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Abstract. We study the notion of expansive homeomorphisms on uni-
form spaces. It is shown that if there exists a topologically expansive
homeomorphism on a uniform space, then the space is always a Haus-
dorff space and hence a regular space. Further, we characterize orbit
expansive homeomorphisms in terms of topologically expansive home-
omorphisms and conclude that if there exist a topologically expansive
homeomorphism on a compact uniform space then the space is always
metrizable.

1 Introduction

A homeomorphism h : X — X defined on metric space X is said to be an ex-
pansive homeomorphism provided there exists a real number ¢ > 0 such that
whenever x,y € X with x # y then there exists an integer n (depending on
x,Y) satisfying d(h™(x), h™(y)) > c. Constant c is called an expansive constant
for h. In 1950, Utz, [18], introduced the concept of expansive homeomorphisms
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with the name unstable homeomorphisms. The examples discussed in this pa-
per on compact spaces were sub dynamics of shift maps, thus one can say that
the theory of expansive homeomorphisms started based on symbolic dynamics
but it quickly developed by itself.

Much attention has been paid to the existence / non—existence of expansive
homeomorphisms on given spaces. Each compact metric space that admits
an expansive homeomorphism is finite-dimensional [13]. The spaces admitting
expansive homeomorphisms include the Cantor set, the real line/half-line, all
open n—cells, n > 2 [12]. On the other hand, spaces not admitting expansive
homeomorphisms includes any Peano continuum in the plane [9], the 2-sphere
the projective plane and the Klein bottle [8].

Another important aspects of expansive homeomorphism is the study of its
various generalizations and variations in different setting. The very first of
such variation was given by Schwartzman, [16], in 1952 in terms of positively
expansive maps, wherein the points gets separated by non—negative iterates
of the continuous map. In 1970, Reddy, [14], studied point-wise expansive
maps whereas h—expansivity was studied by R. Bowen, [4]. Kato defined and
studied the notion of continuum-wise expansive homeomorphism [10]. Shah
studied notion of positive expansivity of maps on metric G—spaces [17] whereas
Barzanouni studied finite expansive homeomorphisms [2]. Tarun Das et al. [7]
used the notion of expansive homeomorphism on topological space to prove
the Spectral Decomposition Theorem on non—compact spaces. Achigar et al.
studied the notion of orbit expansivity on non-Hausdorff space [1]. Authors
in [3] studied expansivity for group actions. In this paper we study expansive
homeomorphisms on uniform spaces.

In Section 2 we discuss preliminaries regarding uniform spaces and expan-
sive homeomorphisms on metric /topological space required for the content of
the paper. The notion of expansive homeomorphisms on topological spaces was
first studied in [7] whereas on uniform spaces was first studied in [6] in the form
of positively topological expansive maps. In Section 3 of this paper we define
and study expansive homeomorphism on uniform spaces. Through examples it
is justified that topologically expansive homeomorphism is weaker than metric
expansive homeomorphism whereas stronger than expansive homeomorphism
defined on topological space. Further, we show that if a uniform space admits
a topologically expansive homeomorphism then the space is always a Haus-
dorff space and hence a regular space. The notion of orbit expansivity was
first introduced in [1]. A characterization of orbit expansive homeomorphism
on compact uniform spaces is obtained in terms of topologically expansive
homeomorphism. As a consequence of this we conclude that if there is a
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topologically expansive homeomorphism on a compact uniform space then
the space is always metrizable.

2 Preliminaries

In this Section we discuss basics required for the content of the paper.

2.1 Uniform spaces

Uniform spaces were introduced by A. Weil [19] as a generalization of metric
spaces and topological groups. Recall, in a uniform space X, the closeness of a
pair of points is not measured by a real number, like in a metric space, but by
the fact that this pair of points belong or does not belong to certain subsets
of the cartesian product, X x X. These subsets are called the entourages of the
uniform structure.

Let X be a non-empty set. A relation on X is a subset of X x X. If U is a
relation, then the inverse of U is denoted by U~ and is a relation given by

U™ ={(y,%) : (x,y) € W.

