
Acta Univ. Sapientiae, Mathematica, 13, 2 (2021) 450–467

DOI: 10.2478/ausm-2021-0028

On graphs with minimal distance signless

Laplacian energy

S. Pirzada
Department of Mathematics,

University of Kashmir, Srinagar, India
email:

pirzadasd@kashmiruniversity.ac.in

Bilal A. Rather
Department of Mathematics,

University of Kashmir, Srinagar, India
email: bilalahmadrr@gmail.com

Rezwan Ul Shaban
Department of Mathematics,

University of Kashmir, Srinagar, India
email: rezwanbhat21@gmail.com

Merajuddin
Department of Applied Mathematics,

Aligarh Muslim University,
Aligarh, India

email: meraj1957@rediffmail.com

Abstract. For a simple connected graph G of order n having distance
signless Laplacian eigenvalues ρQ1 ≥ ρ

Q
2 ≥ · · · ≥ ρ

Q
n , the distance signless

Laplacian energyDSLE(G) is defined asDSLE(G) =
∑n
i=1

∣∣∣ρQi − 2W(G)
n

∣∣∣,
where W(G) is the Weiner index of G. We show that the complete split
graph has the minimum distance signless Laplacian energy among all
connected graphs with given independence number. Further, we prove
that the graph Kk∨ (Kt∪Kn−k−t), 1 ≤ t ≤ bn−k2 c has the minimum dis-
tance signless Laplacian energy among all connected graphs with vertex
connectivity k.

1 Introduction

A simple and finite graph is denoted by G(V(G), E(G)) (or simply by G when
there is no confusion), where V(G) = {v1, v2, . . . , vn} is its vertex set and E(G)
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is its edge set. The cardinality of V(G) and E(G) are respectively the order
and size of G, and are denoted by n and m. The neighborhood N(v) of a vertex
v is the set of vertices adjacent to v ∈ V(G), and its cardinality is the degree
of v, denoted by dG(v) (we simply write dv if it is clear from the context).
Throughout this paper, G will be connected. The adjacency matrix A = [aij]
of G is a (0, 1)-square matrix of order n whose (i, j)-entry is equal to 1, if vi is
adjacent to vj and equal to 0, otherwise. The diagonal matrix of vertex degrees
di = dG(vi), i = 1, 2, . . . , n associated to G is Deg(G) = diag[d1, d2, . . . , dn].
The real symmetric and positive semi-definite matrices L(G) = Deg(G)−A(G)
and Q(G) = Deg(G) + A(G) are respectively the Laplacian and the signless
Laplacian matrices and their spectrum are respectively the Laplacian spec-
trum and signless Laplacian spectrum of the graph G. Recent work on signless
Laplacian spectrum can be seen in [11, 20, 21, 22]. We use standard terminol-
ogy, Kn denotes a complete graph, Ka,n−a is a complete bipartite graph with
partite sets of cardinality a and n − a. For other undefined notations and
terminology, the readers are referred to [5, 13, 15, 16, 23].

In a connected graph G, the distance between two vertices v1, v2 ∈ V(G),
denoted by d(v1, v2), is the length of a shortest path between v1 and v2. The
diameter of G is the maximum distance between any two pair of vertices of G.
The distance matrix of G, denoted by D(G), is defined as D(G) = [d(vi, vj)]
where vi, vj ∈ V(G). The transmission TrG(v) (or simply by Tr(v), when graph
under consideration is clear) of a vertex v is defined to be the sum of the
distances from v to all other vertices in G, that is, Tr(v) =

∑
u∈V(G)

duv. The

transmission number or Wiener index of a graph G, denoted by W(G), is
the sum of distances between all unordered pairs of vertices in G. Clearly,

W(G) = 1
2

∑
v∈V(G)

Tr(v). For any vertex vi ∈ V(G), the transmission Tr(vi)

is called the transmission degree, shortly denoted by Tri and the sequence
{Tr1, Tr2, . . . , Trn} is called the transmission degree sequence of the graph G.

If Tr(G) = diag[Tr1, Tr2, . . . , Trn] is the diagonal matrix of vertex transmis-
sions of G, the matrices DL(G) = Tr(G) −D(G) and DQ(G) = Tr(G) +D(G)
are respectively called as the distance Laplacian matrix and the distance sign-
less Laplacian matrix of G [3].

