A
M‘ Acta UNIV. SAPIENTIAE, MATHEMATICA, 12, 2 (2020) 307-316

DOI: 10.2478 /ausm-2020-0022

On AP — Ry and AP — R; spaces

Sarhad F. Namiq Ennis Rosas
Department of Mathematics, Departamento de Ciencias
College of Education, Naturales y Exactas,
University of Garmian, Universidad de la Costa, Barranquilla,
Kurdistan-Region, Iraq Colombia & Departmento de
email: sarhad1983@gmail.com Matematicas, Universidad de Oriente,

Cumana, Venezuela
email: ennisrafael@gmail.com

Abstract. In this paper we introduce the new types of separation axioms
called AP — Ry and AP — R; spaces, by using AP-open set. The notion
AP — Ry and AP — Ry spaces are introduced and some of their properties
are investigated.

1 Introduction

In 1943, the notion of Ry topological space was introduced by Shanin [6]. Later,
Davis [3] rediscovered it and studied some properties of this weak separation
axiom. In the same paper, Davis also introduced the notion of R; topological
space which are independent of both Ty and Ty, but strictly weaker than T,.
The notion of A—open (A*—open) sets was introduced by Alais B. Khalaf and
Sarhad F. Namiq [1]. The notion of AP-open sets was introduced by Sarhad
F. Namiq [5]. In this paper, we continue the study of the above mentioned
classes of topological spaces satisfying these axioms by introducing two more
notions in terms of AP—open sets called AP — Ry and AP — R;.
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2 Preliminaries

Throughout, X denote a topological space. Let A be a subset of X, the closure
and the interior of A are denoted by CL(A) and Int(A) respectively. A subset
A of a topological space (X, T) is said to be dense set [7] if CL(A) = X. A subset
A of a topological space (X, T) is said to be semi open [4] if A C Cl(Int(A)).
The complement of a semi open set is said to be semi closed [4]. The family of
all semi open (resp. semi closed) sets in a topological space (X, T) is denoted
by SO(X,T) or SO(X) (resp. SC(X,T) or SC(X)). We consider A as a function
defined on SO(X) into P(X) and A : SO(X) — P(X) is called an s-operation if
V C A(V) for each non-empty semi open set V. It is assumed that A(()) = ()
and A(X) = X for any s-operation A.

Definition 1 [1] Let (X,7T) be a topological space and A : SO(X) — P(X) be
an s-operation, then a subset A of X is called a N*—open set which is equiv-
alent to A—open set, if for each x € A, there exists a semi open set U such
that x € U and A(U) C A. The complement of a N*—open set is said to be
AN*—closed set which is equivalent to A—closed set. The family of all N*—open
(resp., N*—closed) subsets of a topological space (X, T) is denoted by or SOx(X)
(resp. SCA(X,T) or SCA(X)).

Definition 2 [5] Let (X,T) be a topological space and A : SO(X) — P(X) be
an s-operation, then a N*—open subset A of X is called a AP —open set, if for
each x € A, there exists a dense set D such that x € D C A. The complement
of a AP—open set is said to be A\°P—closed. The family of all \°—open (resp.,
AP_closed) subsets of a topological space (X,T) is denoted by or SOyo)(X) or
SO,p (X,T) (resp. SCyp (X, 1) or SCyp (X)).

Example 1 Let X ={a, b, c, d} with topology T = {0, X,{a},{b},{a, b}, {a, b, c}}.
The SO(X) = {@, X) {a}) {b}) {a> b}) {CL, C}) {(1, d}) {b> C}) {b) d}) {CL, b> C}) {(1, b) d})
{b,c,d}{a,c,d}}. Define A:SO(X) — P(X) as:

A ifac€A
MA)_{X ifag A

The SO)\D (X) = {@) X) {(1, b}) {(1, b) C}) {(1, b) d}}

Definition 3 [5] Let (X, 1) be a topological space and let A be a subset of X.
Then:

1. The A-closure of A (denoted by APCL(A)) is the intersection of all A\P—
closed sets containing A.
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2. The A-interior of A (denoted by APInt(A)) is the union of all AP —open
sets of X contained in A.

