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Abstract. In this paper we introduce and study a new class of sets,
namely γ−countably paracompact sets. We characterize γ−countably
paracompact sets and we study some of its basic properties. We obtain
that this class of sets is weaker than α−countably paracompact sets and
stronger than β−countably paracompact sets.

1 Introduction

In [3] C. E. Aull, presented and studied the concept of α−countably paracom-
pact and β−countably paracompact sets. In connection with the definition of
α−countably paracompact sets and β−countably paracompact sets we obtain
the definition of γ−countably paracompact sets. In section 2 of this work, we
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present γ−countably paracompact sets and then we investigate several char-
acterizations to this types of sets and study some of its basic properties. In
section 3 of this work, some of relationships between γ−countably paracom-
pact sets and other well-known sets are investigated. In particular, we show
that this class of sets lies between the classes of α−countably paracompact
sets and β−countably paracompact sets. Finally, in section 4, we introduce
a class of spaces namely locally γ−countably paracompact spaces character-
ized by γ−countably paracompact sets and study some of their fundamental
properties.

Throughout this work a space will always mean a topological space on which
no separation axiom is assumed unless explicitly stated. Let (X, τ) be a space
and A be a subset of X. The closure of A, interior of A and the relative topology
on A in (X, τ) will be denoted by cl(A), int(A) and τA, respectively. A space
(X, τ) is called countably paracompact [4] if every countable open cover of X
has an open locally finite refinement. Now we begin with some known notions
and definitions which will be used in this work.

Definition 1 [5] A subset A of a space (X, τ) is called generalized closed if
cl(A) ⊆ U whenever A ⊆ U and U is open in (X, τ).

Theorem 1 [4] If A is dense in X, then for every open U ⊆ X we have
cl(U) = cl(U ∩A).

Definition 2 Let A,B,C and Y be subsets of a space (X, τ). Then:

i. A cover U of Y is called an A−open cover of Y [1] if Y ⊆ ∪
U∈U

U and U

is open in (A, τA) for every U ∈ U .

ii. A collection U = {Uα : α ∈ ∆} is called A−locally finite[1] if U is locally
finite in (A, τA).

iii. If U and V are covers of Y, then V is called A−refinement of U [1] if
for every V ∈ V, V ⊆ A and there exists U ∈ U such that V ⊆ U. If for
every V ⊆ V, V is open in (A, τA) then V is called an A-open refinement
of U .

iv. Y is called α−countably paracompact of (X, τ) [3] if every countable open
cover of Y by members of τ has a locally finite open refinement by mem-
bers of τ.

v. Y is called β−countably paracompact of (X, τ) [3] if (Y, τY) is countably
paracompact as a subspace.
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The proof of the following proposition is obvious.

Proposition 1 Let Y be a subset of a topological space (X, τ). If a collection
U = {Uα : α ∈ I} is X−locally finite, then U is Y−locally finite.

The following example shows that the converse of the above proposition is
not true in general.

Example 1 Let X = R with the topology τ = {U : 0 /∈ U} ∪ {R}. Put Y =
Q∗ = Q− {0}. Then the collection {{y} : y ∈ Y} is Y−locally finite but it is not
X−locally finite.

In the following proposition, we shall show when the converse of the above
proposition is true.

Proposition 2 Let Y be a closed subset of a topological space (X, τ). If U =
{Uα : α ∈ I, Uα ⊆ Y} is a Y−locally finite collection of subsets of Y, then U is
X−locally finite.

Proof. Let U = {Uα : α ∈ I} be Y−locally finite such that Uα ⊆ Y for each
α ∈ I. If x ∈ X, then either x ∈ Y or x /∈ Y. If x ∈ Y, then there exists an
open set W in (Y, τY) such that x ∈W and W intersects at most finitely many
members of U . Now W =M∩Y for some M ∈ τ. As U is a collection of subsets
of Y, so M intersects at most finitely many members of U . Now if x /∈ Y, then
X− Y is open in (X, τ) containing x which intersects no member of U . �

Corollary 1 Let Y be a closed subset of a topological space (X, τ). The collec-
tion {Uα : α ∈ I, Uα ⊆ Y} is Y−locally finite iff U is X−locally finite.

