

DOI: 10.2478/ausi-2020-0015

On degree sets in k-partite graphs

T. A. Naikoo

Islamia College of Science and Commerce, Srinagar, India email: tariqnaikoo@rediffmail.com

S. Pirzada

University of Kashmir, Srinagar, India email: pirzadasd@kashmiruniversity.ac.in

U. Samee

Institute of Technology, University of Kashmir, Srinagar, India email: drumatulsamee@gmail.com

Bilal A. Rather

Department of Mathematics, University of Kashmir, India email: bilalahmadrr@gmail.com

Abstract. The degree set of a k-partite graph is the set of distinct degrees of its vertices. We prove that every set of non-negative integers is a degree set of some k-partite graph.

1 Introduction

In a graph G, the degree of a vertex ν_i , denoted by d_{ν_i} (or simply d_i), is the number of edges which are incident on ν_i . A sequence of non-negative integers $[d_1, d_2, \ldots, d_p]$ is called the degree sequence of a graph G if the vertices of G can be labelled $\nu_1, \nu_2, \ldots, \nu_p$ such that $\deg \nu_i = d_i$ for each $i, 1 \le i \le p$. The terminology and notations used in this paper are same as in [6, 25].

The set of distinct degrees of the vertices of a graph is called its degree set. The following result can be found in [8].

Theorem 1 [8] Any set D of distinct positive integers is the degree set of a connected graph and the maximum order of such a graph is M+1, where M is the maximum integer in the set D.

Computing Classification System 1998: G.2.2 Mathematics Subject Classification 2010: 05C20

Key words and phrases: bipartite graph, k-partite graph, degree, degree set

More on degree sets in graphs can be seen in [1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 29, 30, 31]. Analogous results in directed graphs and signed graphs can be found in [17, 18, 19, 20, 21, 22, 23, 24, 26, 27].

2 Degree sets in k-partite graphs

A k-partite graph $(k \geq 2)$ is a graph G whose vertex set can be partitioned into k nonempty disjoint sets V_1, V_2, \ldots, V_k , known as partite sets, such that v_iv_j is an edge of G if v_i is in some V_i and v_j is in some V_j $(i \neq j)$. A k-partite graph with partite sets V_1, V_2, \ldots, V_k is denoted by $G(V_1, V_2, \ldots, V_k)$. For k = 2 and K = 3 we get respectively bipartite graph and 3-partite graph. Also, a k-partite graph $G(V_1, V_2, \ldots, V_k)$ is said to be connected if each vertex $v_i \in V_i$ is connected to every vertex $v_j \in V_j$ $(i \neq j)$. The degree of a vertex v_i in a k-partite graph $G(V_1, V_2, \ldots, V_k)$ is the number of edges of $G(V_1, V_2, \ldots, V_k)$ which are incident to v_i and is denoted by d_{v_i} or d_i . Let $G(V_1, V_2, \ldots, V_k)$ be a k-partite graph with $V_i = \{v_{i1}, v_{i2}, \ldots, v_{ip_i}\}$, $1 \leq i \leq k$ and let $d_{i1}, d_{i2}, \ldots, d_{ip_i}$ be the respective degrees of $v_{i1}, v_{i2}, \ldots, v_{ip_i}$. Then the sequence $D_i = [d_{i1}, d_{i2}, \ldots, d_{ip_i}]$, $1 \leq i \leq k$, are called degree sequences of $G(V_1, V_2, \ldots, V_k)$.

The set of distinct degrees of the vertices of a k-partite graph $G(V_1, V_2, \dots, V_k)$ is called its degree set.

The following result is given in [16].

Theorem 2 [16] Every set of positive integers is a degree set of some connected bipartite graph.

The following result can be seen in [7].

Theorem 3 [7] Every set of positive integers, except {1} is a degree set of some connected 3-partite graph.

Now, we have the following observation.

Theorem 4 Every singleton set of positive integers is a degree set of some k-partite graph.