Proposition 1 [5] For each pointx € X, x € APCL(A) if and only if VNA # (),
for every V € SOyp (X) such that x € V.

3 On AP — Ry and AP — R; spaces

We introduce the following definitions.

Definition 4 For any s-operation A : SO(X) — P(X) and any subset A of a
space (X,T) the AP-kernel of A, denoted by AP Ker(A) is defined as:

AP Ker(A) = N{G € SO,p(X) : A C G}

Lemma 1 Let (X,T) be a topological space, A C X and A : SO(X) — P(X) be
an s-operation. Then AP Ker(A) ={x € X : APCL({x}) N A # 0}.

Proof. Let x € AP Ker(A) such that AP CL({x})NA = 0. Since x ¢ X\APC1({x})
which is a AP—open set containing A. Thus x ¢ AP Ker(A) a contradiction.
Conversely, let x € X be such that APCl({x}) N A # 0. If possible, let x ¢
AP Ker(A). Then there exist a AP—open set G such that x ¢ G and A C G.
Let y € APCL({x}) N A. This implies that y € APCl({x}) and y € G, which
gives x € G, a contradiction. O

Theorem 1 Let (X,T) be a topological space, A and B be subsets of X. Then:

(1) x € AP Ker(A) if and only if ANTF # O; for any AP-closed set F containing
X.

(2) A CAPKer(A) and A = AP Ker(A) if A is AP-open.
(3) If A C B, then AP Ker(A) C AP Ker(B).
Proof. Obvious. O

Definition 5 Let A : SO(X) — P(X) be an s-operation, a topological space
(X, ) is called AP — Ry, if U € SO,p(X) and x € U then APCL({x}) C U.

Example 2 Let X = {a,b,c,d}, and T = P(X). We define an s-operation
A:SO(X) = P(X) as:

AA) = A, for every subset A of X.

SO(X) =P(X) =SO,p(X) =SCyn(X).
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Theorem 2 For any topological space X and any s-operation A : SO(X) —
P(X), the following statements are equivalent:

(1) X is AP —Ry.

(2) F € SCyp(X) and x ¢ F implies that F C U and x ¢ U for some U €
SO)\D (X)

(3) F € SCa(X) and x ¢ F implies that F N AP CL({x}) # 0.

(4) For any two distinct points x,y of X, either APCl({x}) = APCl({y}) or
AP CL({x)) NAPCL({y)) = 0.

Proof.

(1) = (2): Let F € SCyp(X) and x ¢ F. This implies that x € X\F €
SO,p(X), then APCL({x}) € X\F (by (1)). Put U = X\APCl({x}). Then x ¢
U e SO\n(X) and F C U.

(2) = (3): F € SCyp(X) and x ¢ F then there exists U € SOyp (X) such that
x ¢ Uand F C U (by(2)), then UNAPCL({x}) =0 and FNAPCLl({x}) = 0.

(3) = (4): Suppose that for any two distinct points x,y of X, if AP Cl({x}) #
APCl({y}) Then, without loss of generality, we suppose that there exists some
z € APCL({x}) such that z ¢ APCl({y}). Thus, there exists a AP-open set V
such that z € Vandy ¢ V but x € V. Thus x ¢ APCl({y}). Hence by (3),
APCL({x}) N APCl({y}) = 0.

(4) = (1): Let U € SO,p(X) and x € U. Then for eachy ¢ U, x ¢ APCl({y}).
Thus AP CL({x}) # AP Cl({y}). Hence by (4), AP CL({x}) "AP C1({y}) = 0, for each
y € X\U. So APCL({x}) N [UAPCL({y}) : y € X\U}] = 0. Now, U € SO,p(X)
and y € X\U then {y} € APCl({y}) € APCUX\U) = X\U. Thus X\U =
UAPCL{y}) : y € X\U}. Hence, APCL({y}) N X\U = () then APCl({x}) C U.
This showing that (X, T) is AP — Ry. O

Lemma 2 Let A : SO(X) — P(X) be an s-operation. Then y € AP Ker({x}) if
and only if x € APCl({y}).