If λ1 ≥ λ2 ≥ · · · ≥ λn are the adjacency eigenvalues of a graph G, the energy

of G [12], denoted by E(G), is defined as E(G) =
n∑
i=1

|λi|. The reader is referred

to the book [15] and for some recent work to [4, 9, 10].
Let ρD1 ≥ ρD2 ≥ . . . ≥ ρDn and ρQ1 ≥ ρ

Q
2 ≥ . . . ≥ ρ

Q
n be respectively, the
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distance, and distance signless Laplacian eigenvalues of the graph G. The dis-
tance energy [14] of a graph G is the sum of the absolute values of the distance

eigenvalues of G, that is, DE(G) =

n∑
i=1

|ρDi |. For some recent works on distance

energy, we refer to [2, 6, 8, 18] and the references therein. The distance signless
Laplacian energy DSLE(G) [6] of a connected graph G is defined as

DSLE(G) =

n∑
i=1

|ρ
Q
i −

2W(G)

n
|.

Let σ
′

be the largest positive integer such that ρQ
σ
′ ≥ 2W(G)

n and let BQb (G) =
b∑
i=1

ρ
Q
i be the sum of b largest distance signless Laplacian eigenvalues of G.

Then, using

n∑
i=1

ρ
Q
i = 2W(G), in [6], it is shown that

DSLE(G) = 2

(
B
Q

σ
′ (G) −

2σ
′
W(G)

n

)
= 2 max

1≤j≤n

(
j∑
i=1

ρ
Q
i (G) −

2jW(G)

n

)

= 2 max
1≤j≤n

(
B
Q
j (G) −

2jW(G)

n

)
.

For some recent works on DSLE(G), see [6, 8, 19].
In the next section, we show that the complete split graph has the minimum

distance signless Laplacian energy among all connected graphs with given
independence number. Further, we show that among all connected graphs
with given vertex connectivity k, the graph Kk∨ (Kt ∪Kn−k−t), 1 ≤ t ≤ bn−k2 c
has the minimum distance signless Laplacian energy.

2 Distance signless Laplacian energy of graphs with
given independence number and connectivity

Let e = vivj be an edge of a graph G such that G − e is connected. Then re-
moving the edge e increases the distance by at least one unit. Similarly adding
an edge decreases the distance by at least one unit. By Perron-Frobenius the-
orem, if each entry of the first non negative matrix majorizes the second non
negative matrix, then their spectrum is also majorized. This is summarized in
next useful result, which can be found in [3].
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Lemma 1 Let G be a connected graph of order n and size m, where m ≥ n
and let G

′
= G− e be a connected graph obtained from G by deleting an edge.

Let ρQ1 (G) ≥ ρ
Q
2 (G) ≥ · · · ≥ ρ

Q
n (G) and ρQ1 (G

′
) ≥ ρQ2 (G

′
) ≥ · · · ≥ ρQn (G

′
)

be respectively, the distance signless Laplacian eigenvalues of G and G
′
. Then

ρ
Q
i (G

′
) ≥ ρQi (G) holds for all 1 ≤ i ≤ n.

Motivated by Lemma 1, we have the following observation, which says that
the complete graph has minimum distance signless Laplacian energy among
all graphs of order n.

Theorem 1 Let G be a connected graph of order n. Then

DSLE(G) ≥ 2
(
n+ b(n− 2) −

2W(G)

n

)
,

equality occurs if and only if G ∼= Kn.

Proof. By Lemma 1, ρQi (G) ≥ ρ
Q
i (Kn) for each i = 1, 2, . . . , n. So using the

definition of BQb (G), we have

B
Q
b (G) ≥ B

Q
b (Kn) = 2n− 2+ (b− 1)(n− 2), (1)

with equality if and only if G ∼= Kn. Let σ
′

be the positive integer such that
ρ
Q

σ
′ ≥ 2W(G)

n . Then using (1) and the definition of distance signless Laplacian
energy, we have

DSLE(G) = 2

(
σ ′∑
i=1

ρ
Q
i (G) −

2σ
′
W(G)

n

)
= 2 max

1≤j≤n

(
j∑
i=1

ρ
Q
i (G) −

2jW(G)

n

)

≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (Kn) −

2jW(G)

n

)
= 2

(
n+ b(n− 2) −

2(b− 1)W(G)

n

)
.

By Lemma 1 and Inequality (1), equality holds if and only if G ∼= Kn. �

A graph is complete split, denoted by CSn,α, if it can be partitioned into an
independent set (a subset of vertices of a graph is said to be an independent
set if the subgraph induced by them is an empty graph) on α vertices and
a clique on n − α vertices, such that each vertex of the independent set is
adjacent to every vertex of the clique.

