

DOI: 10.2478/ausm-2020-0022

On $\lambda^D - R_0$ and $\lambda^D - R_1$ spaces

Sarhad F. Namiq

Department of Mathematics, College of Education, University of Garmian, Kurdistan-Region, Iraq email: sarhad1983@gmail.com Ennis Rosas

Departamento de Ciencias
Naturales y Exactas,
Universidad de la Costa, Barranquilla,
Colombia & Departmento de
Matemáticas, Universidad de Oriente,
Cumaná, Venezuela
email: ennisrafael@gmail.com

Abstract. In this paper we introduce the new types of separation axioms called λ^D-R_0 and λ^D-R_1 spaces, by using λ^D -open set. The notion λ^D-R_0 and λ^D-R_1 spaces are introduced and some of their properties are investigated.

1 Introduction

In 1943, the notion of R_0 topological space was introduced by Shanin [6]. Later, Davis [3] rediscovered it and studied some properties of this weak separation axiom. In the same paper, Davis also introduced the notion of R_1 topological space which are independent of both T_0 and T_1 , but strictly weaker than T_2 . The notion of λ -open (λ^* -open) sets was introduced by Alais B. Khalaf and Sarhad F. Namiq [1]. The notion of λ^D -open sets was introduced by Sarhad F. Namiq [5]. In this paper, we continue the study of the above mentioned classes of topological spaces satisfying these axioms by introducing two more notions in terms of λ^D -open sets called λ^D – R_0 and λ^D – R_1 .

2 Preliminaries

Throughout, X denote a topological space. Let A be a subset of X, the closure and the interior of A are denoted by Cl(A) and Int(A) respectively. A subset A of a topological space (X,τ) is said to be dense set [7] if Cl(A) = X. A subset A of a topological space (X,τ) is said to be semi open [4] if $A \subseteq Cl(Int(A))$. The complement of a semi open set is said to be semi closed [4]. The family of all semi open (resp. semi closed) sets in a topological space (X,τ) is denoted by $SO(X,\tau)$ or SO(X) (resp. $SC(X,\tau)$ or SC(X)). We consider λ as a function defined on SO(X) into $\mathcal{P}(X)$ and $\lambda:SO(X)\to \mathcal{P}(X)$ is called an s-operation if $V\subseteq \lambda(V)$ for each non-empty semi open set V. It is assumed that $\lambda(\emptyset)=\emptyset$ and $\lambda(X)=X$ for any s-operation λ .

Definition 1 [1] Let (X,τ) be a topological space and $\lambda : SO(X) \to \mathcal{P}(X)$ be an s-operation, then a subset A of X is called a λ^* -open set which is equivalent to λ -open set, if for each $x \in A$, there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$. The complement of a λ^* -open set is said to be λ^* -closed set which is equivalent to λ -closed set. The family of all λ^* -open (resp., λ^* -closed) subsets of a topological space (X,τ) is denoted by or $SO_{\lambda}(X)$ (resp. $SC_{\lambda}(X,\tau)$ or $SC_{\lambda}(X)$).

Definition 2 [5] Let (X,τ) be a topological space and $\lambda: SO(X) \to \mathcal{P}(X)$ be an s-operation, then a λ^* -open subset A of X is called a λ^D -open set, if for each $x \in A$, there exists a dense set D such that $x \in D \subseteq A$. The complement of a λ^D -open set is said to be λ^D -closed. The family of all λ^D -open (resp., λ^D -closed) subsets of a topological space (X,τ) is denoted by or $SO_{\lambda^D}(X)$ or $SO_{\lambda^D}(X,\tau)$ (resp. $SC_{\lambda^D}(X,\tau)$ or $SC_{\lambda^D}(X)$).

Example 1 Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. The $SO(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}$. Define $\lambda : SO(X) \to \mathcal{P}(X)$ as:

$$\lambda(A) = \left\{ \begin{array}{ll} A & \text{ if } \alpha \in A \\ X & \text{ if } \alpha \notin A \end{array} \right.$$

 $\mathit{The}\ SO_{\lambda^D}(X) = \{\emptyset, X, \{\alpha, b\}, \{\alpha, b, c\}, \{\alpha, b, d\}\}.$

Definition 3 [5] Let (X, τ) be a topological space and let A be a subset of X. Then:

1. The λ -closure of A (denoted by $\lambda^D Cl(A)$) is the intersection of all λ^D -closed sets containing A.

2. The λ -interior of A (denoted by $\lambda^D Int(A)$) is the union of all λ^D -open sets of X contained in A.

Proposition 1 [5] For each point $x \in X$, $x \in \lambda^D Cl(A)$ if and only if $V \cap A \neq \emptyset$, for every $V \in SO_{\lambda^D}(X)$ such that $x \in V$.