2 γ−countably paracompact sets

In this section we shall present the concept of γ−countably paracompact sets.

Definition 3 Let A,B,C and Y be subsets of a space (X, τ). Then Y is called
ABC−countably paracompact set of (X, τ), if every countable A−open cover of
Y has a B−locally finite C−open refinement.

Note that a subset Y of a space (X, τ) is α−countably paracompact iff it
is XXX−countably paracompact and it is β−countably paracompact iff it is
YYY−countably paracompact.
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Definition 4 Let Y be a subset of a topological space (X, τ). Then Y is called
γ−countably paracompact if it is XXY−countably paracompact.

Example 2 Let X = R with the topology τ = {U : R−Q ⊆ U} ∪ {φ}. Then
Y = Q is γ−countably paracompact.

Proposition 3 Let Y be a subset of a topological space (X, τ). Then Y is
γ−countably paracompact iff for every countable X−open cover U ={Un : n ∈
N} of Y there exists an X−locally finite Y−open cover V ={Vn : n ∈ N} of Y
such that Vn ⊆ Un for n = 1, 2, ....

Proof. Let Y be a γ−countably paracompact set. If U = {Un : n ∈ N} is a
countable X−open cover of Y, then there exists an X−locally finite Y−open
refinement of U , say W. So for every W ∈ W choose a natural number
n(W) such that W ⊆ Un(W). Then define Vn = ∪

n∈N
{W : n(W) = n}. Hence

V ={Vn : n ∈ N} is open in Y and it is X−locally finite such that Vn ⊆ Un for
n = 1, 2, .... �

Proposition 4 Let Y be a subset of a topological space (X, τ). If Y is γ−count-
ably paracompact, then for every increasing countable X−open cover U ={Un :
n ∈ N} of Y there exists a Y−open cover V ={Vn : n ∈ N} of Y such that
clY(Vn) ⊆ Un for n = 1, 2, ....

Proof. Let U = {Un : n ∈ N} be an increasing countable X−open cover
of Y. Then, by Proposition 3, there exists an X−locally finite Y−open cover
V ={Vn : n ∈ N} of Y such that Vn ⊆ Un. To show that clY(Vn) ⊆ Un, set
Fn = Y − ∪

m>n
Vm. Then Fn is closed in Y such that Vn ⊆ Fn ⊆ ∪

m≤n
Vm ⊆ Un

and so clY(Vn) ⊆ Un. �

Proposition 5 Let Y be a subset of a topological space (X, τ) and suppose
that for every countable X−open cover U ={Un : n ∈ N} of Y there exists an
X−locally finite Y−open cover V ={Vn : n ∈ N} of Y such that Vn ⊆ Un for
n = 1, 2, ... If W1 ⊆W2 ⊆ ... is an increasing sequence of open sets in X such
that ∪

n∈N
Wn = Y, then there exists a sequence F1 ⊆ F2 ⊆ ... of closed subsets

of Y such that Fn ⊆Wn for n = 1, 2, ... and ∪
n∈N

intY(Fn) = Y .

Proof. Let W1 ⊆W2 ⊆ ... be an increasing sequence of X−open sets such that

∪
n∈N

Wn = Y. Then, there exists an X−locally finite Y−open cover V ={Vn :
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n ∈ N} of Y such that Vn ⊆Wn for all n. Now, define Fn = Y − ∪
j>n
Vj which is

closed in Y and for n ∈ N we have Fn ⊆ ∪
j≤n
Vj ⊆ ∪

j≤n
Wj = Wn. To show that

∪
n∈N

intY(Fn) = Y, it is enough to show that Y ⊆ ∪
n∈N

intY(Fn). Let y ∈ Y. Then

there exists an open O in (X, τ) such that y ∈ O and (O ∩ Y) ∩ ∪
m>n

Vm = φ

for some n ∈ N, so we have y ∈ O ∩ Y ⊆ Y− ∪
m>n

Vm = Fn. Hence y ∈
∪
n∈N

intY(Fn). �

Proposition 6 Let Y be a closed subset of a topological space (X, τ). Then
every countable X−open cover U ={Un : n ∈ N} of Y has an X−locally finite
Y−open cover V ={Vn : n ∈ N} such that Vn ⊆ Un for all n iff for every
increasing sequence W1 ⊆ W2 ⊆ ... of open sets in X such that Y = ∪

n∈N
Wn

there exists a sequence F1 ⊆ F2 ⊆ ... of closed subsets of Y such that Fn ⊆Wn

for n = 1, 2, ..., moreover ∪
n∈N

intY(Fn) = Y.