The following result [17] gives the distance signless Laplacian spectrum of
CSn,α.
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Lemma 2 Let CSn,α be the complete split graph with independence num-
ber α. Then the distance signless Laplacian spectrum of CSn,α is given by{
3n+2α−6±

√
n2+12α2−α(4n+16)+4n+4

2 , (n+ α− 4)[α−1], (n− 2)[n−α−1]
}
.

Since independence number of the complete graph Kn is 1 and its distance
signless Laplacian energy is discussed in Theorem 1, so we assume 2 ≤ α ≤
n − 2, and discuss α = n − 1 separately. The following theorem shows that
among all connected graphs with given independence number α, the complete
split graph CSn,α has the minimum distance signless Laplacian energy.

Theorem 2 Let G be a connected graph of order n ≥ 3 having independence

number α, where n+1−
√
n2+1−10n
2 < α < n+1+

√
n2+1−10n
2 . Then

DSLE(G) ≥

{
2
(
2n+ α(n− 3) + α2 − 2− 2(α+1)W(G)

n

)
, if α ≤ n

2 ,

n+
√
θ+ α(2n− 8) + 2α2 + 2− 4αW(G)

n , if α > n
2 ,

where θ = n2 + 12α2 + 4n − α(4n + 16) + 4. Equality occurs in each of the
inequalities if and only if G ∼= CSn,α.

Proof. Let G be a connected graph of order n ≥ 3 having independence
number α. Let CSn,α be the complete split graph having independence number
α. Clearly, G is a spanning subgraph of CSn,α. Therefore, by Lemma 1, we
have ρQi (G) ≥ ρ

Q
i (CSn,α). Let σ

′
be the largest positive integer such that

ρ
Q

σ
′ (G) ≥ 2W(G)

n . With this information, and using the equivalent definition of
distance signless Laplacian energy, we have

DSLE(G) = 2

(
σ ′∑
i=1

ρ
Q
i (G) −

2σ
′
W(G)

n

)
= 2 max

1≤j≤n

(
j∑
i=1

ρ
Q
i (G) −

2jW(G)

n

)

≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (CSn,α) −

2jW(G)

n

)
. (2)

By using Lemma 2, the trace is n2+α2−n−α and the average Wiener index is
2W(CSn,α)

n = n2+α2−n−α
n . Therefore, it follows that

3n+2α−6+
√
n2+12α2−α(4n+16)+4n+4

2

is the distance signless Laplacian spectral radius of CSn,α. Next, for the eigen-
value n+ α− 4, we have

n+ α− 4 <
2W(CSn,α)

n
=
n2 + α2 − n− α

n
,
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provided

α2 − (n+ 1)α+ 3n > 0. (3)

Consider the polynomial f(t) = t2 − (n + 1)t + 3n, for 1 ≤ t ≤ n − 1. The
zeros of this polynomial are

x1 =
n+ 1−

√
n2 + 1− 10n

2
and x2 =

n+ 1+
√
n2 + 1− 10n

2
.

This implies that f(t) > 0 for all t < x1 and f(t) > 0 for all t > x2. From this,
for

n+ 1−
√
n2 + 1− 10n

2
< α <

n+ 1+
√
n2 + 1− 10n

2
,

we have n + α − 4 ≥ 2W(CSn,α)
n . Similarly, for the second smallest distance

signless Laplacian eigenvalue, we have

3n+ 2α− 6−
√
n2 + 12α2 − α(4n+ 16) + 4n+ 4

2
<
2W(CSn,α)

n
,

which after simplification implies that

(12−8α)n3+(−12−4α+12α2)n2+(16α−24α2+8α3)n+8α3−4α2−4α4 > 0.
(4)

Inequality (4) is a function of two variables, and putting conditions on the
independence number α we have verified that (4) holds true for α ≤ n

2 . Also,
the smallest distance signless Laplacian eigenvalue n − 2 is always less than
2W(CSn,α)

n . Therefore, we have the following cases to consider.

Case (i). If α ≤ n
2 , then σ

′
= α. Thus, from (2), it follows that

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (CSn,α) −

2jW(G)

n

)

≥ 2

(
α∑
i=1

ρ
Q
i (CSn,α) −

2αW(G)

n

)

= 2

(
3n+ 2α− 6+

√
θ

2
+ (α− 1)(n+ α− 4) −

2αW(G)

n

)

= n+ α(2n− 8) + 2α2 + 2+
√
θ−

4αW(G)

n
,
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where θ = n2 + 12α2 + 4n− α(4n+ 16) + 4.
Case (ii). If α > n

2 , then σ
′
= α+ 1. So, from (2), it follows that

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (CSn,α) −

2jW(G)

n

)

≥ 2

(
α+1∑
i=1

ρ
Q
i (CSn,α) −

2(α+ 1)W(G)

n

)

= 2

(
3n+ 2α− 6+ (α− 1)(n+ α− 4) −

2(α+ 1)W(G)

n

)
= 2

(
2n+ α(n− 3) + α2 − 2−

2(α+ 1)W(G)

n

)
.