3 On $\lambda^D - R_0$ and $\lambda^D - R_1$ spaces

We introduce the following definitions.

Definition 4 For any s-operation $\lambda: SO(X) \to \mathcal{P}(X)$ and any subset A of a space (X, τ) the λ^D -kernel of A, denoted by $\lambda^D \operatorname{Ker}(A)$ is defined as:

$$\lambda^D\operatorname{Ker}(A)=\cap\{G\in SO_{\lambda^D}(X):A\subseteq G\}.$$

Lemma 1 Let (X, τ) be a topological space, $A \subseteq X$ and $\lambda : SO(X) \to \mathcal{P}(X)$ be an s-operation. Then $\lambda^D \operatorname{Ker}(A) = \{x \in X : \lambda^D \operatorname{Cl}(\{x\}) \cap A \neq \emptyset\}$.

Proof. Let $x \in \lambda^D \operatorname{Ker}(A)$ such that $\lambda^D \operatorname{Cl}(\{x\}) \cap A = \emptyset$. Since $x \notin X \setminus \lambda^D \operatorname{Cl}(\{x\})$ which is a λ^D -open set containing A. Thus $x \notin \lambda^D \operatorname{Ker}(A)$ a contradiction.

Conversely, let $x \in X$ be such that $\lambda^D \operatorname{Cl}(\{x\}) \cap A \neq \emptyset$. If possible, let $x \notin \lambda^D \operatorname{Ker}(A)$. Then there exist a λ^D -open set G such that $x \notin G$ and $A \subseteq G$. Let $y \in \lambda^D \operatorname{Cl}(\{x\}) \cap A$. This implies that $y \in \lambda^D \operatorname{Cl}(\{x\})$ and $y \in G$, which gives $x \in G$, a contradiction.

Theorem 1 Let (X,τ) be a topological space, A and B be subsets of X. Then:

- (1) $x \in \lambda^D \operatorname{Ker}(A)$ if and only if $A \cap F \neq \emptyset$; for any λ^D -closed set F containing x.
- (2) $A \subseteq \lambda^D \operatorname{Ker}(A)$ and $A = \lambda^D \operatorname{Ker}(A)$ if A is λ^D -open.
- (3) If $A \subseteq B$, then $\lambda^D \operatorname{Ker}(A) \subseteq \lambda^D \operatorname{Ker}(B)$.

Proof. Obvious.

Definition 5 Let $\lambda : SO(X) \to \mathcal{P}(X)$ be an s-operation, a topological space (X,τ) is called $\lambda^D - R_0$, if $U \in SO_{\lambda D}(X)$ and $x \in U$ then $\lambda^D Cl(\{x\}) \subseteq U$.

Example 2 Let $X = \{a,b,c,d\}$, and $\tau = \mathcal{P}(X)$. We define an s-operation $\lambda : SO(X) \to \mathcal{P}(X)$ as:

 $\lambda(A) = A, \, \text{for every subset } A \, \text{ of } X.$

$$SO(X) = \mathcal{P}(X) = SO_{\lambda^{D}}(X) = SC_{\lambda^{D}}(X).$$

Theorem 2 For any topological space X and any s-operation $\lambda : SO(X) \to \mathcal{P}(X)$, the following statements are equivalent:

- (1) X is $\lambda^D R_0$.
- (2) $F \in SC_{\lambda^D}(X)$ and $x \notin F$ implies that $F \subseteq U$ and $x \notin U$ for some $U \in SO_{\lambda^D}(X)$.
- $(3) \ \ F \in SC_{\lambda}(X) \ \ \text{and} \ x \notin F \ \ \text{implies that} \ F \cap \lambda^D Cl(\{x\}) \neq \emptyset.$
- (4) For any two distinct points x,y of X, either $\lambda^D Cl(\{x\}) = \lambda^D Cl(\{y\})$ or $\lambda^D Cl(\{x\}) \cap \lambda^D Cl(\{y\}) = \emptyset$.

Proof.