Proof. Let $D = \{d\}$, where d is a positive integer. For d = 1, construct a k-partite graph $G(V_1, V_2, ..., V_k)$ as follows

$$\begin{split} V_1 &= A_{11} \cup A_{12} \cup \cdots \cup A_{1(k-2)} \cup A_{1(k-1)}, \\ V_2 &= A_{21}, \\ V_3 &= A_{31}, \\ &\vdots \\ V_{k-1} &= A_{(k-1)1}, \\ V_k &= A_{k1}, \end{split}$$

with $A_{1p} \cap A_{1q} = \emptyset$ $(p \neq q)$, $|A_{ij}| = 1$ for all i, j where $1 \leq i \leq k$, $1 \leq j \leq k-1$. Let there be an edge from the vertex of $A_{1(i-1)}$ to the vertex of A_{i1} . Then the degrees of the vertices of $G(V_1, V_2, \ldots, V_k)$ are as follow.

For
$$2 \le i \le k$$

$$d_{\alpha_{1(i-1)}} = d_{\alpha_{i-1}} = |A_{1(i-1)}| = 1 = d, \text{ for all } \alpha_{1(i-1)} \in A_{1(i-1)}, \ \alpha_{i1} \in A_{i1}.$$

Therefore, degree set of $G(V_1, V_2, \dots, V_k)$ is $D = \{d\}$.

Now we assume that $d \ge 2$. For k = 2, consider the bipartite graph $G(V_1, V_2)$ with $|V_1| = |V_2| = d$ and let there be an edge from each vertex of V_1 to every vertex of V_2 . Then the degrees of the vertices of $G(V_1, V_2)$ are as follows.

$$d_{\nu_1}=d_{\nu_2}=|V_1|=d, {\rm for\ all}\ \nu_1\in V_1,\ \nu_2\in V_2.$$

Therefore, degrees set of $G(V_1, V_2)$ is $D = \{d\}$.

If $k \ge 3$ is odd, say k = 2m + 1 where $m \ge 1$, construct a 2m + 1-partite graph $G(V_1, V_2, \dots, V_{2m+1})$ as follows.

Let $V_1 = A_1$, $V_2 = A_2 \cup B_2$, $V_3 = A_3, \ldots, V_{2m} = A_{2m}$, $V_{2m+1} = A_{2m+1}$ with $|A_i| = |B_2| = d-1$ for all i, $1 \le i \le 2m+1$, $A_2 \cap B_2 = \emptyset$. Let there be an edge (i) from each vertex of A_i to every vertex of A_{i+1} for all odd i, (ii) from distinct vertices of A_i to distinct vertices of A_{i+1} for all even i, (iii) from distinct vertices of A_1 to distinct vertices of A_2 , and (iv) from each vertex of A_{2m+1} to every vertex of A_2 . Then the degrees of the vertices of $G(V_1, V_2, \ldots, V_{2m+1})$ are as follows.

For
$$1 \le i \le 2m + 1$$

$$d_{\alpha_i}=d_{b_2}=|A_i|+1=d-1+1=d \ \mathrm{for \ all} \ \alpha_i\in A_i \ \mathrm{and} \ b_2\in B_2.$$

Therefore, degree set of $G(V_1, V_2, \dots, V_{2m+1})$ is $\{d\}$.

Again, if $k \ge 4$ is even, say k = 2m + 2 where $m \ge 1$, consider a 2m + 2-partite graph $G(V_1, V_2, \ldots, V_{2m+2})$ with $|V_i| = d - 1$ for all $i, 1 \le i \le 2m + 2$.

Let there be an edge (i) from each vertex of V_i to every vertex of V_{i+1} for all odd i, (ii) from distinct vertices of V_i to distinct vertices of V_{i+1} for all odd i, and (iii) from distinct vertices of V_1 to distinct vertices of V_{2m+2} . Then the degrees of the vertices of $G(V_1, V_2, \ldots, V_{2m+2})$ are as follows

For, $1 \le i \le 2m + 2$,

$$d_{\nu_i} = |V_i| + 1 = d - 1 + 1 = d$$
, for all $\nu_i \in V_i$.

Therefore, degree set of
$$G(V_1, V_2, \dots, V_{2m+2})$$
 is $D = \{d\}$.

Except for d = 1 and $k \ge 3$ in the proof of Theorem 4, the construction there yields a connected k-partite graph and we have the following result.

Corollary 5 Every singleton set of positive integers is a degree set of some connected k-partite graph, except $\{1\}$ for $k \geq 3$ in which case the k-partite graph is not connected.

Now, we obtain the following result.

Theorem 6 Every set of positive integers is a degree set of some connected k-partite graph, except $\{1\}$ for $k \geq 3$ in which case the k-partite graph is not connected.

