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Abstract. Let R be a commutative ring with unity 1 6= 0 and let R×

be the set of all unit elements of R. The unitary Cayley graph of R,
denoted by GR = Cay(R, R×), is a simple graph whose vertex set is R and
there is an edge between two distinct vertices x and y of R if and only
if x − y ∈ R×. In this paper, we determine the Laplacian and signless
Laplacian eigenvalues for the unitary Cayley graph of a commutative
ring. Also, we compute the Laplacian and signless Laplacian energy of
the graph GR and its line graph.

1 Introduction

We consider finite commutative rings R with unit element 1 6= 0. Let R× be the
set of all unit elements of R. We know that an Artinian ring R can be written
as R ∼= R1× · · · ×Rt, where Ri is a finite local ring with maximal ideal Mi, for
all 1 6 i 6 t. This decomposition is unique up to permutation of factors. We
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denote the (finite) residue field Ri
Mi

by Ki and fi = |Ki| =
|Ri|
|Mi|

. Also, assume
that f1 6 f2 6 · · · 6 ft.

A simple graphG consists of a vertex set V(G) = {v1, v2, . . . , vn} and the edge
set E(G) = {e1, e2, . . . , em}. We call |V(G) = n| and |E(G)| = m, respectively,
as the order and the size of the graph G. The complement of G, denoted by
G, is the graph whose vertex set is same as that of G and two vertices are
adjacent in G if and only if they are not adjacent in G. A complete graph
on n vertices is denoted by Kn. A graph G is multipartite if its vertex set
can be partitioned into non-empty subsets, called partite sets, such that no
two vertices in the same part are adjacent. A multipartite graph is complete if
every vertex of a partite set is adjacent to each vertex of the other partite sets.
A complete multipartite graph with k parts is denoted by Kn1,n2,...,nk

where
ni is the number of vertices in the i-th part of the graph.

The join of two graphs G1 and G2, denoted by G1 ∨ G2, is the graph with
vertex set V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2) ∪ {xy; x ∈ V(G1), y ∈
V(G2)}. The direct product of G1 and G2, denoted by G1 ⊗ G2, is the graph
with vertex set V(G1) × V(G2) in which (u1, v1) and (u2, v2) are adjacent if
u1 and u2 are adjacent in G1 and v1 and v2 are adjacent in G2. For other
undefined notations and terminology from graph theory and spectral graph
theory, the readers are referred to [6, 18].

The unitary Cayley graph of R, denoted by GR = Cay(R, R×), is a (simple)
graph whose vertex set is R and two distinct vertices x and y of R are adjacent
if and only if x−y ∈ R×. Some recent results on unitary Cayley graphs can be
seen in [16]. If G = Zn is the finite cyclic group of order n and the set S consists
of two elements, the standard generator of G and its inverse, then the Cayley
graph is the cycle Cn. More generally, the Cayley graphs of finite cyclic groups
are exactly the circulant graphs. Some examples of unitary Cayley graphs are
given in Figure 1.

Figure 1: The unitary Cayley graphs for Z6, Z7, Z8
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The following proposition is a basic consequence of the definition and it was
illustrated in [1].

Proposition 1 Let R be a commutative ring.

(a) Then GR is a |R×|-regular graph.

(b) If R is a local ring with maximal ideal M, then GR is a complete multi-
partite graph whose partite sets are the cosets of M in R. In particular,
GR is a complete graph if and only if R is a field.

(c) If R is an Artinian ring and R ∼= R1 × . . . × Rt as a product of local
rings, then GR ∼= ⊗ti=1GRi. Hence, GR is a direct product of complete
multipartite graphs.

The adjacency matrix A of a graph G is a (0, 1)-square matrix of order n
whose (i, j)-entry is equal to 1, if vi is adjacent to vj and equal to 0, otherwise.
The eigenvalues of A are the eigenvalues of the graph G. The set of all eigen-
values of G is called the spectrum of G. If λ1 ≥ · · · ≥ λk are the eigenvalues of
G with multiplicities r1, . . . , rk, respectively, the spectrum of G is denoted by

Spec(G) =

(
λ1 . . . λk
r1 . . . rk

)
. The energy of a graph was introduced by Gut-

man [13] and is defined as the sum of the absolute values of all the eigenvalues
of a graph G and it is denoted by E(G).