- $(1)\Rightarrow (2)$: Let $F\in SC_{\lambda^D}(X)$ and $x\notin F$. This implies that $x\in X\backslash F\in SO_{\lambda^D}(X)$, then $\lambda^DCl(\{x\})\subseteq X\backslash F$ (by (1)). Put $U=X\backslash \lambda^DCl(\{x\})$. Then $x\notin U\in SO_{\lambda^D}(X)$ and $F\subseteq U$.
- $(2) \Rightarrow (3)$: $F \in SC_{\lambda^D}(X)$ and $x \notin F$ then there exists $U \in SO_{\lambda^D}(X)$ such that $x \notin U$ and $F \subseteq U$ (by(2)), then $U \cap \lambda^D Cl(\{x\}) = \emptyset$ and $F \cap \lambda^D Cl(\{x\}) = \emptyset$.
- $(3) \Rightarrow (4)$: Suppose that for any two distinct points x, y of X, if $\lambda^D Cl(\{x\}) \neq \lambda^D Cl(\{y\})$ Then, without loss of generality, we suppose that there exists some $z \in \lambda^D Cl(\{x\})$ such that $z \notin \lambda^D Cl(\{y\})$. Thus, there exists a λ^D -open set V such that $z \in V$ and $y \notin V$ but $x \in V$. Thus $x \notin \lambda^D Cl(\{y\})$. Hence by (3), $\lambda^D Cl(\{x\}) \cap \lambda^D Cl(\{y\}) = \emptyset$.
- $\begin{array}{l} (4) \Rightarrow (1) \colon \mathrm{Let} \ U \in SO_{\lambda^D}(X) \ \mathrm{and} \ x \in U. \ \mathrm{Then} \ \mathrm{for} \ \mathrm{each} \ y \notin U, x \notin \lambda^D \mathrm{Cl}(\{y\}). \\ \mathrm{Thus} \ \lambda^D \mathrm{Cl}(\{x\}) \neq \lambda^D \mathrm{Cl}(\{y\}). \ \mathrm{Hence} \ \mathrm{by} \ (4), \lambda^D \mathrm{Cl}(\{x\}) \cap \lambda^D \mathrm{Cl}(\{y\}) = \emptyset, \ \mathrm{for} \ \mathrm{each} \ y \in X \backslash U. \ \mathrm{So} \ \lambda^D \mathrm{Cl}(\{x\}) \cap [\cup \{\lambda^D \mathrm{Cl}(\{y\}) : y \in X \backslash U\}] = \emptyset. \ \mathrm{Now}, \ U \in SO_{\lambda^D}(X) \ \mathrm{and} \ y \in X \backslash U \ \ \mathrm{then} \ \{y\} \subseteq \lambda^D \mathrm{Cl}(\{y\}) \subseteq \lambda^D \mathrm{Cl}(X \backslash U) = X \backslash U. \ \ \mathrm{Thus} \ X \backslash U = \cup \{\lambda^D \mathrm{Cl}(\{y\}) : y \in X \backslash U\}. \ \ \mathrm{Hence}, \ \lambda^D \mathrm{Cl}(\{y\}) \cap X \backslash U = \emptyset \ \ \mathrm{then} \ \lambda^D \mathrm{Cl}(\{x\}) \subseteq U. \ \ \mathrm{This} \ \ \mathrm{showing} \ \ \mathrm{that} \ (X,\tau) \ \ \mathrm{is} \ \lambda^D R_0. \end{array}$

Lemma 2 Let $\lambda : SO(X) \to \mathcal{P}(X)$ be an s-operation. Then $y \in \lambda^D \operatorname{Ker}(\{x\})$ if and only if $x \in \lambda^D \operatorname{Cl}(\{y\})$.

Proof. Let $y \notin \lambda^D \operatorname{Ker}(\{x\})$. Then there exists $V \in SO_{\lambda^D}(X)$ containing x such that $y \notin V$. Therefore $x \notin \lambda^D \operatorname{Cl}(\{y\})$. The converse part can be proved in a similar way.

Theorem 3 Let $\lambda : SO(X) \to \mathcal{P}(X)$ be an s-operation. Then for any two points x, y in X, $\lambda^D \operatorname{Ker}(\{x\}) \neq \lambda^D \operatorname{Ker}(\{y\})$ if and only if $\lambda^D \operatorname{Cl}(\{y\}) \neq \lambda^D \operatorname{Cl}(\{x\})$.

Proof. Suppose that $\lambda^D \operatorname{Ker}(\{x\}) \neq \lambda^D \operatorname{Ker}(\{y\})$. Then there exists $z \in \lambda^D \operatorname{Ker}(\{x\})$ such that $z \notin \lambda^D \operatorname{Ker}(\{y\})$. Now, $z \in \lambda^D \operatorname{Ker}(x)$ if and only if $x \in \lambda^D \operatorname{Ker}(\{z\})$ by Lemma 2 and $z \notin \lambda^D \operatorname{Ker}(\{y\})$ if and only if $y \in \lambda^D \operatorname{Cl}(\{x\})$ by Lemma 2. Hence $\lambda^D \operatorname{Cl}(\{x\}) \neq \lambda^D \operatorname{Cl}(\{y\})$.