Proof. Let d_1, d_2, \ldots, d_n be positive integers. We will show that there is a connected k-partite graph $G(V_1, V_2, \ldots, V_k)$ with degree set $D = \{d_1, \sum_{i=1}^2 d_i, \ldots, \sum_{i=1}^n d_i\}$, except when d = 1 and $k \geq 3$ in which case the k-partite graph is not connected.

The case k=2 and k=3 are respectively given in Theorem 2 and Theorem 3. Also the case k=1 follows by Corollary 5. So, we assume $k\geq 4$ and $n\geq 2$. For k=4, construct a 4-partite graph $G(V_1,V_2,V_3,V_4)$ as follows. Let

$$\begin{split} V_1 &= A_{11} \cup A_{12} \cup A_{13} \cup \dots \cup A_{1(n-1)} \cup A_{1n}, \\ V_2 &= A_{21} \cup A_{22} \cup A_{23} \cup \dots \cup A_{2(n-1)}, \\ V_3 &= A_{31} \cup A_{32} \cup A_{33} \cup \dots \cup A_{3(n-1)} \cup A_{3n}, \\ V_4 &= A_{41} \cup A_{42} \cup A_{43} \cup \dots \cup A_{4(n-1)} \cup A_{4n}, \end{split}$$

with $A_{1p} \cap A_{1q} = \emptyset$, $A_{2p} \cap A_{2q} = \emptyset$, $A_{3p} \cap A_{3q} = \emptyset$, $A_{4p} \cap A_{4q} = \emptyset$ ($p \neq q$), $|A_{1j}| = d_j$ for all j, $1 \leq j \leq n$, $|A_{2j}| = d_1 + d_2 + \cdots + d_j$ for all j, $1 \leq j \leq n - 1$, $|A_{3j}| = d_j$ for all j, $1 \leq j \leq n$, $|A_{41}| = d_2$, $|A_{4j}| = d_1 + d_2 + \cdots + d_{j-1}$ for all j, $2 \leq j \leq n$. Let there be an edge (i) from each vertex of A_{1j} to every

vertex of A_{3r} whenever $j \geq r$, (ii) from each vertex of A_{11} to every vertex of A_{41} , (iii) from each vertex of A_{2j} to every vertex of $A_{3(j+1)}$, and (iv) from each vertex of A_{2j} to every vertex of $A_{4(j+1)}$. Then, the degrees of the vertices of $G(V_1, V_2, V_3, V_4)$ are as follows.

$$\begin{split} d_{\alpha_{11}} &= |A_{31}| + |A_{41}| = d_1 + d_2, \text{ for all } \alpha_{11} \in A_{11}, \\ &\text{ for } 2 \leq j \leq n, \ d_{\alpha_{1j}} = \sum_{r=1}^{j} |A_{3r}| = \sum_{r=1}^{j} d_r, \text{ for all } \alpha_{1j} \in A_{1j}, \\ &\text{ for } 1 \leq j \leq n-1, \ d_{\alpha_{2j}} = |A_{3(j+1)}| + |A_{4(j+1)}| = d_{j+1} + d_1 + \dots + d_j = \sum_{r=1}^{j+1} d_r, \\ &\text{ for all } \alpha_{2j} \in A_{2j}, \end{split}$$

$$d_{\alpha_{31}} = \sum_{r=1}^n |A_{1r}| = \sum_{r=1}^n d_r, \text{ for all } \alpha_{31} \in A_{31},$$

$$\mathrm{for}\ 2 \leq j \leq n,\ d_{\alpha_{3j}} = \sum_{r=j}^n |A_{1r}| + |A_{2(j-1)}| = \sum_{r=j}^n d_r + d_1 + \dots + d_{j-1} = \sum_{r=1}^n d_r,$$

$$\mathrm{for}\ \mathrm{all}\ \alpha_{3j} \in A_{3j},$$

$$d_{\alpha_{41}} = |A_{11}| = d_1$$
, for all $\alpha_{41} \in A_{41}$,

$$\mathrm{for}\ 2 \leq j \leq n,\ d_{\alpha_{4j}} = |A_{2(j-1)}| = d_1 + d_2 + \dots + d_{j-1} = \sum_{r=1}^{j-1} d_r,\ \mathrm{for\ all}\ \alpha_{4j} \in A_{4j}.$$

Therefore, degree set of
$$G(V_1,V_2,V_3,V_4)$$
 is $D=\{d_1,\sum\limits_{i=1}^2d_i,\ldots,\sum\limits_{i=1}^nd_i\}.$