Equality occurs in all the inequalities above if and only if equality occurs in
Inequality (2). It is clear that equality occurs in (2) if and only if G ∼= CSn,α.
This shows that equality occurs in all the inequalities above if and only if
G ∼= CSn,α. This completes the proof. �

When order n of graph G increases, we observe that n+1−
√
n2+1−10n
2 ≈ 3 and

n+1+
√
n2+1−10n
2 ≈ n− 2. These remaining cases of independence are discussed

as follows.

Proposition 1 Let G be a graph of order n ≥ 3 with independence number
α ∈ {2, 3}. Then

DSLE(G) ≥

 2
(
3n− 2− 4W(G)

n

)
, if α = 2,

2
(
3n− 4W(G)

n

)
, if α = 3,

equality occurs in first and second inequality if and only G ∼= CSn,2 and CSn,3
respectively.

Proof. By substituting α = 2 in Lemma 2, the distance signless Laplacian

spectrum of CSn,2 is given by
{
1
2(3n− 2±

√
n2 − 4n+ 20), (n− 2)[n−2]

}
and

the Wiener index can be calculated to be 2W(G)
n = n2−n+2

n . Clearly, 1
2(3n −

2 +
√
n2 − 4n+ 20) is the spectral radius and it is always greater or equal

to Wiener index. Next 1
2(3n − 2 −

√
n2 − 4n+ 20) < n2−n+2

n implies that
n2(n2 − 4n + 20) − 16 > 0 which is true for each n ≥ 1. Also, the smallest

distance signless Laplacian eigenvalue is always strictly less than 2W(G)
2 . Thus,
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we have σ
′
= 2 and the distance signless Laplacian energy is given by

DSLE(G) ≥ 2

(
2∑
i=1

ρ
Q
i (G) −

4W(G)

n

)
= 2

(
3n− 2−

4W(G)

2

)
. (5)

By using similar arguments, we can easily prove the second inequality. Equality
holds as in Theorem 2. �

Now, we obtain a lower bound for the distance signless Laplacian energy
when independence number is α = n− 2, or n− 1.

Proposition 2 Let G be a graph of order n ≥ 6 with independence number
α ∈ {n− 2, n− 1}. Then

DSLE(G) ≥

{
n(4n− 19) +

√
9n2 − 52n+ 84+ 26− 4W(G)

n , if α = n− 2,

5n+
√
9n2 − 32n+ 32− 8− 4W(G)

n , if α = n− 1,

equality occurs in first and second inequality if and only G ∼= CSn,n−2 and
CSn,n−1 respectively.

Proof. From Lemma 2, the distance signless Laplacian spectrum of CSn,n−2
with independence number n− 2 is given by{

1

2
(5n− 10±

√
9n2 − 52n+ 84), (2n− 6)[n−3], n− 2

}
and Wiener index is 2W(G)

n = 2n2−6n+6
n . Now, it is clear that 1

2(5n − 10 +√
9n2 − 52n+ 84) is the spectral radius and is always greater or equal to 2W(G)

n .

Also, 2n− 6 < 2W(G)
n implies that 6 > 0, which is always true. For the second

smallest distance signless Laplacian eigenvalue 1
2(5n−10−

√
9n2 − 52n+ 84),

we have 1
2(5n − 10 −

√
9n2 − 52n+ 84) < n2−n+2

n , which implies that n4 −
7n3 + 13n2 + 6n − 18 > 0, and is true for each n ≥ 2. Also, the smallest
distance signless Laplacian eigenvalue is always strictly less than 2W(G)

2 . Thus,

we have σ
′
= n− 2 and the distance Laplacian energy is given by

DSLE(G) ≥ 2

(
n−2∑
i=1

ρ
Q
i (G) −

2(n− 2)W(G)

n

)

=2

(
5n− 10+

√
9n2 − 52n+ 84

2
+ (n− 3)(2n− 6) −

2(n− 2)W(G)

2

)
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=n(4n− 19) + 26+
√
9n2 − 52n+ 84−

4(n− 2)W(G)

2

By using similar arguments, we can easily prove the second inequality. By
Lemma 1, equality holds as in Theorem 2. �

The vertex connectivity of a graph G, denoted by κ(G), is the minimum
number of vertices of G whose deletion disconnects G. Let Fn be the family
of simple connected graphs on n vertices and let

Vkn = {G ∈ Fn : κ(G) ≤ k},

that is, Vkn is the family of graphs with vertex connectivity at most k.