Proof. Let y ¢ AP Ker({x}). Then there exists V € SO,p (X) containing x such
that y ¢ V. Therefore x ¢ APCL({y}). The converse part can be proved in a
similar way. O

Theorem 3 Let A : SO(X) — P(X) be an s-operation. Then for any two points
x,y in X, AP Ker({x}) # AP Ker({y}) if and only if A\°PCl({y}) # AP CL({x}).
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Proof. Suppose that AP Ker({x}) # AP Ker({y}). Then there exists z € AP
Ker({x}) such that z ¢ AP Ker({y}). Now, z € AP Ker(x) if and only if x €
AP Ker({z}) by Lemma 2 and z ¢ AP Ker({y}) if and only if y € APC1({x}) by
Lemma 2. Hence AP Cl({x}) # APCl({y}).

Conversely, suppose that AP Cl({x}) # APCl({y}). Then there exists z € X
such that z € APC1({x}) and z ¢ APCl({y}) so there exists U € SO,b (X) such
that z € U,y ¢ U and x € U. Then y ¢ AP Ker({x}). Thus AP Ker({x}) #
AP Ker({y}). O

Theorem 4 Let A : SO(X) — P(X) be an s-operation. Then (X,T) is AP — Ry
if and only if for any two points x,y € X, AP Ker({x}) ¢ AP Ker({y}), implies
that AP Ker({x}) N AP Ker({y}) = 0.

Proof. Let x,y be any two points in a AP —Rj space X such that AP Ker({x}) #
AP Ker({y}). Hence by Theorem 3, APCL({x}) # APCl({y}). We show that
AP Ker({x}) N AP Ker({y}) = 0. In fact, if z € AP Ker({x}) N AP Ker({y}), then
by Lemma 2, we have x,y € APCl(z) and by Theorem 2, we obtain that
APCL({x}) = APCl({z}) = AP Cl({y}) which is impossible.

Conversely, suppose that for any points x,y € X, AP Ker({x}) # AP Ker({y}).
Thus AP Ker({x}) N AP Ker({y}) = 0. Hence we get AP Cl({x}) N APCl({y}) = 0.
In fact z € APCL({x}) N APCl({y}), this implies that x,y € AP Ker({z}). Thus
APCL({x}) N APCl({z}) # 0. Hence by hypothesis, we get AP Ker({x}) =
AP Ker({z}). By similar way it follows that AP Ker({x}) = AP Ker({z}). Thus
AP Ker({x}) # AP Ker({y}) which is a contradiction. Hence AP C1({x})NAP CL({y})
# () and then by Theorem 2, the space X is AP — Ry. ]

Theorem 5 Let (X,T) be a topological space and for any s-operation A :
SO(X) = P(X) the following statements are equivalent:

(1) X is a AP — Ry space.

(2) For any non-empty set A in X and any G € SOyp (X) such that ANG # ()
there exists F € SCyp (X) such that ANF #0 and F C G.

(3) For any G € SO,p(X), G =U{F € SCyn(X) : FC G}.
(4) For any F € SCyn(X), F=n{G € SOyp(X) : F C G}.

(5) For any x € X, APCLl({x}) € AP Ker({x}).



312 S. F. Namiq, E. Rosas

Proof.

(1) = (2): Let A be a non-empty subset of X and G € SO,p (X) such that
ANG # (. Let x € ANG. Then as x € G € SO,p(X), by (1), we get
APCl({x}) € G. Put F =APCL({x}). Then F € SC,n(X), FC G and ANF # 0.

(2) = (3): Let G € SOn(X). Then [JF € SCyp(X) : F C G} C G. Let
x € G. Then there exists F € SCyp(X) such that x € F and F C G. Thus
x € FU{K € SCyn(X) : K C G}. Hence (3) follows.

(3) = (4): Straight forward.