If $k\geq 5$ is odd say k=2m+3 where $m\geq 1$, construct a 2m+3-partite graph $G(V_1,V_2,\ldots,V_{2m+3})$ as follows. Let

$$V_1 = A_{11} \cup A_{12} \cup A_{13} \cup \cdots \cup A_{1(n-1)} \cup A_{1n},$$

$$V_2 = A_{21} \cup A_{22} \cup A_{23} \cup \cdots \cup A_{2(n-1)},$$

$$V_3 = A_{31} \cup A_{32} \cup A_{33} \cup \cdots \cup A_{3(n-1)} \cup A_{3n}$$

$$V_4 = A_{41} \cup B_{42} \cup A_{42} \cup A_{43} \cup \cdots \cup A_{4(n-1)} \cup A_{4n},$$

$$V_5 = A_{51} \cup B_{52}$$

$$V_6 = A_{61} \cup B_{62}$$

:

$$V_{2m+2} = A_{(2m+2)1} \cup B_{(2m+2)2},$$

$$V_{2m+3} = A_{(2m+3)1} \cup B_{(2m+3)2}$$

with $A_{1p} \cap A_{1q} = \emptyset$, $A_{2p} \cap A_{2q} = \emptyset$, $A_{3p} \cap A_{3q} = \emptyset$, $A_{4p} \cap A_{4q} = \emptyset$, $(p \neq q)$, $A_{4p} \cap B_{42} = \emptyset$, $A_{p1} \cap B_{p2} = \emptyset$, $|A_{1j}| = d_j$ for all j, $1 \leq j \leq n$, $|A_{2j}| = d_1 + d_2 + \cdots + d_j$ for all j, $1 \leq j \leq n - 1$, $|A_{3j}| = d_j$ for all j, $1 \leq j \leq n$, $|A_{i1}| = d_2$, for all i, $4 \leq i \leq 2m + 3$, $|B_{i2}| = d_1$ for all i, $4 \leq i \leq 2m + 3$, $|A_{4j}| = d_1 + d_2 + \cdots + d_{j-1}$ for all j, $2 \leq j \leq n$. Let there be an edge (i) from each vertex of A_{1j} to every vertex of A_{3r} whenever $j \geq r$, (ii) from each vertex of A_{11} to every vertex of A_{41} , (iii) from each vertex of A_{2j} to every vertex of $A_{3(j+1)}$, (iv) from each vertex of A_{2j} to every vertex of $A_{(i+1)1}$ for all even $i \geq 4$, (vi) from each vertex of A_{i2} to every vertex of $A_{(i+1)2}$ for all even $i \geq 4$, and vii from each vertex of A_{i2} to every vertex of $A_{(i+1)1}$ for all $i \geq 4$. Then the degrees of the vertices of $G(V_1, V_2, \dots, V_{2m+3})$ are as follows.