Conversely, suppose that $\lambda^D \operatorname{Cl}(\{x\}) \neq \lambda^D \operatorname{Cl}(\{y\})$. Then there exists $z \in X$ such that $z \in \lambda^D \operatorname{Cl}(\{x\})$ and $z \notin \lambda^D \operatorname{Cl}(\{y\})$ so there exists $U \in \operatorname{SO}_{\lambda^D}(X)$ such that $z \in U$, $y \notin U$ and $x \in U$. Then $y \notin \lambda^D \operatorname{Ker}(\{x\})$. Thus $\lambda^D \operatorname{Ker}(\{x\}) \neq \lambda^D \operatorname{Ker}(\{y\})$.

Theorem 4 Let $\lambda : SO(X) \to \mathcal{P}(X)$ be an s-operation. Then (X, τ) is $\lambda^D - R_0$ if and only if for any two points $x, y \in X$, $\lambda^D \operatorname{Ker}(\{x\}) \notin \lambda^D \operatorname{Ker}(\{y\})$, implies that $\lambda^D \operatorname{Ker}(\{x\}) \cap \lambda^D \operatorname{Ker}(\{y\}) = \emptyset$.

Proof. Let x, y be any two points in a $\lambda^D - R_0$ space X such that $\lambda^D \operatorname{Ker}(\{x\}) \neq \lambda^D \operatorname{Ker}(\{y\})$. Hence by Theorem 3, $\lambda^D \operatorname{Cl}(\{x\}) \neq \lambda^D \operatorname{Cl}(\{y\})$. We show that $\lambda^D \operatorname{Ker}(\{x\}) \cap \lambda^D \operatorname{Ker}(\{y\}) = \emptyset$. In fact, if $z \in \lambda^D \operatorname{Ker}(\{x\}) \cap \lambda^D \operatorname{Ker}(\{y\})$, then by Lemma 2, we have $x, y \in \lambda^D \operatorname{Cl}(z)$ and by Theorem 2, we obtain that $\lambda^D \operatorname{Cl}(\{x\}) = \lambda^D \operatorname{Cl}(\{z\}) = \lambda^D \operatorname{Cl}(\{y\})$ which is impossible.

Conversely, suppose that for any points $x,y \in X$, $\lambda^D \operatorname{Ker}(\{x\}) \neq \lambda^D \operatorname{Ker}(\{y\})$. Thus $\lambda^D \operatorname{Ker}(\{x\}) \cap \lambda^D \operatorname{Ker}(\{y\}) = \emptyset$. Hence we get $\lambda^D \operatorname{Cl}(\{x\}) \cap \lambda^D \operatorname{Cl}(\{y\}) = \emptyset$. In fact $z \in \lambda^D \operatorname{Cl}(\{x\}) \cap \lambda^D \operatorname{Cl}(\{y\})$, this implies that $x,y \in \lambda^D \operatorname{Ker}(\{z\})$. Thus $\lambda^D \operatorname{Cl}(\{x\}) \cap \lambda^D \operatorname{Cl}(\{z\}) \neq \emptyset$. Hence by hypothesis, we get $\lambda^D \operatorname{Ker}(\{x\}) = \lambda^D \operatorname{Ker}(\{z\})$. By similar way it follows that $\lambda^D \operatorname{Ker}(\{x\}) = \lambda^D \operatorname{Ker}(\{z\})$. Thus $\lambda^D \operatorname{Ker}(\{x\}) \neq \lambda^D \operatorname{Ker}(\{y\})$ which is a contradiction. Hence $\lambda^D \operatorname{Cl}(\{x\}) \cap \lambda^D \operatorname{Cl}(\{y\}) \neq \emptyset$ and then by Theorem 2, the space X is $\lambda^D - R_0$.