Proof. We show the sufficiency part. Let U ={Un : n ∈ N} be a countable
X−open cover of Y. SetWn = ∪

j≤n
Uj. ThenW1 ⊆W2 ⊆ ..., such that ∪

n∈N
Wn=

Y. So there exists F1 ⊆ F2 ⊆ ... of closed subsets of Y such that Fn ⊆ Wn for
n = 1, 2, ... and ∪

n∈N
intY(Fn) = Y. Define Vn = (Un ∩ Y) − ∪

j<n
Fj. Then Vn is

open in Y and Vn ⊆ Un for n = 1, 2, .... To show that ∪
n∈N

Vn = Y, let y ∈ Y and

j be the first index such that y ∈ (Uj ∩ Y). Therefore, y ∈ Vj. To complete the
proof we show that V ={Vn : n ∈ N} is Y−locally finite. Let y ∈ Y. Then there
exists j such that x ∈ intY(Fj) and intY(Fj) ∩ Vn = φ for n > j. Therefore,
V is Y−locally finite and so by Proposition 2, V ={Vn : n ∈ N} is X−locally
finite. �

From above discussion we can get the following Theorem.

Theorem 2 Let Y be a closed subset of a topological space (X, τ). Then the
following are equivalent:

i. Y is γ−countably paracompact.

ii. For every countable X−open cover U ={Un : n ∈ N} of Y, there exists an
X−locally finite Y−open cover V = {Vn : n ∈ N} of Y such Vn ⊆ Un for
all n.



388 A. Rawshdeh, H. H. Al-Jarrah, K. Y. Al- Zoubi, W. A. Shatanawi

iii. For every increasing sequence W1 ⊆ W2 ⊆ ... of open sets in X such
that ∪

n∈N
Wn = Y, there exists F1 ⊆ F2, ... of closed subsets of Y such that

Fn ⊆Wn for n = 1, 2, ..., moreover ∪
n∈N

intY(Fn) = Y.

iv. For every increasing countable X−open cover U ={Un : n ∈ N} of Y, there
exists a Y−open cover V ={Vn : n ∈ N} of Y such that clY(Vn) ⊆ Un for
n = 1, 2, ....

v. For every decreasing X−closed collection F ={Fn : n ∈ N} such that
( ∩
n∈N

Fn) ∩ Y = φ, there exists a Y−open cover O ={On : n ∈ N} of Y

such that clY(On) ∩ Fn = φ for n = 1, 2, ....

Proof. Only we prove (iv→ i). Let U ={Un : n ∈ N} be a countable X−open
cover of Y. Define Wn = ∪

j≤n
Uj. Then the collection {Wn : n ∈ N} is an

increasing countable X−open cover of Y, by (iv), there exists a Y−open cover
{Vn : n ∈ N} of Y such that clY(Vn) ⊆Wn. Define On = (Un∩Y)− ∪

j<n
clY(Vj).

Then {On : n ∈ N} is an X−locally finite Y−open refinement of U . �

To identify more characterization of γ−countably paracompact we need the
following theorem.

Theorem 3 Let Y be a γ−countably paracompact set in a space (X, τ). If F
is a generalized closed subset of (X, τ) such that F ⊆ Y, then F is γ−countably
paracompact set in (X, τ).

Proof. Let U ={Un : n ∈ N} be a countable X−open cover of F. Then F ⊆ ∪
n∈N

U =U. Since F is a generalized closed subset in (X, τ) and U is open in X, then
cl(F) ⊆ U. Therefore, the collection (X − cl(F)) ∪ {Un : n ∈ N} is an X−open
cover of the γ−countably paracompact set Y and so it has an X−locally finite
open refinement, say V∗. Put V = {V ∈ V∗ : ∃ UV ∈ U such that V ⊆ UV }.
Finally, defineW = {V ∩F : V ∈ V}. Then, it is clear thatW is X−locally finite
and it is F−open refinement of U since for each V ∈ V there exists an open
OV in (X, τ) such that V = OV ∩ Y and so V ∩ F = OV ∩ Y ∩ F = OV ∩ F, which
is open in F. �

Corollary 2 If F ⊆ Y ⊆ X such that Y is a γ−countably paracompact set and
F is a closed set in (X, τ). Then F is γ−countably paracompact set in (X, τ).