Kiani et al. [15] obtained the following result about the eigenvalues of the
unitary Cayley graph. Also, they computed the energy of the unitary Cayley
graph of a finite commutative ring R.

Theorem 2 [15] Let R be a finite ring.

(a) If R is a finite local ring with the maximal ideal M of size m and |R|
m = f,

then

Spec(GR) =

(
|R×| 0 −m
1 |R|− f f− 1

)
.

In particular, if Fq is the field with q elements, then

Spec(GFq) =

(
q− 1 −1
1 q− 1

)
.
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(b) Let R be a finite commutative ring, where R ∼= R1 × R2 × . . .× Rt and Ri
is a local ring with maximal ideal Mi of size mi for all 1 6 i 6 t. Then
the eigenvalues of GR are:

(b-1) (−1)|C|
|R×|∏

j∈C |R
×
j |/mj

with multiplicity
∏
j∈C |R

×
j |/mj for all subsets

C of the set {1, 2, . . . , t}.

(b-2) 0 with multiplicity |R|−
∏t
i=1(1+ |R×i |/mi)

Theorem 3 [15] Let R ∼= R1×R2× . . .×Rt be a finite commutative ring where
Ri is a local ring for all 1 6 i 6 t. Then E(GR) = 2

t|R×|.

Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix associated to the
graph G, where di = deg(vi) is the degree of the vertex vi, for all 1 6 i 6 n.
The matrices L(G) = D(G) − A(G) and |L|(G) = D(G) + A(G) are respec-
tively, called the Laplacian and the signless Laplacian matrices of G. Their
spectrum are respectively, the Laplacian spectrum and the signless Lapla-
cian spectrum of the graph G. We denote the Laplacian spectrum and the
signless Laplacian spectrum of the graph G by SpecL(G) and Spec|L|(G), re-
spectively. Both the matrices L(G) and |L|(G) are real symmetric, positive
semi-definite and therefore their eigenvalues are non-negative real numbers.
Let 0 = µ1 6 µ2 6 · · · 6 µn and µ+n 6 µ+n−1 6 · · · 6 µ+1 be respectively,
the Laplacian spectrum and the signless Laplacian spectrum of G. It is known
that the smallest eigenvalue of L(G) is 0 with multiplicity equal to the number
of connected components of G. So, µ2 > 0 if and only if G is connected. Also,
the least eigenvalue of the signless Laplacian matrix of a connected graph
is 0 if and only if the graph is bipartite. In this case, 0 is a simple eigen-
value. Furthermore, it is easy to see that tr(L(G)) =

∑n
i=1 µi = 2m and

tr(—L—(G)) =
∑n
i=1 µ

+
i = 2m. Recent work on Laplacian eigenvalues can

be seen in [2, 5, 9, 10, 11, 12]. The Laplacian energy of a graph G defined
by Gutman and Zhou [14] is LE(G) =

∑n
i=1 |µi −

2m
n |. The Laplacian energy,

which is an extension of graph energy concept, has found remarkable chem-
ical applications (see [24]). For recent development on LE(G) see [7, 8] and
the references therein. The signless Laplacian energy |L|E(G) of G, in analogy
to LE(G), is defined as |L|E(G) =

∑n
i=1 |µ

+
i − 2m

n |. Recent work on Laplacian
eigenvalues can be seen in [19].

The rest of the paper is organized as follows. In Section 2, we determine the
Laplacian spectrum and the Laplacian energy of the unitary Cayley graph GR.
Also, we completely obtain the signless Laplacian spectrum of the graph GR
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and compute the signless Laplacian energy of GR. Further, we compute the
Laplacian and signless Laplacian energy of the line graph of GR.

2 Laplacian spectrum of unitary Cayley graphs

We begin with the following theorem, which gives the Laplacian spectrum of
the join of two graphs G1 and G2.