Let G1(V1, E1) and G2(V2, E2) be two graphs on disjoint vertex sets V1
and V2 with orders n1 and n2, respectively. Then their union is the graph
G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The join of graphs G1 and G2, denoted by
G1 ∨G2, is the graph consisting of G1 ∪G2 and all edges joining the vertices
in V1 and the vertices in V2. In other words, the join of two graphs G1 and G2,
denoted by G1 ∨ G2, is the graph obtained from G1 and G2 by joining each
vertex of G1 to every vertex of G2.

The following result [17] gives the distance signless Laplacian spectrum of
the join of a connected graph G1 with the union of two connected graphs G2
and G3, in terms of the adjacency spectrum of the graphs G1, G2 and G3.

Theorem 3 Let Gi be ri regular graphs of orders ni, having adjacency eigen-
values λi,1 = ri ≥ λi,2 ≥ · · · ≥ λi,ni, for i = 1, 2, 3. Then the distance signless
Laplacian eigenvalues of G1∨ (G2∪G3) are (n+n1− r1−λ1,k−4)

[n1−1], (2n−
n1 − r2 − λ2,k − 4)

[n2−1], (2n− n1 − r3 − λ3,k − 4)
[n3−1], where k = 2, 3, . . . , ni,

for i = 1, 2, 3 and n = n1+n2+n3. The remaining three eigenvalues are given
by the equitable quotient matrixn+ 3n1 − 2r1 − 4 n2 n3

n1 2n+ 2n2 − n1 − 2r2 − 4 2n3
n1 2n2 2n+ 2n3 − n1 − 2r3 − 4

 .
Corollary 1 Let G = Kk ∨ (Kt ∪ Kn−t−k), where ∨ is the join and ∪ is the
union, be the connected graph with connectivity k. Then the distance signless

Laplacian spectrum of G consists of the eigenvalue 4n−k−4±
√
k2+16nt−16kt−16t2

2 ,
the eigenvalue (2n−k−t−2) with multiplicity t−1, the eigenvalue (n+t−2)
with multiplicity n− k− t− 1 and the eigenvalue (n− 2) with multiplicity k.
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Proof. Let G1 = Kk, G2 = Kt and G3 = Kn−t−k. Then substituting r1 =
k − 1, r2 = t − 1, and r3 = n − k − t − 1 and noting that the adjacency
spectrum of Kω is {n− 1, (−1)[ω]}, the result follows by Theorem 3. �

The following lemma says that for each G ∈ Vkn, the graph Kk∨(Kt∪Kn−t−k)
has the minimum value of BQi , 1 ≤ i ≤ n − 1, that is, the sum of ith largest
distance signless Laplacian eigenvalues.

Lemma 3 Let G be a connected graph of order n with vertex connectivity k,
1 ≤ k ≤ n− 1. Then

B
Q
i (G) ≥ B

Q
i (Kk ∨ (Kt ∪ Kn−t−k)),

with equality if and only if G ∼= Kk ∨ (Kt ∪ Kn−t−k).

Proof. Let G be a connected graph of order n with vertex connectivity k,
1 ≤ k ≤ n − 1. We first show that BQi (G) ≥ B

Q
i (Kk ∨ (Kt ∪ Kn−t−k)), for all

i = 1, 2, . . . , n. Suppose that 1 ≤ k ≤ n − 2. Then G is the connected graph
of order n with vertex connectivity k for which the spectral parameter BQi (G)

has the minimum possible value. It is clear that G ∈ Vkn and BQi (G) attains the
minimum value for G. Let U ⊆ V(G) be such that G−U is disconnected and
has r connected components, say G1, G2, . . . , Gr. We are required to show that
r = 2. For if, r > 2, then we can construct a new graph G

′
= G+ e by adding

an edge between any two components, say G1 and G2 of G− S, which is such
that G

′ ∈ Vkn. By Lemma 1, we have BQi (G) > B
Q
i (G

′
). This is a contradiction

to the fact BQi (G) attains the minimum possible value for G. Therefore, we
must have r = 2. Further, we claim that each of the components G1, G2 and
the vertex induced subgraph 〈U〉 are cliques. For if one among them say G1
is not a clique, then adding an edge between the two non adjacent vertices of
G1 gives a graph H ∈ Vkn and by Lemma 1, we have BQi (G) > B

Q
i (H). This is

again a contradiction, as BQi (G) attains minimum possible value for G. Again
|U| ≤ k, and we prove that |U| = k. Assume that |U| < k. In a similar way, we
can form a new graph G + e = L ∈ Vkn, where e is adjacent to a vertex of G1
with a vertex of G2. Thus, by Lemma 1, BQi (G) > B

Q
i (H), which is not true.