$$\begin{split} d_{\alpha_{11}} &= |A_{31}| + |A_{41}| = d_1 + d_2, \text{ for all } \alpha_{11} \in A_{11}, \\ &\text{for } 2 \leq j \leq n, \ d_{\alpha_{1j}} = \sum_{r=1}^{j} |A_{3r}| = \sum_{r=1}^{j} d_r, \text{ for all } \alpha_{1j} \in A_{1j}, \\ &\text{for } 1 \leq j \leq n-1, \ d_{\alpha_{2j}} = |A_{3(j+1)}| + |A_{4(j+1)}| = d_{j+1} + d_1 + \dots + d_j = \sum_{r=1}^{j+1} d_r, \\ &\text{for all } \alpha_{2j} \in A_{2j}, \\ d_{\alpha_{31}} &= \sum_{r=1}^{n} |A_{1r}| = \sum_{r=1}^{n} d_r, \text{ for all } \alpha_{31} \in A_{31}, \\ &\text{for } 2 \leq j \leq n, \ d_{\alpha_{3j}} = \sum_{r=j}^{n} |A_{1r}| + |A_{2(j-1)}| = \sum_{r=j}^{n} d_r + d_1 + \dots + d_{j-1} = \sum_{r=1}^{n} d_r, \\ &\text{for all } \alpha_{3j} \in A_{3j}, \\ d_{\alpha_{41}} &= |A_{11}| + |A_{51}| = d_1 + d_2, \text{ for all } \alpha_{41} \in A_{41}, \\ &\text{for } 2 \leq j \leq n, \ d_{\alpha_{4j}} = |A_{2(j-1)}| = d_1 + d_2 + \dots + d_{j-1} = \sum_{r=1}^{j-1} d_r, \text{ for all } \alpha_{4j} \in A_{4j}, \\ &\text{for even } 4 \leq i \leq 2m + 2, \ d_{b_{i2}} = |A_{(i+1)1}| + |B_{(i+1)2}| = d_2 + d_1 = d_1 + d_2, \\ &\text{for all } b_{i2} \in B_{i2}, \\ &\text{for odd } 5 \leq i \leq 2m + 1, \ d_{b_{i2}} = |B_{(i-1)2}| + |A_{(i+1)1}| = d_1 + d_2, \text{ for all } b_{i2} \in B_{i2}, \\ &d_{b_{(2m+3)2}} = |B_{(2m+2)2}| = d_1, \text{ for all } b_{(2m+3)2} \in B_{(2m+3)2}, \\ &\text{for odd } 5 \leq i \leq 2m + 3, \ d_{\alpha_{i1}} = |A_{(i-1)2}| + |B_{(i-1)2}| + |B_{(i-1)2}| = d_2 + d_1 = d_1 + d_2, \\ &\text{for odd } 5 \leq i \leq 2m + 3, \ d_{\alpha_{i1}} = |A_{(i-1)2}| + |B_{(i-1)2}| = d_2 + d_1 = d_1 + d_2, \\ &\text{for odd } 5 \leq i \leq 2m + 3, \ d_{\alpha_{i1}} = |A_{(i-1)2}| + |B_{(i-1)2}| = d_2 + d_1 = d_1 + d_2, \\ &\text{for odd } 5 \leq i \leq 2m + 3, \ d_{\alpha_{i1}} = |A_{(i-1)2}| + |B_{(i-1)2}| = d_2 + d_1 = d_1 + d_2, \\ &\text{for odd } 5 \leq i \leq 2m + 3, \ d_{\alpha_{i1}} = |A_{(i-1)2}| + |B_{(i-1)2}| = d_2 + d_1 = d_1 + d_2, \\ &\text{for odd } 5 \leq i \leq 2m + 3, \ d_{\alpha_{i1}} = |A_{(i-1)2}| + |B_{(i-1)2}| = d_2 + d_1 = d_1 + d_2, \\ &\text{for odd } 5 \leq i \leq 2m + 3, \ d_{\alpha_{i1}} = |A_{(i-1)2}| + |B_{(i-1)2}| = d_2 + d_1 = d_1 + d_2, \\ &\text{for odd } 5 \leq i \leq 2m + 3, \ d_{\alpha_{i1}} = |A_{(i-1)2}| + |A_{(i-1)2}| = d_1 + d_2 + d_1 = d_1 + d_2, \\ &\text{for odd } 5 \leq i \leq 2m + 3, \ d_{\alpha_{i1}} = |A_{\alpha_{i1}}| + |A_{\alpha_{i2}}| + |A_{\alpha_{i1}}| + |A_{\alpha_{i2}}| + |A_{\alpha_{i$$

for all $a_{i1} \in A_{i1}$,

$$\label{eq:condition} \begin{split} \text{for even } 6 \leq i \leq 2m+2, \ d_{\alpha_{i1}} &= |A_{(i+1)1}| + |B_{(i-1)2}| = d_2 + d_1 = d_1 + d_2, \\ &\qquad \qquad \text{for all } \alpha_{i1} \in A_{i1}. \end{split}$$

Therefore, degree set of
$$G(V_1,V_2,\ldots,V_{2m+3})$$
 is $D=\{d_1,\sum\limits_{i=1}^2d_i,\ldots,\sum\limits_{i=1}^nd_i\}.$

Now, assume $k \geq 6$ is even, say k = 2m + 4 where $m \geq 1$. We add a new partition set V_{2m+4} to the above constructed 2m + 3-partite graph $G(V_1, V_2, \ldots, V_{2m+3})$ with $|V_{2m+4}| = d_2$ and let there be an edge from each vertex of V_{2m+4} to every vertex of V_{2m+3} so that we obtain a 2m + 4-partite graph $G(V_1, V_2, \ldots, V_{2m+3}, V_{2m+4})$. It is clear that in $G(V_1, V_2, \ldots, V_{2m+3}, V_{2m+4})$ the degrees of all the vertices from the partite sets $V_1, V_2, \ldots, V_{2m+3}$ remain unchanged except the vertices in V_{2m+3} whose degrees are increased to V_{2m+4} and the degree of each vertex in V_{2m+4} is V_{2m+4} is V_{2m+4} .

degree set of $G(V_1,V_2,\ldots,V_{2m+3},V_{2m+4})$ is $D=\{d_1,\sum\limits_{i=1}^2d_i,\ldots,\sum\limits_{i=1}^nd_i\}.$ We note that in above construction, all the k-partite graphs are connected except when $d_1=1$ and $k\geq 3$.