Theorem 4 [17] Let G1 and G2 be two graphs with n1 and n2 vertices, re-
spectively. Suppose that 0 = λ1 6 λ2 6 · · · 6 λn1

and 0 = µ1 6 µ2 6 · · · 6 µn2

are the Laplacian eigenvalues of G1 and G2, respectively. Then the Laplacian
eigenvalues of the graph G1 ∨G2 are

(i) 0 with multiplicity 1,

(ii) λi + n2 with multiplicity 1 for all 2 6 i 6 n1,

(iii) µj + n1 with multiplicity 1 for all 2 6 j 6 n2,

(iv) n1 + n2 with multiplicity 1.

Now, we have the following observation.

Lemma 5 If G = Kn1,n2,...,nk
, where ni ∈ N for all 1 6 i 6 k, then the

Laplacian eigenvalues of G are

(i) 0 with multiplicity 1,

(ii) αi =
k∑
j=1
j 6=i

nj with multiplicity ni − 1 for all 1 6 i 6 k,

(iii) n1 + n2 + · · ·+ nk with multiplicity k− 1.

Proof. We induct on k. For k = 2, we have G = Kn1
∨Kn2

. So, by Theorem
4, we have that

SpecL(Kn1,n2
) =

(
0 n1 n2 n1 + n2
1 n2 − 1 n1 − 1 1

)
.

Assume that the hypothesis is true for Kn1,n2,...,nk
.

We prove it for the graph Kn1,n2,...,nk,nk+1
.

Clearly, Kn1,n2,...,nk,nk+1
∼= Kn1,n2,...,nk

∨ Knk
.

Now, by Theorem 4, it is easy to see that the Laplacian eigenvalues of Kn1,n2,...,nk,nk+1

are
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(i) 0 with multiplicity 1,

(ii)
k+1∑
j=1
j 6=i

nj with multiplicity ni − 1 for all 1 6 i 6 k+ 1,

(iii) n1 + n2 + · · ·+ nk + nk+1 with multiplicity k. �

At first, we assume that R is a local ring.

Proposition 6 Let (R,M) be a local ring with |M| = m and | RM | = f. Then

SpecL(GR) =

(
0 |R×| |R|

1 |R|− f f− 1

)
.

In particular, if R = Fq is the field with q elements, then

SpecL(GFq) =

(
0 q

1 q− 1

)
.

Proof. It is easy to see that GR is a complete multipartite graph in which
every partite set is a coset of M. So, GR is the join of f copies of the empty
graph Km. Now, by Lemma 5, we have

SpecL(GR) =

(
0 |R|−m |R|

1 |R|− f f− 1

)
.

Since |R|−m = |R×|, therefore

SpecL(GR) =

(
0 |R×| |R|

1 |R|− f f− 1

)
.

�

The Laplacian spectrum of the direct product of graphs has been described
completely only when the factor graphs are regular. The Laplacian eigenvalues
of the direct product of two regular graphs are listed in the following theorem.

Theorem 7 [3] Let G1 be an r1-regular graph with n1 vertices and G2 be
an r2-regular graph with n2 vertices. Let SpecL(G1) = (λ1, λ2, . . . , λn1

) and
SpecL(G2) = (µ1, µ2, . . . , µn2

). Then the eigenvalues of the graph G1 ⊗G2 are
r1µj + r2λi − µjλi for all 1 6 i 6 n1 and 1 6 j 6 n2.
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In the following theorem, we obtain the Laplacian eigenvalues of GR with
their multiplicities. Here, |R×S | stands for |R×s1 × R

×
s2
. . . × R×sk |, where S =

{s1, . . . , sk} ⊆ {1, 2, . . . , t} (if S = ∅, then we define |R×S | = 1).

Theorem 8 Let R be a finite commutative ring such that R ∼= R1×R2×· · ·×Rt,
where (Ri,Mi) is a local ring with |Mi| = mi and | RiMi

| = fi. Then the Laplacian
eigenvalues of GR are

(i) 0 with multiplicity 1,

(ii) |R×| with multiplicity |R|−
∏t
i=1 fi,

(iii) λA with multiplicity
∏
i∈A ′(fi − 1) for all A ( {1, 2, . . . , t}, where

λA = |R×A |

|A ′|∑
C={i1,i2,...,ik}⊆A ′

k=1

(−1)|C|−1|Ri1 ||Ri2 | . . . |Rik |
|R×A ′ |

|R×C |

and A ′ is the complement of A.