Hence G must be of the form G = Kk ∨ (Kt ∪ Kn−k−t), 1 ≤ t ≤ bn−k2 c. This

shows that for all G ∈ Vkn, the spectral parameter BQi (G) has the minimum
possible value for the graph Kk ∨ (Kt ∪ Kn−k−t). �

As 1 ≤ k =≤ n− 1 and t ≤ n−k− t, we have t ≤ bn−k2 c. Also, the distance
signless Laplacian energy for k = n − 1 is given by Theorem 1, so we avoid
the case k = n− 1, and thus 1 ≤ t ≤ bn−k2 c makes sense.
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Now, we prove that among all connected graphs with given vertex connec-
tivity k, the graph Kk ∨ (Kt ∪ Kn−k−t) has the minimum distance signless
Laplacian energy.

Theorem 4 Let G ∈ Vkn be a connected graph of order n ≥ 4 with vertex
connectivity number k satisfying a2 ≤ k ≤ a1. Then

DSLE(G) ≥

{ √
D+ 2t(2n− k− t− 1) + k− 4tW(G)

n ,√
D+ 2n2 + n(4t− 2k− 6) − 4kt− 4t2 + 5k+ 4− 4(n−k−1)W(G)

n ,

according as k < n(t+1)
2t − t or k ≥ n(t+1)

2t − t, where

ai =
n2(10t+1)−n3−n(10t2+4t)+8t3±

√
n4−n3(12t+2)+n2(40t2+12t+1)+n(8t3−36t2)+4t4

4(nt−2t2)
and

D = k2 + 16nt − 16kt − 16t2. Equality occurs in each of these inequalities if
and only if G ∼= Kk ∨ (Kt ∪ Kn−k−t) with 1 ≤ t ≤ bn−k2 c.

Proof. Let G be a connected graph of order n with vertex connectivity k,
2 ≤ k ≤ n − 2. Then, by Lemma 3, for each G ∈ Vkn, the spectral parameter
B
Q
i (G) has the minimum possible value for the graph Kk∨ (Kt∪Kn−k−t). That

is, for all G ∈ Vkn, we have BQi (G) ≥ B
Q
i (Kk ∨ (Kt ∪ Kn−t−k)). With this, from

the definition of distance signless Laplacian energy, it follows that

DSLE(G) = 2

(
Bσ ′ (G) −

2σ
′
W(G)

n

)
= 2 max

1≤j≤n

(
j∑
i=1

ρ
Q
i (G) −

2jW(G)

n

)

≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (Kk ∨ (Kt ∪ Kn−t−k)) −

2jW(G)

n

)
. (6)

By Corollary 1, the distance signless Laplacian spectrum of the graph Kk ∨
(Kt ∪ Kn−t−k) is{
4n−k−4±

√
k2+16nt−16kt−16t2

2 , (2n− k− t− 2)[t−1], (n+ t− 2)[n−k−t−1], (n− 2)k
}

.

Let σ
′

be the number of distance signless Laplacian eigenvalues of Kk ∨

(Kt ∪ Kn−t−k) which are greater than or equal to that 2W(Kk∨(Kt∪Kn−t−k))
n =

n2−n+2nt−2t2−2kt
n . Clearly, 4n−k−4+

√
k2+16nt−16kt−16t2

2 is the distance signless
Laplacian spectral radius of the graph Kk∨(Kt∪Kn−t−k) and is always greater

than 2W(Kk∨(Kt∪Kn−t−k))
n . Now, for the eigenvalue 2n− k− t− 2, we have

2n− k− t− 2 ≥ 2W(Kk ∨ (Kt ∪ Kn−t−k))
n

=
n2 − n+ 2nt− 2t2 − 2kt

n
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which implies that

2t2 − (3n− 2k)t+ (n2 − n− kn) ≥ 0. (7)

The roots of the polynomial g1(t) = 2t
2 − (3n− 2k)t+ (n2 − n− kn) = 0 are

r1 =
3n− 2k+

√
(n− 2k)2 + 8n

2
and r2 =

3n− 2k−
√
(n− 2k)2 + 8n

2
.