Finally, we have the following result.

Theorem 7 Every set of non-negative integers is a degree set of some k-partite graph.

Proof. Let d_1, d_2, \ldots, d_n be non-negative integers with $d_2, d_3, \ldots, d_n > 0$. We will show there is a k-partite graph $G(V_1, V_2, \ldots, V_k)$ with the degree set $D = \{d_1, \sum_{i=1}^2 d_i, \ldots, \sum_{i=1}^n d_i\}$.

First assume that $d_1=0$. For n=1, consider a null k-partite graph $G(V_1,V_2,\ldots,V_k)$ with $|V_i|=1$ for all $i,\ 1\leq i\leq k$. Then for $1\leq i\leq k,\ d_{\nu_i}=0=d_1$, for all $\nu_i\in V_i$. Therefore, degree set of $G(V_1,V_2,\ldots,V_k)$ is $D=\{d_1\}$.

Now let n > 1. Since d_2, d_3, \ldots, d_n are positive integers, therefore by Theorem 6, there exists a k-partite graph $G(W_1, W_2, \ldots, W_k)$ with degree set $D_1 = \frac{3}{2}$

 $\{d_2,\sum\limits_{i=2}^3d_i,\ldots,\sum\limits_{i=2}^nd_i\}$. We construct another k-partite graph $G(V_1,V_2,\ldots,V_k)$ as follows.

Let $V_1=W_1\cup\{\nu\}, V_2=W_2,\ldots,V_k=W_k$. Then the degree of the vertex ν is zero, that is, $d_\nu=0=d_1$ and the degrees of all the vertices of the partition set W_1,W_2,\ldots,W_k remain unchanged in $G(V_1,V_2,\ldots,V_k)$. Therefore $G(V_1,V_2,\ldots,V_k)$ is a k-partite graph with degree set $D=\left\{d_1,\sum_{i=1}^2d_i,\ldots,\sum_{i=1}^nd_i\right\}$.

Now assume that $d_1>0$. Then d_1,d_2,\ldots,d_n are the positive integers and therefore by Theorem 6, there exists a k-partite graph $G(V_1,V_2,\ldots,V_k)$ with