A relation U is said to be symmetric if U =U"". Note that UNU™" is always
a symmetric set. If U and V are relations, then the composite of U and V is
denoted by U oV and is given by

UoV ={(x,z) € Xx X:3y € X such that (x,y) € V& (y,z) € U}.

The set, denoted by Ay, given by Ax = {(x,x) : x € X} is called the identity
relation or the diagonal of X. For every subset A of X the set U[A] is a subset
of X and is given by U[A] ={y € X : (x,y) € U, for some x € A}. In case
if A = {x} then we denote it by U[x] instead of U[{x}]. We now recall the
definition of uniform space.

Definition 1 A uniform structure (or uniformity) on a set X is a non—empty
collection U of subsets of X x X satisfying the following properties:

IfUel, then Ax C U.

IfUel, then U €U.

IfUel, then VoV C U, for some V € U.
If U and V are elements of U, then UNV € U.
IfUeld andUCV CXxX, thenVeEU.
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The pair (X,U) (or simply X) is called as a uniform space.

Obviously every metric on a set X induces a uniform structure on X and
every uniform structure on a set X defines a topology on X. Further, if the
uniform structure comes from a metric, the associated topology coincides with
the topology obtained by the metric. Also, there may be several different uni-
formities on a set X. For instance, the largest uniformity on X is the collection
of all subsets of X x X which contains Ax whereas the smallest uniformity on X
contains only X x X. For more details on uniform spaces one can refer to [11].

Example 1 Consider R with usual metric d. For every € > 0, let

ug‘ = {(x,y) eR?: d(x,y) < e}
Then the collection
Z/ld:{EQRZ:USQE, forsomee>0}

is a uniformity on R. Further, let p be an another metric on R given by
p(x,y) =le*—eY], x,y €R. If for e >0,

U= {0 y) R ploy) < e}
then the collection
U—{ECRZ'U"CEf }
o= C Ul C or some € > 0

s also a uniformity on R. Note that these two uniformities are distinct as the
set {(x,y) : Ix =yl < 1} is in Ug but it is not in U,.

Let X be a uniform space with uniformity /. Then, the natural topology,
Ty, on X is the family of all subsets T of X such that for every x in T, there is
U € U for which U[x] C T. Therefore, for each U € U, U[x] is a neighborhood
of x. Further, the interior of a subset A of X consists of all those points y of
X such that U[y] C A, for some U € U. For the proof of this, one can refer
to [11, Theorem 4, P.178]. With the product topology on X x X, it follows
that every member of I/ is a neighborhood of Ax in X x X. However, converse
need not be true in general. For instance, in Example 1 every element of Uy

is a neighborhood of Ag in R? but {(x,y) x—yl < %Iyl} is a neighborhood

of Agr but not a member of Uy. Also, it is known that if X is a compact
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uniform space, then U consists of all the neighborhoods of the diagonal Ax [11].
Therefore for compact Hausdorff spaces the topology generated by different
uniformities is unique and hence the only uniformity on X in this case is the
natural uniformity. Proof of the following Lemma can be found in [11].

Lemma 1 Let X be a uniform space with uniformity U. Then the following
are equivalent:

1. X is a Ti—space.
2. X is a Hausdorff space.
3. MU:Uelu}=Ax.

4. X is a regular space.

2.2 Various kind of expansivity on metric/topological spaces

Let X be a metric space with metric d and let f : X — X be a homeomorphism.
For x € X and a positive real number c, set

le(x, f) ={y : d(f"(x), " (y)) < ¢, ¥n € Z}.

Ie(x,f) is known as the dynamical ball of x of size c. Note that for each c,
Ie(x, ) is always non—empty. We recall the definition expansive homeomor-
phism defined by Utz [18].

Definition 2 Let X be a metric space with metric d and let f: X — X be a
homeomorphism. Then f is said to be a metric expansive homeomorphism, if
there exists ¢ > 0 such that T.(x,f) = {x}, for all x € X. Constant c is known
as an expansive constant for f.

In the following we give some known example of metric expansive homeo-
morphisms.