Theorem 5 Let (X,τ) be a topological space and for any s-operation λ : $SO(X) \to \mathcal{P}(X)$ the following statements are equivalent:

- (1) X is a $\lambda^D R_0$ space.
- (2) For any non-empty set A in X and any $G \in SO_{\lambda D}(X)$ such that $A \cap G \neq \emptyset$ there exists $F \in SC_{\lambda D}(X)$ such that $A \cap F \neq \emptyset$ and $F \subseteq G$.
- (3) For any $G \in SO_{\lambda D}(X)$, $G = \bigcup \{F \in SC_{\lambda D}(X) : F \subseteq G\}$.
- (4) For any $F \in SC_{\lambda D}(X)$, $F = \cap \{G \in SO_{\lambda D}(X) : F \subseteq G\}$.
- (5) For any $x \in X$, $\lambda^D Cl(\{x\}) \subseteq \lambda^D Ker(\{x\})$.

Proof.

- $(1) \Rightarrow (2)$: Let A be a non-empty subset of X and $G \in SO_{\lambda^D}(X)$ such that $A \cap G \neq \emptyset$. Let $x \in A \cap G$. Then as $x \in G \in SO_{\lambda^D}(X)$, by (1), we get $\lambda^D Cl(\{x\}) \subset G$. Put $F = \lambda^D Cl(\{x\})$. Then $F \in SC_{\lambda^D}(X)$, $F \subset G$ and $A \cap F \neq \emptyset$.
- $(2)\Rightarrow (3)$: Let $G\in SO_{\lambda^D}(X)$. Then $\bigcup\{F\in SC_{\lambda^D}(X):F\subseteq G\}\subseteq G$. Let $x\in G$. Then there exists $F\in SC_{\lambda^D}(X)$ such that $x\in F$ and $F\subseteq G$. Thus $x\in F\cup\{K\in SC_{\lambda^D}(X):K\subseteq G\}$. Hence (3) follows.
 - $(3) \Rightarrow (4)$: Straight forward.
- $(4) \Rightarrow (5) \colon \mathrm{Let} \ x \in X. \ \mathrm{Now}, y \notin \lambda^D \ \mathrm{Ker}(\{x\}) \ \mathrm{implies} \ \mathrm{there} \ \mathrm{exists} \ V \in SO_{\lambda^D}(X) \\ \mathrm{such} \ \mathrm{that} \ x \in V \ \mathrm{and} \ y \notin V \ \mathrm{then} \ \lambda^D Cl(\{y\}) \cap V = \emptyset. \ \mathrm{This} \ \mathrm{implies} \ \mathrm{by} \ (4) \\ [\cap \{G \in SO_{\lambda^D}(X) : \lambda^D Cl(\{y\}) \subseteq G\}] \cap V = \emptyset. \ \mathrm{Then} \ \mathrm{there} \ \mathrm{exists} \ G \in SO_{\lambda^D}(X) \\ \mathrm{such} \ \mathrm{that} \ x \in G \ \mathrm{and} \ \lambda^D Cl(\{y\}) \subseteq G, \ \mathrm{so} \ y \notin \lambda^D Cl(\{x\}).$
- $(5) \Rightarrow (1)$: Let $G \in SO_{\lambda^D}(X)$ and $x \in G$. Let $y \in \lambda^D \operatorname{Ker}(\{x\})$. Then $x \in \lambda^D \operatorname{Cl}(\{y\})$ and hence $y \in G$. This implies that $\lambda^D \operatorname{Ker}(\{x\}) \subseteq G$. Thus $x \in \lambda^D \operatorname{Cl}(\{x\}) \subseteq \lambda^D \operatorname{Ker}(\{x\}) \subseteq G$. Hence X is $\lambda^D R_0$.

Corollary 1 Let $\lambda : SO(X) \to \mathcal{P}(X)$ be an s-operation. Then X is $\lambda^D - R_0$ if and only if $\lambda^D Cl(\{x\}) = \lambda^D \operatorname{Ker}(\{x\})$, for all $x \in X$.

Proof. Suppose that X is $\lambda^D - R_0$. By Theorem 5, $\lambda^D Cl(\{x\}) \subseteq \lambda^D \operatorname{Ker}(\{x\})$. For each $x \in X$. Let $y \in \lambda^D \operatorname{Ker}(\{x\})$. Then $x \in \lambda^D Cl(\{y\})$ (by Lemma 2), and hence by Theorem 2, $\lambda^D Cl(\{x\}) = \lambda^D Cl(\{y\})$. Thus $y \in \lambda^D Cl(\{x\})$ and hence $\lambda^D \operatorname{Ker}(\{x\}) \subseteq \lambda^D Cl(\{x\})$. Thus $\lambda^D Cl(\{x\}) = \lambda^D \operatorname{Ker}(\{x\})$.

The converse is obvious in view of Theorem 5.