degree set
$$D = \{d_1, \sum_{i=1}^2 d_i, \dots, \sum_{i=1}^n d_i\}.$$

References

- [1] T. S. Ahuja, A. Tripathi, On the order of a graph with a given degree set. J. Comb. Math. Comb. Comput., 57 (2006) 157–162. \Rightarrow 252
- [2] G. Chartrand, R. J. Gould, S. F. Kapoor, Graphs with prescribed degree sets and girth, *Periodica Math. Hung.*, **12**, 4 (1981) 261–266. \Rightarrow 252
- [3] A. A. Chernyak, Minimal graphs with a given degree set and girth (Russian), Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 1988, 2 21–25, 123. \Rightarrow 252
- [4] F. Harary, E. Harzheim, The degree sets of connected infinite graphs. Fund. Math., 118, 3 (1983) 233–236. \Rightarrow 252
- [5] A. Iványi, J. Elek, Degree sets of tournaments, *Studia Univ. Babeş-Bolyai, Informatica*, **59** (2014) 150–164. \Rightarrow 252
- [6] F. Harary, Graph Theory, Reading, MA, Addison-Wesley (1969). $\Rightarrow 251$
- [7] A. Iványi, S. Pirzada and F. A. Dar, Tripartite graphs with given degree set, Acta Univ. Sap. Informatica, 7, 1 (2015) 72–106. \Rightarrow 252
- [8] S. F. Kapoor, A. D. Polimeni, C. E. Wall, Degree sets for graphs, *Fund. Math.*, **95**, 3 (1977) 189–194. \Rightarrow 251
- [9] S. Koukichi and H. Katsuhiro, Some remarks on degree sets for graphs, Rep. Fac. Sci. Kogoshima Univ., **32** (1999) 9–14. \Rightarrow 252
- [10] Y. Manoussakis, H. P. Patil, V. Shankar, Further results on degree sets for graphs, $AKCE~J.~Graphs~Combin.,~\mathbf{1,}~2~(2004)~77–82.~\Rightarrow 252$
- [11] Y. Manoussakis, H. P. Patil, Bipartite graphs and their degree sets, *Electron. Notes on Discrete Math.*, (Proceedings of the R. C. Bose Centenary Symposium on Discrete Mathematics and Applications,) 15 (2003) 125–125. ⇒ 252
- [12] Y. Manoussakis, H. P. Patil, On degree sets and the minimum orders in bipartite graphs, *Discussiones Math. Graph Theory*, **34**, 2 (2014) 383–390. \Rightarrow 252
- [13] C. M. Mynhardt, Degree sets of degree uniform graphs, *Graphs Comb.*, **1** (1985) $183-190. \implies 252$
- [14] S. Osawa, Y. Sabata, Degree sequences related to degree sets, *Kokyuroki*, **1744** (2011) 151–158. \Rightarrow 252
- [15] S. Pirzada and Y. Jian Hua, Degree sequences in graphs, *J. Math. Study*, **39,1** (2006) 25–31. \Rightarrow 252
- [16] S. Pirzada, T. A. Naikoo and F. A. Dar, Degree sets in bipartite and 3-partite graphs, Oriental J. Math. Sci., 1,1 (2007) 39–45. \Rightarrow 252
- [17] S. Pirzada, F. A. Dar, Signed degree sets in signed tripartite graphs, *Matematicki Vesnik*, **59** (3) (2007) 121–124. \Rightarrow 252
- [18] S. Pirzada, F. A. Dar, Signed degree sequences in signed tripartite graphs, J. Korean Soc. Ind, Appl. Math., 11, 2 (2007) 9–14. $\Rightarrow 252$

- [19] S. Pirzada, Merajuddin, T. A. Naikoo, Score sets in oriented 3-partite graphs, Analysis Theory Appl., 4 (2007) 363–374. \Rightarrow 252
- [20] S. Pirzada, T. A. Naikoo, Score sets in oriented k-partite graphs, *AKCE J. Graphs Combin.*, **3**, 2 (2006) 135–145. \Rightarrow 252
- [21] S. Pirzada, T. A. Naikoo, Score sets in k-partite tournaments, J. Appl. Math. Comp., 22, 1–2 (2006) 237–245. \Rightarrow 252
- [22] S. Pirzada, T. A. Naikoo, Score sets in oriented graphs, *Appl. Anal. Discrete Math.*, **2** 1 (2008) 107–113. \Rightarrow 252
- [23] S. Pirzada, T. A. Naikoo, T. A. Chishti, Score sets in oriented bipartite graphs, Novi Sad J. Math, 36, 1 (2006) 35–45. \Rightarrow 252
- [24] S. Pirzada, T. A. Naikoo, F. A. Dar, Signed degree sets in signed graphs, *Czechoslovak Math. J.*, **57**, 3 (2007) 843–848. \Rightarrow 252
- [25] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad, India, 2012. ⇒251
- [26] S. Pirzada, T. A. Naikoo, F. A. Dar, A note on signed degree sets in signed bipartite graphs, *Appl. Anal. Discrete Math.*, **2**, 1 (2008) 114–117. \Rightarrow 252
- [27] K. B. Reid. Score sets for tournaments, Congressus Numer., 21 (1978) 607–618. $\Rightarrow 252$
- [28] T. A. Sipka, The orders of graphs with prescribed degree sets, J. Graph Theory,
 4, 3 (1980) 301–307. ⇒
- [29] A. Tripathi, S. Vijay, On the least size of a graph with a given degree set, *Discrete Appl. Math.*, **154** (2006) 2530–2536. \Rightarrow 252
- [30] A. Tripathi, S. Vijay, A short proof of a theorem on degree sets of graphs, Discrete Appl. Math., 155 (2007) 670–671. \Rightarrow 252
- [31] L. Volkmann, Some remarks on degree sets of multigraphs, J. Combin. Math. Combin. Comput., 77 (2011) 45–49. $\Rightarrow 252$

Received: October 19, 2020 • Revised: November 6, 2020