This shows that g1(t) ≥ 0, for all t ≤ r2 and t ≥ r1. Since,

t =
n− k

2
<
3n− 2k−

√
(n− 2k)2 + 8n

2
= r2

gives k ≤ n−2, which is the maximum value for connectivity. Thus, g1(t) ≥ 0,
for all t ≤ n−k

2 . For the eigenvalue n+ t− 2, we have

n+ t− 2 ≥ 2W(Kk ∨ (Kt ∪ Kn−t−k))
n

=
n2 − n+ 2nt− 2t2 − 2kt

n

which implies that k ≥ n(t+1)
2t − t. This shows that

n+ t− 2 ≥ 2W(Kk ∨ (Kt ∪ Kn−t−k))
n

,

for all k ≥ n(t+1)
2t − t and

n+ t− 2 <
2W(Kk ∨ (Kt ∪ Kn−t−k))

n
,

for all k < n(t+1)
2t − t. For the second smallest distance signless Laplacian

eigenvalue
4n− k− 4−

√
k2 + 16nt− 16kt− 16t2

2
,

we have

4n− k− 4+
√
k2 + 16nt− 16kt− 16t2

2
≥ 2W(Kk ∨ (Kt ∪ Kn−t−k))

n

=
n2 − n+ 2nt− 2t2 − 2kt

n

implying that

f(k) = k2(16t2 − 8nt) + k(4n2 − 4n3 − 16nt+ 40n2t− 40nt2 + 32t3)

− 8n3 + 4n4 + 4n2 + 16n2t− 32n3t− 16nt2 + 48n2t2 − 32nt3 + 16t4

≥ 0.
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which in turn implies that

4n− k− 4−
√
k2 + 16nt− 16kt− 16t2

2
<
2W(Kk ∨ (Kt ∪ Kn−t−k))

n

for a2 < k < a1, where

ai =
n2(10t+1)−n3−n(10t2+4t)+8t3±

√
n4−n3(12t+2)+n2(40t2+12t+1)+n(8t3−36t2)+4t4

4(nt−2t2)
,

i = 1, 2, are the zeros of f(k). From these calculations it follows that, if k <
n(t+1)
2t − t, then σ

′
= t, and if k ≥ n(t+1)

2t − t, then σ
′
= n − k − 1. Therefore,

for k < n(t+1)
2t − t, it follows from Inequality (6) that

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (Kk ∨ (Kt ∪ Kn−t−k)) −

2jW(G)

n

)

≥ 2
( t∑
i=1

ρ
Q
i (Kk ∨ (Kt ∪ Kn−t−k)) −

2tW(G)

n

)

= 2

(
4n− k− 4+

√
k2 + 16nt− 16kt− 16t2

2

+ (t− 1)(2n− k− t− 2) −
2tW(G)

n

)
=
√
k2 + 16nt− 16kt− 16t2 + 2t(2n− k− t− 1) + k−

4tW(G)

n
.

If k ≥ n(t+1)
2t − t, from (6), we have

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (Kk ∨ (Kt ∪ Kn−t−k)) −

2jW(G)

n

)

≥ 2

(
n−k−1∑
i=1

ρ
Q
i (Kk ∨ (Kt ∪ Kn−t−k)) −

2(n− k− 1)W(G)

n

)

= 2

(
4n− k− 4+

√
D

2
+(t− 1)(2n− k− t− 2)+(n− k− t− 1)(n+ t− 2)

)

−
4(n− k− 1)W(G)

n
=
√
D+ 2n2 + n(4t− 2k− 6) − 4kt− 4t2 + 5k+ 4

−
4(n− k− 1)W(G)

n
,

where D = k2+ 16nt− 16kt− 16t2. By Lemmas 1 and 3, equality holds if and
only if G ∼= Kk ∨ (Kt ∪ Kn−t−k). This completes the proof. �
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The next result is the special case of G ∈ Vkn, for t = 1.

Proposition 3 Let G ∈ Vkn and t = 1. Then

DSLE(G) ≥ 2
(
4n− k− 4−

8W(G)

n

)
with equality if and only if G ∼= Kk ∨ (K1 ∪ Kn−1−k).

Proof. By letting t = 1 in Corollary 1, the distance signless Laplacian spec-
trum of Kk ∨ (K1 ∪ Kn−1−k) is given by{

4n− k− 4±
√
k2 − 16k+ 16n− 16

2
, (n− 1)[n−k−2], (n− 2)[k]

}
.

Clearly, the distance signless Laplacian eigenvalue 4n−k−4+
√
k2−16k+16n−16
2 is

the distance signless spectral radius and is always greater than

2W(Kk ∨ (K1 ∪ Kn−1−k))
n

=
n2 + n− 2k− 2

n
.