Theorem 6 Let (X,τ) be a topological space and $\lambda:SO(X)\to \mathcal{P}(X)$ be an s-operation. A space X is λ^D-R_0 if and only if for any $x,y\in X$, whenever $x\in \lambda^DCl(\{y\})$ implies $y\in \lambda^DCl(\{x\})$ and conversely.

Proof. Suppose that a topological space (X, τ) is $\lambda^D - R_0$. Let $x \in \lambda^D Cl(\{y\})$. Then by Theorem 5, we have $\lambda^D Cl(\{y\}) \subseteq \lambda^D Ker(\{x\})$. Thus $x \in \lambda^D Ker(\{y\})$. Hence by Lemma 1, we have $y \in \lambda^D Cl(\{x\})$.

Conversely, let $U \in SO_{\lambda^D}(X)$ and $x \in U$. Let $y \in \lambda^D Cl(\{x\})$ hence by hypothesis, $x \in \lambda^D Cl(\{y\})$. Since $x \in U$, so $y \in U$. Hence $\lambda^D Cl(\{x\}) \subseteq U$. Thus X is $\lambda^D - R_0$.

Theorem 7 Let X be a topological space and $\lambda : SO(X) \to \mathcal{P}(X)$ be an soperation. Then the following statements are equivalent:

(1)
$$X \text{ is } \lambda^D - R_0.$$

- $(2) \ \, \mathit{If} \, F \in SC_{\lambda^D}(X) \, \, \mathit{then} \, \, F = \lambda^D \operatorname{Ker}(F).$
- $(3) \ \, \mathit{If} \, F \in SC_{\lambda^D}(X) \, \, \mathit{and} \, \, x \in F, \, \mathit{then} \, \lambda^D \operatorname{Ker}(\{x\}) \subseteq F.$
- $(4) \ \ \mathit{If} \ x \in X, \ \mathit{then} \ \lambda^D \operatorname{Ker}(\{x\}) \subseteq \lambda^D Cl(\{x\}).$

Proof.

- $(1) \Rightarrow (2)$: Follows from Theorem 5.
- $(2) \Rightarrow (3)$: Follows from the fact that $x \in F$ then $\lambda^D \operatorname{Ker}(\{x\}) \subseteq \lambda^D \operatorname{Ker}(F) = F$ by part 3 of Theorem 1.
- $(3) \Rightarrow (4)$: Since $x \in \lambda^D Cl(\{x\}) \in SC_{\lambda^D}(X)$ we have by (3), $\lambda^D Ker(\{x\}) \subseteq \lambda^D Cl(\{x\})$ and (4) follows.
- $(4)\Rightarrow (1)$: Let $U\in SO_{\lambda^D}(X)$ and $x\in U$. To show $\lambda^DCl(\{x\})\subseteq U$. If possible, suppose that, there exists $y\in \lambda^DCl(\{x\})$ such that $y\notin U$. Then $y\in X\setminus U$. This by (4) implies that $\lambda^D \operatorname{Ker}(\{y\})\subseteq X\setminus U$. Therefore $U\subseteq X\setminus \lambda^D \operatorname{Ker}(\{x\})$. So $x\notin \lambda^D \operatorname{Ker}(\{y\})$. Then, there exists a λ^D -open set G such that $y\in G$ but $x\notin G$. This implies that $y\notin \lambda^DCl(\{x\})$ which is impossible. Hence $\lambda^DCl(\{x\})\subseteq U$. Thus X is a λ^D-R_0 space.

Definition 6 Let (X,τ) be a topological space and $\lambda:SO(X)\to \mathcal{P}(X)$ be an s-operation. The space X is said to be λ^D-R_1 if for $x,y\in X$ with $\lambda^DCl(\{x\})\neq \lambda^DCl(y)$ there exist disjoint λ^D -open sets U and V such that $\lambda^DCl(\{x\})\subseteq U$ and $\lambda^DCl(\{y\})\subseteq V$.

Remark 1 A space X in Example 2 is $\lambda^D - R_1$.

Theorem 8 Every $\lambda^D - R_1$ space is a $\lambda^D - R_0$ space.

Proof. Let $U \in SO_{\lambda^D}(X)$ and $x \in U$. If $y \notin U$ then $\lambda^D Cl(\{x\}) \neq \lambda^D Cl(\{y\})$ (as $x \notin \lambda^D Cl(\{y\})$). Hence there exists $V \in SO_{\lambda^D}(X)$ such that $\lambda^D Cl(\{y\}) \subseteq V$ and $x \notin V$. This gives $y \notin \lambda^D Cl(\{y\})$, proving that $\lambda^D Cl(\{x\}) \subseteq U$. So X is a $\lambda^D - R_0$ space.