(4) = (5): Let x € X. Now, y ¢ AP Ker({x}) implies there exists V € SOyp (X)
such that x € V and y ¢ V then APCl({y}) NV = (. This implies by (4)
[MN{G € SO (X) : APCL({y}) € GJJ NV = (). Then there exists G € SO,p (X)
such that x € G and APCl({y}) C G, so y & APCL({x}).

(5) = (1): Let G € SO,p(X) and x € G. Let y € AP Ker({x}). Then x €
APCl({y}) and hence y € G. This implies that AP Ker({x}) € G. Thus x €
APCL({x}) € AP Ker({x}) C G. Hence X is AP — Ry. d

Corollary 1 Let A : SO(X) — P(X) be an s-operation. Then X is AP — Ry if
and only if \°CL({x}) = AP Ker({x}), for all x € X.

Proof. Suppose that X is AP — Ry. By Theorem 5, APCl({x}) C AP Ker({x}).
For each x € X. Let y € AP Ker({x}). Then x € APCl({y}) (by Lemma 2), and
hence by Theorem 2, AP Cl({x}) = APCl({y}). Thus y € APC1({x}) and hence
AP Ker({x}) € APC1({x}). Thus APCL({x}) = AP Ker({x}). d

The converse is obvious in view of Theorem 5.

Theorem 6 Let (X,T) be a topological space and A : SO(X) — P(X) be an
s-operation. A space X is AP — Ry if and only if for any x,y € X, whenever
x € APCLl({y}) implies y € APCL({x}) and conversely.

Proof. Suppose that a topological space (X,T) is AP — Ro. Let x € APCl({y}).
Then by Theorem 5, we have AP CL({y}) € AP Ker({x}). Thus x € AP Ker({y}).
Hence by Lemma 1, we have y € APCL({x}).

Conversely, let U € SO,p(X) and x € U. Let y € APCL({x}) hence by
hypothesis, x € APCl({y}). Since x € U, so y € U. Hence APCl({x}) C U. Thus
X is AP —Ry. O

Theorem 7 Let X be a topological space and A : SO(X) — P(X) be an s-
operation. Then the following statements are equivalent:

(1) X is AP —Ry.
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(2) IfF € SCyn(X) then F = AP Ker(F).
(3) If F€ SCyn(X) and x € F, then AP Ker({x}) C F.
(4) If x € X, then AP Ker({x}) € APCL({x}).

Proof.

(1) = (2): Follows from Theorem 5.

(2) = (3): Follows from the fact that x € F then AP Ker({x}) C AP Ker(F) =F
by part 3 of Theorem 1.

(3) = (4): Since x € APC1({x}) € SCyn(X) we have by (3), AP Ker({x}) C
APC1({x}) and (4) follows.

(4) = (1): Let U € SO,p (X) and x € U. To show APCl({x}) C U. If possible,
suppose that, there exists y € APCl({x}) such that y ¢ U. Then y € X\U.
This by (4) implies that AP Ker({y}) € X\U. Therefore U C X\AP Ker({x}). So
x ¢ AP Ker({y}). Then, there exists a AP-open set G such thaty € G but x ¢ G.
This implies that y ¢ APCl({x}) which is impossible. Hence APCl({x}) C U.
Thus X is a AP — R, space. O

Definition 6 Let (X,T) be a topological space and A : SO(X) — P(X) be an
s-operation. The space X is said to be AP — Ry if for x,y € X with AP Cl({x}) #
APCl(y) there exist disjoint AP-open sets U and V such that APCl({x}) C U
and APCl({y}) C V.

Remark 1 A space X in Ezample 2 is A\P — R;.
Theorem 8 Every AP — R; space is a AP — Ry space.