Proof. We use induction on t. For t = 1 and the local ring R ∼= R1, by
Proposition 6, we have

SpecL(GR) =

(
0 |R×| |R|

1 |R|− f f− 1

)
.

Note that ∅ is the only proper subset of {1} and λ∅ = |R|. So, we are done in
this case. Now, assume that the Laplacian eigenvalues of R1 × R2 × · · · × Rt−1
are

(i) 0 with multiplicity 1,

(ii) |R×1 × R
×
2 × · · · × R

×
t−1| with multiplicity |R1 × R2 × · · · × Rt−1|−

∏t−1
i=1 fi,

(iii) λA with multiplicity
∏
i∈A ′(fi − 1) for all A ( {1, 2, . . . , t− 1}, where

λA = |R×A |

|A ′|∑
C={i1,i2,...,ik}⊆A ′

k=1

(−1)|C|−1|Ri1 ||Ri2 | . . . |Rik |
|R×A ′ |

|R×C |
.
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Now, we determine the Laplacian eigenvalues of GR when R ∼= R1 × R2 × · · · ×
Rt−1 × Rt. We know that GR ∼= GR1×R2×···×Rt−1

⊗ GRt . Note that the graphs
GR1×R2×···×Rt−1

and GRt are regular, so we can use Theorem 7. Since

SpecL(GRt) =

(
µ1 = 0 µ2 = |R×t | µ3 = |Rt|

1 |Rt|− ft ft − 1

)
,

we have the following cases to consider.

Case 1. For µ1 = 0, we have the following eigenvalues.

1.1. 0 with multiplicity 1,

1.2. |R×1 ×R
×
2 ×· · ·×R

×
t−1|× |R×t | with multiplicity |R1×R2×· · ·×Rt−1|−∏t−1

i=1 fi,

1.3. λA× |R×t | with multiplicity
∏
i∈A ′(fi−1) for all A ( {1, 2, . . . , t−1}.

Case 2. For µ2 = |R×t |, we obtain the following eigenvalues.

2.1. |R×1 × R
×
2 × · · · × R

×
t−1||R

×
t | with multiplicity |Rt|− ft,

2.2. |R×1 ×R
×
2 × · · · ×R

×
t−1||R

×
t | with multiplicity (|R1×R2× · · · ×Rt−1|−∏t−1

i=1 fi)(|Rt|− ft),

2.3. |R×1 ×R
×
2 ×· · ·×R

×
t−1||R

×
t | with multiplicity

∑
A({1,2,...,t−1}

∏
i∈A ′(fi−

1)(|Rt|− ft).

Therefore, in this case, we see that the eigenvalue is equal to |R×1 ×R
×
2 ×

· · · × R×t−1||R
×
t | and this implies that |R×1 × R

×
2 × · · · × R

×
t−1||R

×
t | is an

eigenvalue with multiplicity |R1 × R2 × · · · × Rt−1|(|Rt|− ft).

Case 3. For µ3 = |Rt|, the following eigenvalues can be obtained.

3.1. |R×1 × R
×
2 × · · · × R

×
t−1||Rt| with multiplicity ft − 1,

3.2. |R×1 ×R
×
2 × · · · ×R

×
t−1||R

×
t | with multiplicity (|R1×R2× · · · ×Rt−1|−∏t−1

i=1 fi)(ft − 1),

3.3. |R×1 ×R
×
2 ×· · ·×R

×
t−1||Rt|+λA|R

×
t |−λA|Rt| with multiplicity (

∏
i∈A ′(fi−

1))(ft − 1) for all A ( {1, 2, . . . , t− 1}.

Thus, we conclude the following.