Corollary 3 A closed subset of a countably paracompact space is γ−countably
paracompact set.
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Let {(Xα, τα) : α ∈ I} be a collection of topological spaces such that Xα ∩
Xβ = φ for each α 6= β. Let X = ∪

α∈I
Xα be topologized by τs = {G ⊆ X :

G ∩ Xα ∈ τα for each α ∈ I}. Then (X, τs) is called the sum of the spaces
{(Xα, τα) : α ∈ ∆} and we write X = ⊕

α∈I
Xα.

Theorem 4 Let Aα ⊆ X for all α ∈ I and A =
⋃
α∈I
Aα. Then A is γ−countable

paracompact set in X iff Aα is γ−countable paracompact set in Xα for all α ∈ I.

Proof. Let α ∈ I and U be a countable Xα−open cover of Aα. Then the col-
lection {U : U ∈ U }∪ ( ∪

β6=α
Xβ) is a countable X−open cover of the γ−countable

paracompact set A and so it has an X−locally finite A−open refinement, say
V. Put VU = {V ∩ Aα : V ∈ V and V ⊆ U for some U ∈ U }. It is clear that
VU is Xα− locally finite Aα−open collection such that VU < U . To show that
VU is a cover for Aα. Let xα ∈ Aα, then there exists V ∈ V such that xα ∈ V.
Since xα /∈ Xβ for all β 6= α, then V ⊆ U for some U ∈ U and xα ∈ V ∩ Aα.
Conversely, Let U be a countable X−open cover of A. For all α ∈ I, the collec-
tion Uα = {U ∩ Xα : U ∈ U } is a countable Xα−open cover of the γ−countable
paracompact set Aα in Xα, so it has an Xα−locally finite Aα−open refine-
ment, say Wα. For all W ∈ Wα, there exists an open set Hα(W) in Xα such
that W = Aα ∩ Hα(W) = A ∩ Hα(W). Put H = {W : W ∈ Wα, α ∈ I}. Then, it
is clear that H is an A−open refinement of U . To show that H is X−locally
finite, let x ∈ X. Then there exists α◦ ∈ I such that x ∈ Xα◦ and x /∈ Xβ for
all β 6= α. Since Wα◦ is Xα◦−locally finite, then there exists an open set K in
Xα◦(and so in X) such that K is intersect at most finitely many numbers of
Wα◦ and K∩W = φ for all W ∈ Wα, α 6= α◦. Therefore, H is X−locally finite
and so A is γ−countable paracompact set in X. �

Theorem 5 Let f : X→ Y be a perfect onto function and let B be a γ−countably
paracompact set in the space (Y, σ). Then f−1(B) is γ−countably paracompact
set in (X, τ).

Proof. Let U ={Un : n ∈ N} be a countable X−open cover of f−1(B). For each
y ∈ B, U is an X−open cover of the compact set f−1(y), so there exists a

finite subset {U1, U2, ... Un} of U such that f−1(y) ⊆
n
∪
i=1
Ui = Uy and Uy is

open in (X, τ). Put Vy = Y − f(X − Uy). Since f is closed then the collection
V = {Vy : y ∈ B} is a countable Y−open cover of B, and so it has a Y−locally
finite B−open refinement, say W = {Wj : j = 1, 2, ...}. Since f is continuous,
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the family f−1(W) = {f−1(Wj) : j = 1, 2, ...} is an X−locally finite f−1(B)−open
cover of f−1(B) such that for each j = 1, 2, ... f−1(Wj) ⊆ Uyj for some yj ∈ B.

Finally, the collection {f−1(Wj) ∩ Ui : j = 1, 2, ... , i ∈ iyj } is an X−locally

finite f−1(B)−open refinement of U . Therefore, f−1(B) is γ−countably para-
compact. �

An E1 space [2] is a topological space such that every point is the intersection
of a countable number of closed neighborhoods. Note that in [2] show that
every E1 space is T2.