Example 2 1. Consider the set of real numbers R with usual metric d.
For « € R\ {0,1,—1}, define fy : R — R by fy(x) = ax. Then fy is a
metric expansive homeomorphism with any positive real number ¢ as an
expansive constant.

2. Consider X = {:l:%,:t (1 — %)} with the metric d given by d(x,y) =
Ix —yl|. Let f: X — X be a map which fixres 0,1,—1 and takes any
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element x € X\ {0,1,—1} to its immediate right element. Then f is
a metric expansive homeomorphism with expansive constant c, where
0O<c< i

The notion of metric expansive homeomorphism is independent of the choice
of metric if the space is compact but not the expansive constant. If the space
is non—compact, then the notion of metric expansivity depends on the choice
of metric even if the topology induced by different metrics are equivalent. For
instance, see Example 4. Different variants and generalizations of expansivity
are studied. We study few of them in this section.

Let (X,7T) be a topological space. For a subset A C X and a cover U of X
we write A < U if there exists C € U such that A C C. If V is a family of
subsets of X, then V < U/ means that for each A € V, A < Y. If, in addition
V is a cover of X, then V is said to be refinement of U. Join of two covers U
and V is a cover given by U AV ={UNV|U e U,V € V}. Every open cover U
of cardinality k can be refined by an open cover V = /\1-;1 U such that V < U
and V AV = V. The notion for orbit expansivity for homeomorphisms was
first defined in [1]. We recall the definition.

Definition 3 Let f : X — X be a homeomorphism defined on a topological
space X. Then f is said to be an orbit expansive homeomorphism if there is a
finite open cover U of X such that if for each n € Z, the set {f™(x), f™(y)} < U,
then x =y. The cover U of X is called an orbit expansive covering of f.

It can be observed that if f is an orbit expansive homeomorphism on a
compact metric space and U is an orbit expansive covering of f, then U/ is a
generator for f and therefore f is an expansive homeomorphism. Conversely,
every expansive homeomorphism on a compact metric space has a generator
U, which is also an orbit expansive covering of f. Hence on compact metric
space expansivity is equivalent to orbit expansivity. Another generalization of
expansivity was defined and studied in [7]. We recall the definition.

Definition 4 Let X be a topological space. Then a homeomorphism f: X — X
1s said to be an expansive homeomorphism if there exists a closed neighborhood
N of Ax such that for any two distinct x,y € X, there is n € Z satisfying
(f™"(x), f™(y)) ¢ N. Neighborhood N is called an expansive neighborhood for f.

Note that the term used in [7] is topologically expansive but we used the
term expansive in above definition to differentiate it from our definition of
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expansivity on uniform spaces. Obviously, metric expansivity implies expan-
sivity. Through examples it was justified in [7], that in general expansivity
need not imply metric expansivity. Also, similar to proof of [15, Theorem 4],
one can show that on a locally compact metric space X, if f is expansive with
expansive neighborhood N, then for every € > 0 we can construct a metric
d compatible with the topology of X such that f is a metric expansive with
expansive constant € > 0.

3 Topologically expansive homeomorphism

In this section we study expansive homeomorphisms on uniform spaces. The
notion was first defined in [6]. Let X be an uniform space with uniformity U
and f: X — X be a homeomorphism. For an entourage D € U let

rD(X) f) :{U : (fn(X)>fn(1J)) € D) Vn e Z}

Definition 5 Let X be an uniform space with uniformity U. A homeomor-
phism f : X — X is said to be a topologically expansive homeomorphism, if
there exists an entourage A € U, such that for every x € X,

rA (Xa f) = {X}

Entourage A s called an expansive entourage.

Since every entourage A € U contains some closed neighborhood F of Ay,
it follows that every topologically expansive homeomorphism is an expansive
homeomorphism. But in general converse need not be true as we can observe
from the following Example:

Example 3 Consider R with the uniformity Uy as given in FExample 1. Then
the translation T defined on R by T(x) = x+1 is an expansive homeomorphism
with an expansive neighbourhood N = {(x,y) € R? : [x —y| < e *}. Note that
N € U. In fact, it is easy to observe that T is not topologically expansive.