(i) By case (1.1), 0 with multiplicity 1 is a Laplacian eigenvalue of GR.
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(ii) By cases (1.2),(2.1), (2.2),(2.3) and (3.2), |R×1 × R
×
2 × · · · × R

×
t−1||R

×
t | is a

Laplacian eigenvalue of GR. Its multiplicity is equal to(
|R1 × R2 × · · · × Rt−1|−

t−1∏
i=1

fi

)
+

(
|R1 × R2 × · · · × Rt−1|(|Rt|− ft)

)
+

(
|R1 × R2 × · · · × Rt−1|−

t−1∏
i=1

fi

)
(ft − 1) = |R1 × R2 × · · · × Rt|−

t∏
i=1

fi

(iii) For A ( {1, 2, . . . , t}, three cases (1.3), (3.1) and (3.3) cover all eigenval-
ues with the type λA.

(a) From case (1.3), λA× |R×t | with multiplicity
∏
i∈A ′(fi−1) is a Lapla-

cian eigenvalue of GR for all A ( {1, 2, . . . , t − 1}. Note that if we
set A = A ∪ {t}, then λA = λA × |R×t |.

(b) From case (3.1), |R×1 ×R
×
2 ×· · ·×R

×
t−1||Rt| with multiplicity ft− 1 is

a Laplacian eigenvalue of GR. By setting A = {1, 2, , . . . , t − 1}, we
have λA = |R×1 × R

×
2 × · · · × R

×
t−1||Rt|.

(c) From case (3.3), |R×1 × R
×
2 × · · · × R

×
t−1||Rt| + λA|R

×
t | − λA|Rt| with

multiplicity (
∏
i∈A ′(fi− 1))(ft− 1) is a Laplacian eigenvalue of GR,

for all A ( {1, 2, . . . , t− 1}. This case covers all eigenvalues like λA,
when A is a proper subset of the set {1, 2, . . . , t} and t /∈ A. �

Now, we compute the Laplacian energy of the unitary Cayley graph, when
R is a finite commutative ring. We start with the local case.

Lemma 9 Let R be a finite local commutative ring. Then LE(GR) = 2|R
×|.

Proof. First, note that in the graph GR, we have 2m
n = |R×|. Since the Lapla-

cian spectrum of GR is

SpecL(GR) =

(
0 |R×| |R|

1 |R|− f f− 1

)
,

we have LE(GR) = 2|R
×|. �

Lemma 10 Let R ∼= R1 × R2, where (R1,M1) and (R2,M2) are local rings.
Then

LE(GR) = 2
2|R×|.
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Proof. We know thatGR ∼= GR1⊗GR2 . Now, let SpecL(GR1) = (λ1, λ2, . . . , λ|R1|)
and SpecL(GR2) = (µ1, µ2, . . . , µ|R2|). Then, by Theorem 7, we have

LE(GR) =

|R1|∑
i=1

|R2|∑
j=1

∣∣|R×1 |µj + |R×2 |λi − µjλi − |R×1 ||R
×
2 |
∣∣

=

|R1|∑
i=1

|R2|∑
j=1

∣∣(µj − |R×2 |)
∣∣ ∣∣(λi − |R×1 |)

∣∣
= LE(GR1)LE(GR2) = (2|R×1 |)(2|R

×
2 |) = 2

2|R×|. �

Theorem 11 Let R be a finite commutative ring such that R ∼= R1×R2×· · ·×
Rt, where Ri is a local ring for all 1 6 i 6 t. Then LE(GR) = 2

t|R×|.

Proof. This follows by using induction on t and in view of Lemmas 9 and 10.
�

The following results concern about the signless Laplacia spectrum of GR.
The proofs are omitted since they are similar to the proofs on the Laplacian
spectrum.

Proposition 12 Let (R,M) be a local ring with |M| = m and | RM | = f. Then

Spec|L|(GR) =

(
|R×|−m |R×| 2|R×|
f− 1 |R|− f 1

)
.

In particular, if R = Fq is the field with q elements, then

Spec|L|(GFq) =

(
q− 2 2(q− 1)
q− 1 1

)
.