Proof. Let U € SOyp(X) and x € W. If y ¢ U then APCL({x}) # APCl({y})
(as x ¢ APCl({y})). Hence there exists V € SO,b (X) such that APCl({y}) € V
and x ¢ V. This gives y ¢ APCl({y}), proving that APCl({x}) € U. So X is a
AP — Ry space. O

The converse of Theorem 8 is not true, we can show it by the following
example:

Example 3 Let X = {a,b,c,d}, and T = P(X). We define an s-operation
A:SO(X) = P(X) as:

X Otherwise
A(A) = { A if A=0or{b,c}or{a,c} or {a,b}.
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Now
O(X) =P(X).
SO)\D(X) = {0,{b, c}{a,c}{a, b} X}
SCyo (X) ={0,{a}, {b},{c}, X}.
Clearly X is AP — Ry but it is not AP —

Theorem 9 Let (X,T) be a topological space and A : SO(X) — P(X) be an
s-operation. Then the following statements are equivalent:

(1) X is AP —R;.

(2) For any x,y € X, one of the following holds:
a) For U € SO5(X), x € U if and only if y € U;
b) There exist disjoint AP-open sets U and V such that x € U,y € V.

(3) If x,y € X, such that APCL({x}) # APCL({y}) then there exist AP-closed
sets F and H such thatx € F, y¢F,yeH, x¢ H and X=FUH.

Proof.

(1) = (2): Let x,y € X. Then APCl({x}) = APCl({y}) or APCl({x}) #
APCL({y}). If APCL({x}) = APCl({y}) and U € SO,p(X), then for any U €
SO, (X), x € U then y € APCL({x}) = APCl({y}) C U then (as X is AP — Ry).
If APCL({x}) # APCl({y}), then there exist U,V € SO,p(X) such that x €
APCL{x}) C U,y € APCl({y) CVand UNV = 0.

(2) = (3): Let x,y € X such that AP Cl({x}) # APCl({y}). Then x ¢ APCl({y}),
so that there exists G € SOyp (X), such that x € G and y ¢ G. Thus by (2),
there exist disjoint AP-open sets U and V such that x € U,y € V. Put F = X\V
and H =X\U. Then FH € SO\ (X),x € F,y ¢ F,y € H,x ¢ Hand X = FUH.

(3) = (1): Let U € SO»(X) and x € U. Then APCl({x}) C U. In fact, other-
wise there exists y € AP CL({x}) N X\U. Implies that AP C1l({x}) # APCl({y}) (
as x ¢ APCl({y})) and so by (3), there exist F,H € SO,p (X) such that x € F,
y¢F yeH x¢ Hand X=FUH. Then y € H\F = X\F and x ¢ X\F, where
X\F € SO,p(X), which is a contradiction to the fact that y € APCl({x}).
Hence APCl({x}) € U. Thus X is AP — Ry. To show X to be AP — Ry. As-
sume that a,b € X with APCl({a}) # APC1({b}). Then as above, there exist
K,L € SCyp(X) such that a € K, b ¢ K, b € [, a ¢ L and X = KUL.
Thus a € K\L € SO,n(X), b € L\K € SO,n(X). So APCl({a}) C K\L,
APCL({b}) C L\K. Thus X is AP —R;. O
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Proposition 2 Let (X, T) be a topological space and A : SO(X) — P(X) be an
s-operation. Then X is AP —Ry, if and only if for x,y € X, with AP Ker({x}) #
AP Ker({y}) there exist disjoint AP -open sets U and V such that AP Cl({x}) C U
and APCl({y}) C V.

Proof. Follows from Theorem 3 and Definition 6. O

4 Conclusion

Introduced by Alais B. Khalaf and Sarhad F. Namiq [1]. The main results are
the following:

(1) Let (X,T) be a topological space, and A : SO(X) — P(X) be an s-
operation and A C X. Then AP Ker({A}) = {x € X : APCL({x}) N A # (}.

(2) For any topological space X and any s-operation A : SO(X) — P(X), the
following statements are equivalent:

a) X is AP — Ry.

b) F € SCyp(X) and x € F implies that F C U and x € U for some
U € SO, b (X).

¢) F € SCyn(X) and x ¢ F implies that AP CL({x}) N APCl({y}) = 0.
d) For any two distinct points x,y of X, either AP Cl({x}) = APCl({y}) or
AP CL({x}) N APCL({y}) = 0.

(3) Every AP — Ry space is a AP — Ry space.
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