Example 4 Consider R with uniformities U, and Uy as given in Example 1.
Define a homeomorphism f: R — R by f(x) =x+ In2. Then it can be easily
verified that f is topologically expansive for a closed entourage A € U, but not
for any closed entourage D € Uy. Further, observe that f is metric expansivity
with respect to metric p but is not metric expansive with respect to metric d.
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From Example 3, it can be observed that topologically expansivity is stronger
than expansivity whereas from Example 4, it can be concluded that it is weaker
than metric expansivity. Also, from Example 4, it can be concluded that the
notion of topological expansivity depends on the choice of uniformity on the
space and the notion of metric expansivity depends on the metric of the space.
In spite of expansivity, in the following Proposition we show that if a uniform
space admits a topologically expansive homeomorphism, the space is always
Hausdorff space.

Proposition 1 Let X be a uniform space with uniformityU and let f : X — X
be a topologically expansive homeomorphism. Then X is always a Hausdorff
space.

Proof. Let D be an expansive entourage of f. Since U is a uniformity on X
there exists a symmetric set E € U, such that

EoE C D.

Given two distinct points x and y of X, by topological expansivity of f, there
exists n in Z, such that (f™(x),f"(y)) ¢ D. But this implies

(f*(x),f*(y)) ¢ Eo E.

Let U = f ™ (E[f*(x)]) and V = f (E[f"(y)]). Then int(U) and int(V) are
open subsets of X with x € int(U) and y € int(V). Further, UNV = 0.
For, if t € U NV, then f*(t) € E[f*(x)] N E[f"(y)]. But this implies that
(f"(x),f*(y)) € EoE, which is a contradiction. Hence X is a Hausdorff space. [J

Following Corollary is a consequence of just Proposition 1 and Lemma 1.

Corollary 1 If uniform space X admits a topological expansive homeomor-
phism then X is a regular space.

Recall, for a compact Hausdorff space X, all uniformities generates a same
topology on the space and therefore it is sufficient to work with the natural
uniformity on X. Hence as consequence of Proposition 1, we can conclude the
following:

Corollary 2 Topological expansivity on a compact Hausdorff uniform space
does not depend on choice of uniformity on the space.
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Since every compact metric space admits a unique uniform structure, it fol-
lows that on compact metric space: metric expansivity, topological expansivity
and expansivity are equivalent.

Let X be a uniform space with uniformity U. A cover A of a space X is a
uniform cover if there is U € U such that U[x] is a subset of some member of
the cover for every x € X, equivalently, {U[x] : x € X} < A. It is known that
every open cover of a compact uniform space is uniform cover. For instance,
see Theorem 33 in [11].

Let X be a topological space and f: X — X be an orbit expansive homeo-
morphism with an orbit expansive covering A. Equivalently, f is orbit expan-
sive if for every subset B of X, f*(B) < A for all n € Z, then B is singleton. In
the following we show that on compact uniform space, topological expansivity
is equivalent to orbit expansivity:

Theorem 1 Let X be a compact uniform space with uniformity U. Then f :
X — X s a topologically expansive homeomorphism if and only if it is an
orbit expansive homeomorphism.

Proof. Let f be a topologically expansive homeomorphism with an expansive
entourage D, D € U. Choose E € U such that EoE C D. Now, E € U/ and
U is a uniformity. Therefore E contains diagonal and hence the collection
{Elx] : x € X} is a cover of X by neighbourhoods. But X is compact. Let A be a
finite subcover of {E[x] : x € X}. We show that A is an orbit expansive covering
for f. For x,y € X suppose that for each n € Z, {f"*(x), f*(y)} < A. But this
implies that for each n € Z,

(f"(x), f*(y)) € EoE C D.

Since D is expansive entourage, it follows that x = y. Hence A is an orbit
expansive covering.

Conversely, let A be an orbit expansive covering of f. Since X is a compact
uniform space, A is a uniform cover. Therefore there exists U € U/ such that
{U[x] : x € X} < A. Since the family of closed members of a uniformity i/ is a
basis of U, there is a closed member D € U such that D C U. We claim that
D is an expansive entourage of f. For x,y € X and for all n € Z, suppose

(f*(x), f*(y)) € D.
Therefore, for each n € Z,

{f™(x), ™ (y)} € U™ (x)].
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This further implies that
{f"(x), M (y)} < {U[t] : t € X} < A.