Theorem 6 Every γ−countable paracompact subset of E1 space is closed.

Proof. Let Y be a γ−countably paracompact subset of an E1 space (X, τ) and
let x /∈ Y. Let {Cn : n ∈ N} be a countable family of closed neighborhoods
of x such that {x} = ∩Cn. Now, {X − Cn : n ∈ N} is a countable X−open
cover of Y and x /∈ cl(X − Cn) for any n. Hence there is an X−locally finite
Y−open refinement of {X − Cn : n ∈ N}, say W. Put H = ∪{W : W ∈ W},
then cl(H) = ∪{cl(W) :W ∈ W}. Finally, put H∗ = X − cl(H). So H∗ is open
in (X, τ) such that x ∈ H∗ and H∗ ∩ Y = φ. Therefore, x /∈ cl(Y) and Y is
closed. �

3 The relationship between α−countably paracom-
pact, β−countably paracompact and γ−countably
paracompact sets

In this section we study the relationship between α−countably paracompact,
β−countably paracompact and γ−countably paracompact sets.

It follows from the definition that every α−countably paracompact set is
γ−countably paracompact and every γ−countably paracompact set is β−count-
ably paracompact. The following two examples show that the converse are not
true in general.

Example 3 Let X = R with the topology τ = {U : R−Q ⊆ U} ∪ {φ}. Put
Y = Q. Then Y is γ−countably paracompact, note that if U is a countably
X−open cover of Y, then the collection {{y} : y ∈ Y} is an X−locally finite
Y−open refinement of U . Now, to show Y is not α−countably paracompact, let
U = {(R−Q)∪ {y} : y ∈ Y}. Then U is a countable X−open cover of Y. If V is
an X−locally finite X−open refinement of U , then for every y ∈ Y there exists
y ∈ V ∈ V such that y ∈ V ⊆ (R−Q) ∪ {y}. Thus, V = (R−Q) ∪ {y} which
means V is not X−locally finite.
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Example 4 Let X = R with the topology τ = {U : 0 /∈ U} ∪ {R}. Then Y =
Q∗ = Q− {0} is β−countably paracompact, since τY = τdis. On the other hand,
Y is not γ−countably paracompact, since U = {{y} : y ∈ Y} is a countable
X−open cover of Y by members of τ and it is not X−locally finite.

So what are the additional conditions that make the reversal of previous
relationships true? This is what will be shown in the following Theorem.

Theorem 7 [3] Let Y be a closed β−countably paracompact set in a normal
space. Then Y is α−countably paracompact

Theorem 8 Let Y be a γ−countably paracompact set in a space (X, τ). Then
Y is α−countably paracompact if one of the following holds:

i. Y is closed in the normal space (X, τ).

ii. Y is open set in the space (X, τ).

Proof. The proof of (ii) is clear. The proof of (i) follows by Theorem 7 and
from the fact that every γ−countably paracompact set is β−countably para-
compact. �

Theorem 9 Let Y be a closed β−countably paracompact set in a space (X, τ).
Then Y is γ−countably paracompact.

Proof. Let Y be a closed β−countably paracompact subset of (X, τ) and let
U be a countable X−open cover of Y. Then the collectionW = {U∩Y : U ∈ U }
is a countable Y−open cover of Y and so it has a Y−locally finite Y−open
refinement say V. Since Y is closed set, by Proposition 2, V is X−locally finite.
Also as for every V ∈ V, there exists U ∈ U such that V ⊆ U ∩ Y ⊆ U ∈
U , so V is X−locally finite Y−open refinement of U . Hence Y is γ−countably
paracompact. �

Corollary 4 Let Y be closed in a normal space (X, τ). The following are equiv-
alent:

i. Y is γ−countably paracompact.

ii. Y is α−countably paracompact.

iii. Y is β−countably paracompact.
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4 Locally γ−countably paracompact spaces

In this section we introduce locally γ−countably paracompact spaces and we
study their properties.

Definition 5 A space (X, τ) is called locally γ− countably paracompact if
each point x ∈ X has an open neighborhood U in (X, τ) such that cl(U) is
γ−countably paracompact in (X, τ).

The following result follow immediately from Theorem 9.