For the eigenvalue n− 1, we have

n− 1 <
2W(Kk ∨ (K1 ∪ Kn−1−k))

n

if n+ k > 1, which is always true as n ≥ 4 and k ≥ 2.
Lastly, for the eigenvalue 4n−k−4−

√
k2−16k+16n−16
2 , we see if

4n− k− 4−
√
k2 − 16k+ 16n− 16

2
<
2W(Kk ∨ (K1 ∪ Kn−1−k))

n
,

then after simplification, we have

h(k) = k2(8n−16)−k(44n3−4n3−56n+32)−4n4+40n3−68n2+48n−16 < 0.

The zeros of h(k) are n− 1 and 9n2−n3−8n+4
2(n−2) . This implies that

4n− k− 4−
√
k2 − 16k+ 16n− 16

2
≥ 2W(Kk ∨ (K1 ∪ Kn−1−k))

n

for
9n2 − n3 − 8n+ 4

2(n− 2)
≤ k ≤ n− 1.
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Thus, from (6), we have

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (Kk ∨ (K1 ∪ Kn−1−k)) −

2jW(G)

n

)

≥ 2

(
2∑
i=1

ρ
Q
i (Kk ∨ (K1 ∪ Kn−1−k)) −

2jW(G)

n

)

= 2

(
4n− k− 4−

4W(G)

n

)
.

Clearly, equality occurs by Lemma 1. �

For G ∈ Vkn, with k = t = 1, we have the following observation.

Corollary 2 Let G ∈ V1n. Then, for t = 1, we have

DSLE(G) ≥ 2
(
4n− k− 4−

8W(G)

n

)
with equality if and only if G ∼= K1 ∨ (K1 ∪ Kn−2).

Proof. From Corollary 1, the distance signless Laplacian spectrum of K1 ∨
(K1 ∪ Kn−2) is given by{

4n− 5±
√
16n− 31

2
, (n− 1)[n−3], n− 2

}
.

It can be easily seen that 4n−5+
√
16n−31
2 is the distance signless spectral radius

and is always greater than 2W(Kk∨(K1∪Kn−t−k))
n = n2+n−4

n . For the eigenvalue

n− 1, we have n− 1 < 2W(Kk∨(K1∪Kn−t−k))
n if n > 2, which is always true. Next

for the eigenvalue 4n−5−
√
16n−31
2 , we see that 4n−5−

√
16n−31
2 ≥ n2+n−4

n , which
after simplification gives n4 − 11n3 + 28n2 − 28n + 16 ≥ 0, which is true for
n ≥ 8. Thus, from (6), we have

DSLE(G) ≥ 2 max
1≤j≤n

(
j∑
i=1

ρ
Q
i (K1 ∨ (K1 ∪ Kn−2)) −

2jW(G)

n

)

≥ 2

(
2∑
i=1

ρ
Q
i (K1 ∨ (K1 ∪ Kn−2)) −

2jW(G)

n

)

= 2

(
4n− 5−

4W(G)

n

)
.

�
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Conclusions

We observe that the investigation of the graph invariant BQb (G) =

b∑
i=1

ρ
Q
i , 1 ≤

b ≤ n − 1, that is, the sum of the b ≥ 1 largest signless Laplacian eigen-
values is an interesting problem. By Lemma 1, Theorem 2, Lemma 3 and
Theorem 4, we see that CSn,α and Kk ∨ (Kt ∪ Kn−t−k) have minimum value
of BQb among the graphs with independence α and connectivity k. In a simi-

lar manner, it can be shown that Kn and Ka,n−a have minimum value of BQb
among all graphs and among all the bipartite graphs. In [1], upper bounds for
B
Q
b were discussed for graphs with diameter 1 and 2, split graphs, threshold

graphs and a conjecture was also put forward. It will be interesting to find
the lower bounds for BQb for an arbitrary graph G and characterization of the
extremal graphs. By using Lemma 1 and proceeding as in Theorems 2 and 4,
we can show that Ka,n−a has the minimum distance signless Laplacian energy
among all graphs bipartite graphs. A difficult problem is to investigate the
graphs with maximum distance signless Laplacian energy. In particular, it will
be interesting to study the graphs with maximum signless Laplacian energy
among bipartite graphs, split graphs, graphs with fixed connectivity, perfect
matching and other families. The graph invariant σ

′
, that is, the number of

distance signless Laplacian eigenvalues which are greater or equal to 2W(G)
n is

an interesting graph invariant. Several papers exist in the literature in this
direction and various open problems were asked in case of Laplacian [7] and
signless Laplaian matrices. The same is true for distance signless Laplacian
matrix and attractive problems of σ

′
can be investigated, like characterization

of graphs having σ
′
= 1, 2, n2 and σ

′
= n− 1.
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