But A is an orbit expansive covering of f and therefore x = y. Hence f is
topologically expansive with expansive entourage D. ]

In [1, Theorem 2.7] authors showed that if a compact Hausdorff topolog-
ical space admits an orbit expansive homeomorphism then it is metrizable.
Therefore by Proposition 1 and Proposition 1, we have:

Corollary 3 If a compact uniform space admits a topologically expansive home-
omorphism, then it is always metrizable.

Again as a consequence of Corollary 3, it follows that topological expansivity
is equivalent with metric expansivity and it does not depend uniformity. How-
ever the following example shows that Corollary 3, is false for non-compact
Hausdorff uniform spaces.

Example 5 Consider R with the topology Tr whose base consists of all in-
tervals [x,7), where x is a real number, v is a rational number and x < 7.
Then R with topology Tr is a non—compact, paracompact, Hausdorff and not
metrizable space. Also, it is known that every paracompact Hausdorff space,
admits the uniform structure U, consisting of all neighborhood of the diagonal.
For instance, see [11, Page 208]. Hence if

D={(xy) e RxR:[x—yl <1}

then D € U. Define f: R — R by f(x) = 3x. Then it is easy to see that f is
topologically expansive with expansive entourage D. Note that R with unifor-
mity U is a non-compact Hausdorff space.

In the following Remark, we observe certain results related to topological
expansivity as a consequence of expansivity.

Remark 1 Let X be a uniform space with uniformity U and let f: X — X be
a homeomorphism.

1. Suppose X is a locally compact, paracompact uniform space. Since every
topologically expansive homeomorphism is an expansive homeomorphism,
it follows from Lemma 9 of [7], that there is a proper expansive neighbor-
hood for f. Note that this neighborhood need not be an entourage. Recall,
a set M C X x X is proper if for every compact subset A of X, the set
MIA] is compact.
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2. Let f be topologically expansive homeomorphism. Then by Proposition

13 of [7], it follows that for each n € N, f™ is expansive. Note that
this f™ need not be in general topologically expansive. For instance, let
U be the usual uniformity on [0,00) and f : [0,00) — [0,00) be as
homeomorphism constructed by Bryant and Coleman in [5]. Then it is
easy to verify that f is topologically expansive but f™ is not topologically
expansive, for any n > 1.

Let X be a uniform space with uniformity U and Y be a uniform space
with uniformity V. Suppose f : X — X is topologically expansive and
h : X — Y is a homeomorphism. Then by Proposition 13 of [7], it
follows that hofoh ' is expansive on Y. However, the homeomorphism
hofoh™ need not be topologically expansive. For instance, let Uy and
Ug be uniformities on R as defined in Example 1. Consider the identity
homeomorphism h : R — R, where the domain R is considered with
uniformity U, whereas co-domain R is considered with the uniformity
Ugq. Then as observed in Example 4, f(x) = x + In(2) is topologically
expansive with respect to U, but hofo h is not topologically expansive
with respect to Uy.

Observe here that in each of the above Example, f is not uniformly con-
tinuous. In the following we show that Remarks above are true if the maps
are uniformly continuous. Recall, a map f : X — X is uniformly continuous
relative to the uniformity ¢ if for every entourage V € U, (f x f)~1(V) € U.

Proposition 2 1. Let X be a uniform space with uniformity U. Suppose

both f and ' are uniformly continuous relative to U. Then f is topo-
logically expansive if and only if ™ is topologically expansive, for all
n € Z\{0}.

Let X be a uniform space with uniformityUt andY be a uniform space with
uniformity V. Suppose h : X — Y is a homeomorphism such that both
h and h™' are uniformly continuous. Then f is topologically expansive
on X if and only if hofoh " is topologically expansive on Y.

Since the proof of the Proposition 2 is similar to the proof of Proposition
13 in [7], we omit the proof.
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