Proposition 7 Let (X, τ) be a space. Then (X, τ) is locally γ− countably para-
compact iff for all x ∈ X there exists an open neighborhood U in (X, τ) such
that cl(U) is β−countably paracompact.

Theorem 10 Every closed subspace of a locally γ−countably paracompact
space is locally γ−countably paracompact.

Proof. Let F be a closed subspace of a locally γ−countably paracompact space
(X, τ). For every x ∈ F, there exists an open neighborhood U of the point x
in the space (X, τ) such that cl(U) is γ−countably paracompact space. The
intersection F ∩ U is an open neighborhood of the point x in the subspace F
and, by Corollary 3, clF(F ∩ U) = cl(F ∩ U) ∩ F = cl(F ∩ U) is γ−countably
paracompact, being a closed subset of the γ−countably paracompact set cl(U),
by Theorem 3. �

Theorem 11 Every locally γ−countably paracompact E1 space is T3.

Proof. Let F be a closed subset of a locally γ−countably paracompact space
(X, τ) and x /∈ F. Let cl(Px) be the γ−countably paracompact such that Px
is neighborhood of x and let {Cn : n ∈ N} be a countable family of closed
neighborhood of x such that {x} = ∩Cn. Put H = cl(Px)∩F. Then, by Theorem
3, H is γ−countably paracompact set such that x /∈ H.Thus the collection
{X−Cn : n ∈ N} is a countable X−open cover of H and so it has an X−locally
finite H−open refinement, say U = {Uα : α ∈ ∆}. Since H is closed in X, then
V = (∪Uα) ∪ (X− cl(Px)) is an open set containing F such that x /∈ cl(V).
Hence (X, τ) is regular. �

Example 5 Let the Hausdroff neighborhoods of a point p in the Euclidean
plane consist of open circles with p at the center excluding the points on the
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vertical diameters except p itself. Since the resulting topology is a strengthening
of the usual topology of the Euclidean plane it is an E1 topology ([2], Example
2). Since this is a T2space which is not T3, it can not be locally γ−countably
paracompact.

Lemma 1 Let Y be an α−countably paracompact Lindelöf subset of a regular
locally γ−countably paracomact space X. If W is an open set in (X, τ) such
that Y ⊆ W, then there is an X−locally finite collection {Fn : n ∈ N} of closed
γ−countably paracompact sets such that Y ⊆ ∪

n∈N
int(Fn) ⊆ ∪

n∈N
Fn ⊆W.

Proof. By the regularity of the space X, then for every x ∈ Y, there exists an
open set Ux in X such that x ∈ Ux ⊆ cl(Ux) ⊆ W. On the other hand, X is
locally γ−countably paracompact space and so there exists an open set Hx in
X such that cl(Hx) is γ−countably paracompact set. Put Vx = cl(Hx)∩cl(Ux).
Then, by Theorem 3, Vx is a closed γ−countably paracompact set such that
x ∈ int(Vx) ⊆W. Therefore, the collection V = {int(Vx) : x ∈ Y} is an X−open
cover of the Lindelöf set Y, so it has a countable subcover, say V∗. Since Y
is γ−countably paracompact set, then V∗ has an X−locally finite X−open
refinement H which cover Y. Now, for every H ∈ H, cl(H) is a closed set
in X such that cl(H) ⊆ Vx for some x ∈ Y and so cl(H), by Theorem 3, is
γ−countably paracompact set. Thus, the collection {cl(H) : H ∈ H} is the
required collection. �

Theorem 12 Let f : (X, τ) → (Y, σ) be a perfect function from a space (X, τ)
onto a locally γ− countably paracompact space (Y, σ). Then (X, τ) is locally γ−
countably paracompact.

Proof. Let x ∈ X. Then there exists an open set V in (Y, σ) such that
f(x) ∈ V and cl(V) is γ−countably paracompact in (Y, σ). Now, by Theorem
5, f−1(cl(V)) is γ−countably paracompact subset of X. Since cl(f−1(V)) ⊆
f−1(cl(V)), then by Theorem 3, cl(f−1(V)) is γ−countably paracompact sub-
set of X. �

Corollary 5 The product of a compact space (X, τ) and a locally γ−para-
compact space (Y, σ) is locally γ−countably paracompact.
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