), we must study the equality:

σ∗∗(pα) = qβ (16)

for α,β ∈ {1, 2}.
If α = 1, then β = 1 implies p+1 = q, which is possible only for p = 2, q = 3.
Now for α = 1, β = 2 we get p+ 1 = q2, so p = q2− 1 = (q− 1)(q+ 1), which
is possible only for q = 2 and p = 3. Thus p = 3 is acceptable too.
If α = 1, β = 2, we get q2+ 1 = p, i.e. q2 = p− 1. Here p = 2 is not possible,
while for p ≥ 3, p − 1 is even, thus 2|q2. This means q = 2. So p = 5 is
another solution. For q2 + 1 = p2 we get q2 = (p− 1)(p+ 1), which for p = 2

gives q2 = 3, which is impossible. For p ≥ 3 we get q = 3, so 5 = p2, which
is again impossible. Then result follows.

Similarly to Theorem 2, we may prove the following:

Theorem 3 Let f, g : N → N be two arithmetic functions, such that g(n) ≤

n − 1 for n > 1, with equality only for n = pα (p prime, α ≥ 1 integer) and
f(m) ≤ m − 1, for m > 1, with equality only for m = qβ (q prime, β ≥ 1

integer). Then one has the inequality:

f
(

g(n)
)

≤ n− 2 (17)

for all n > 2, and n is f ◦g-minus aperfect only if the prime powers pα and
qβ satisfy the equation

g(pα) = qβ. (18)

Proof. From the stated properties one can write f
(

g(n)
)

≤ g(n) − 1 ≤

(n − 1) − 1 = n − 2, with equality only if n = pα and g(n) = qβ, so (18)
follows. �
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Corollary 10 All ϕ ◦ ϕ∗-minus aperfect numbers n are n = 3, or have the
form n = 2a, where 2a − 1 is a Mersenne prime.

– The first ϕ ◦ϕ∗-minus aperfect numbers are: 3, 4 = 22, 8 = 23, 32 = 25,
128 = 27, 8192 = 213, where 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31, 27 − 1 = 127,
213 − 1 = 8191 are Mersenne primes.

– Let f(n) = ϕ(n), g(n) = ϕ∗(n) in Theorem 3. As ϕ(m) = m− 1 only for
m = prime, we have β = 1, so (18) becomes ϕ∗(pα) = q, i.e. pα − 1 = q.
Then p = 2, so q = 2α − 1 is a Mersenne prime. Here n = 2α, so the
result follows. When p = 3 and α = 1, then q = 1, and we obtain the first
ϕ ◦ϕ∗-minus aperfect number: 3.

Corollary 11 All ϕ∗◦ϕ-minus aperfect numbers n have the form n = 2a+1 =

Fermate prime.
– The first ϕ∗ ◦ ϕ-minus aperfect numbers are: 3 = 21 + 1, 5 = 22 + 1,

17 = 24 + 1, 257 = 28 + 1 Fermat primes.
– Put f(n) = ϕ∗(n), g(n) = ϕ(n) in Theorem 3. Now α = 1, so ϕ(p) = qβ,

i.e. p − 1 = qβ, implying p = qβ + 1. Since p, q are primes, one must have
q = 2. Thus p = 2β + 1 and n = p, which implies the assertion.

Remark 3 At the present state of the science, there are only 5 Fermat primes
known, namely n = 3, 5, 17, 257, 65537 (see [5], [3]).

Corollary 12 All ϕ∗ ◦ϕ∗-minus aperfect numbers are n = 9 or n = 2α with
2α − 1 is Mersenne prime, or n = 2β + 1 is Fermat prime.

– The first ϕ∗ ◦ ϕ∗-minus aperfect numbers are: 3, 4, 5, 8, 9, 17, 32, 128,
257, 8192.

– We have ϕ∗(n) = n − 1 only if n = pα, so we must solve the equation
ϕ∗(pα) = pα − 1 = qβ.

Case 1) If q ≥ 3, then as pα = qβ + 1 = even, we get 2|pα, so p = 2. We
get the equation:

qβ = 2α − 1. (19)

Equation (19) has been studied in [9] (Lemma 6’), so we get β = 1, q = 2α−1

is Mersenne prime.
Case 2) If q = 2, then we get the equation:

pα = 2β + 1, (20)
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studied in [9] (Lemma 4). Thus we have: a) p = 3, α = 2, β = 3, in which
case n = pα = 32 = 9; b) α = 1, p = 2β + 1 is Fermat prime.
This finishes the proof of Corollary 12.

Remark 4 It is easy to see that the only ϕ ◦ ϕ-minus aperfect number is
n = 3.

Remark 5 Since the result of Corollary 7 is a characterisation of odd solu-
tions, it could be used as a Mersenne prime test, too; and Corollary 11 could
be used as a Fermat prime test, too.
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