The converse of Theorem 8 is not true, we can show it by the following example:

Example 3 Let $X = \{a,b,c,d\}$, and $\tau = \mathcal{P}(X)$. We define an s-operation $\lambda: SO(X) \to \mathcal{P}(X)$ as:

$$\lambda(A) = \left\{ \begin{array}{ll} X & \mathrm{Otherwise} \\ A & \mathrm{if} \ A = \emptyset \ \mathrm{or}\{b,c\} \ \mathrm{or} \ \{\alpha,c\} \ \mathrm{or} \ \{\alpha,b\}. \end{array} \right.$$

Now:

```
\begin{split} SO(X) &= \mathcal{P}(X). \\ SO_{\lambda^D}(X) &= \{\emptyset, \{b, c\}, \{a, c\}, \{a, b\}, X\}. \\ SC_{\lambda^D}(X) &= \{\emptyset, \{a\}, \{b\}, \{c\}, X\}. \\ \textit{Clearly X is } \lambda^D - R_0 \textit{ but it is not } \lambda^D - R_1. \end{split}
```

Theorem 9 Let (X,τ) be a topological space and $\lambda:SO(X)\to \mathcal{P}(X)$ be an s-operation. Then the following statements are equivalent:

- (1) X is $\lambda^D R_1$.
- (2) For any $x, y \in X$, one of the following holds:
 - a) For $U \in SO_{\lambda}(X)$, $x \in U$ if and only if $y \in U$;
 - b) There exist disjoint λ^D -open sets U and V such that $x \in U, y \in V$.
- (3) If $x, y \in X$, such that $\lambda^D Cl(\{x\}) \neq \lambda^D Cl(\{y\})$ then there exist λ^D -closed sets F and H such that $x \in F$, $y \notin F$, $y \in H$, $x \notin H$ and $X = F \cup H$.

Proof.

- $\begin{array}{lll} (1)\Rightarrow(2)\colon \operatorname{Let}\ x,y\ \in\ X.\ \operatorname{Then}\ \lambda^DCl(\{x\})\ =\ \lambda^DCl(\{y\})\ \operatorname{or}\ \lambda^DCl(\{x\})\ \neq\\ \lambda^DCl(\{y\}).\ \operatorname{If}\ \lambda^DCl(\{x\})\ =\ \lambda^DCl(\{y\})\ \operatorname{and}\ U\ \in\ SO_{\lambda^D}(X),\ \operatorname{then}\ \operatorname{for}\ \operatorname{any}\ U\ \in\\ SO_{\lambda^D}(X),\ x\in U\ \operatorname{then}\ y\in\lambda^DCl(\{x\})\ =\ \lambda^DCl(\{y\})\subseteq U\ \operatorname{then}\ (\operatorname{as}\ X\ \operatorname{is}\ \lambda^D-R_0). \end{array}$ If $\lambda^DCl(\{x\})\ \neq\ \lambda^DCl(\{y\}),\ \operatorname{then}\ \operatorname{there}\ \operatorname{exist}\ U,V\ \in\ SO_{\lambda^D}(X)\ \operatorname{such}\ \operatorname{that}\ x\in\lambda^DCl(\{x\})\subseteq U,\ y\in\lambda^DCl(\{y\})\subseteq V\ \operatorname{and}\ U\cap V=\emptyset.$
- $(2) \Rightarrow (3) \colon \mathrm{Let} \ x,y \in X \ \mathrm{such} \ \mathrm{that} \ \lambda^D Cl(\{x\}) \neq \lambda^D Cl(\{y\}). \ \mathrm{Then} \ x \notin \lambda^D Cl(\{y\}),$ so that there exists $G \in SO_{\lambda^D}(X)$, such that $x \in G$ and $y \notin G$. Thus by (2), there exist disjoint λ^D -open sets U and V such that $x \in U$, $y \in V$. Put $F = X \setminus V$ and $H = X \setminus U$. Then $F, H \in SO_{\lambda^D}(X), x \in F, y \notin F, y \in H, x \notin H \ \mathrm{and} \ X = F \cup H$.
- $(3)\Rightarrow (1): \text{Let } U\in SO_{\lambda}(X) \text{ and } x\in U. \text{ Then } \lambda^DCl(\{x\})\subseteq U. \text{ In fact, otherwise there exists } y\in \lambda^DCl(\{x\})\cap X\backslash U. \text{ Implies that } \lambda^DCl(\{x\})\neq \lambda^DCl(\{y\}) \text{ (as } x\notin \lambda^DCl(\{y\})) \text{ and so by (3), there exist } F,H\in SO_{\lambda^D}(X) \text{ such that } x\in F, y\notin F, y\in H, x\notin H \text{ and } X=F\cup H. \text{ Then } y\in H\backslash F=X\backslash F \text{ and } x\notin X\backslash F, \text{ where } X\backslash F\in SO_{\lambda^D}(X), \text{ which is a contradiction to the fact that } y\in \lambda^DCl(\{x\}). \text{ Hence } \lambda^DCl(\{x\})\subseteq U. \text{ Thus } X \text{ is } \lambda^D-R_0. \text{ To show } X \text{ to be } \lambda^D-R_1. \text{ Assume that } a,b\in X \text{ with } \lambda^DCl(\{a\})\neq \lambda^DCl(\{b\}). \text{ Then as above, there exist } K,L\in SC_{\lambda^D}(X) \text{ such that } a\in K,b\notin K,b\in L,a\notin L \text{ and } X=K\cup L. \text{ Thus } a\in K\backslash L\in SO_{\lambda^D}(X),b\in L\backslash K\in SO_{\lambda^D}(X). \text{ So } \lambda^DCl(\{a\})\subseteq K\backslash L,\lambda^DCl(\{b\})\subseteq L\backslash K. \text{ Thus } X \text{ is } \lambda^D-R_1.$