Theorem 13 Let R be a finite commutative ring such that R ∼= R1 × R2 ×
· · · ×Rt, where (Ri,Mi) is a local ring with |Mi| = mi and | RiMi

| = fi. Then the
signless Laplacian eigenvalues of GR are

(i) 2|R×| with multiplicity 1,

(ii) |R×| with multiplicity |R|−
∏t
i=1 fi,

(iii) λA with multiplicity
∏
i∈A ′(fi − 1) for all A ( {1, 2, . . . , t} where

λA = |R×|+ (−1)|A
′|
∏
i∈A

|R×i |
∏
j∈A ′

|mj|.
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If R be a local finite commutative ring, it is easy to see that the signless
Laplacian energy of GR is given by |L|E(GR) = 2|R

×|. Further, if R ∼= R1 × R2,
where R1 and R2 are local rings, then |L|E(GR) = 2

2|R×|.
Thus, we have the following observation.

Theorem 14 Let R be a finite commutative ring such that R ∼= R1×R2×· · ·×
Rt, (t > 2), where Ri is a local ring for all 1 6 i 6 t. Then |L|E(GR) = 2

t|R×|.

Let G be a graph with n vertices and m edges. The line graph L(G) of G
is a simple graph whose vertex set is the set of edges of G and two vertices of
L(G) are adjacent if and only if the corresponding edges in G have a vertex in
common. So, nL(G) (the number of vertices of L(G)) equals m. Also, it is easy
to see that if G is an r-regular graph, then L(G) is a (2r− 2)-regular graph.

Theorem 15 [4] Let G be an r-regular graph (r > 2) with n vertices and m
edges. Then

(a) The Laplacian eigenvalues of the graph L(G) are

(i) 2− λi, where λi is a Laplacian eigenvalue of G for all 1 6 i 6 n,

(ii) r− 2 with multiplicity m− n.

(b) The signless Laplacian eigenvalues of the graph L(G) are

(i) λ+i + 2r − 4, where λ+i is a signless Laplacian eigenvalue of G for
all 1 6 i 6 n,

(ii) 2r− 4 with multiplicity m− n.

Now, we compute the Laplacian energy of the line graph of the unitary
Cayley graphs. If |R×| = 1, then L(GR) is an empty graph. So in this case,
LE(L(GR)) = 0. Thus, we suppose that |R×| > 2. Now, by Theorem 15, the
spectrum of L(G) consists of the following eigenvalues.

(i) 2− λi, where λi is a Laplacian eigenvalue of GR for all 1 6 i 6 |R|,

(ii) |R×|− 2 with multiplicity |R||R×|/2− |R|.

Proposition 16 Let R be a finite commutative ring with |R×| > 2. Then

LE(L(GR)) =
|R|
(
|R×|2 + 4|R×|− 8

)
2

.
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Proof. Since GR is |R×|-reqular, L(GR) is a (2|R×|− 2)-regular graph. So,

2mL(GR)/nL(GR) = 2|R
×|− 2,

where nL(GR) and mL(GR) are the number of vertices and edges of L(GR), re-
spectively. We have

LE(L(GR)) =

|R|∑
i=1

∣∣2− λi − (2|R×|− 2)
∣∣+ |R||R×|/2−|R|∑

i=1

∣∣|R×|− 2− (2|R×|− 2))
∣∣

=

|R|∑
i=1

∣∣−λi − 2|R×|+ 4∣∣+ |R||R×|/2−|R|∑
i=1

|R×|

=

|R|∑
i=1

(λi + 2|R
×|− 4) +

|R||R×|/2−|R|∑
i=1

|R×| (Since |R×| > 2)

=

|R|∑
i=1

λi + 2|R||R
×|− 4|R|+ (|R||R×|/2− |R|)|R×|

= |R||R×|+ 2|R||R×|− 4|R|+ (|R||R×|/2− |R|)|R×|

(Since

|R|∑
i=1

λi = |R||R×|)

=
|R|
(
|R×|2 + 4|R×|− 8

)
2

. �

The following result gives the signless Laplacian energy of the line graph of
unitary Cayley graphs. The proof is similar to the Laplacian case.

Proposition 17 Let R be a finite commutative ring with |R×| > 2. Then

(i) If f1 = 2, then |L|E(L(GR)) = 2

(
|R|(|R×|− 2) + 1

)
.

(ii) |L|E(L(GR)) = 2|R|(|R
×|− 2), otherwise.
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