Proposition 2 Let (X,τ) be a topological space and $\lambda: SO(X) \to \mathcal{P}(X)$ be an s-operation. Then X is $\lambda^D - R_1$, if and only if for $x,y \in X$, with $\lambda^D \operatorname{Ker}(\{x\}) \neq \lambda^D \operatorname{Ker}(\{y\})$ there exist disjoint λ^D -open sets U and V such that $\lambda^D \operatorname{Cl}(\{x\}) \subseteq U$ and $\lambda^D \operatorname{Cl}(\{y\}) \subseteq V$.

Proof. Follows from Theorem 3 and Definition 6.

4 Conclusion

Introduced by Alais B. Khalaf and Sarhad F. Namiq [1]. The main results are the following:

- (1) Let (X,τ) be a topological space, and $\lambda:SO(X)\to \mathcal{P}(X)$ be an soperation and $A\subseteq X$. Then $\lambda^D\operatorname{Ker}(\{A\})=\{x\in X:\lambda^D\operatorname{Cl}(\{x\})\cap A\neq\emptyset\}$.
- (2) For any topological space X and any s-operation $\lambda:SO(X)\to \mathcal{P}(X)$, the following statements are equivalent:
 - a) X is $\lambda^D R_0$.
 - b) $F \in SC_{\lambda^D}(X)$ and $x \in F$ implies that $F \subseteq U$ and $x \in U$ for some $U \in SO_{\lambda^D}(X)$.
 - $\mathrm{c)}\ F\in SC_{\lambda^D}(X)\ \mathrm{and}\ x\notin F\ \mathrm{implies}\ \mathrm{that}\ \lambda^DCl(\{x\})\cap\lambda^DCl(\{y\})=\emptyset.$
 - d) For any two distinct points x, y of X, either $\lambda^D Cl(\{x\}) = \lambda^D Cl(\{y\})$ or $\lambda^D Cl(\{x\}) \cap \lambda^D Cl(\{y\}) = \emptyset$.
- (3) Every $\lambda^D R_1$ space is a $\lambda^D R_0$ space.

References

- [1] Alias B. Khalaf and Sarhad F. Namiq, New types of continuity and separation axiom based operation in topological spaces, M. Sc. Thesis, University of Sulaimani (2011).
- [2] Alias B. Khalaf, Sarhad F. Namiq, Generalized λ —Closed Sets and $(\lambda, \gamma)^D$ —Continuous Functions, International Journal of Scientific & Engineering Research, Volume 3, Issue 12, December-2012 1 ISSN 2229–5518.
- [3] A. S. Davis, Indexed systems of neighborhoods for general topologi-cal spaces, *Amer. Math. Monthly*, **68** (1961), 886–893.

- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, **70** (1) (1963), 36–41.
- [5] Sarhad F. Namiq, Some Properties of λ^D —Open Sets in Topological Spaces (submit).
- [6] N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110–113.
- [7] J. N. Sharma and J. P. Chauhan, *Topology (General and Algebraic)*, Krishna Prakashna Media, India. (2011).

Received: January 23, 2020