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Abstract. Recently a trigonometric inequality by N. Cusa and C. Huy-
gens (see e.g. [1], [6]) has been discussed extensively in mathematical
literature (see e.g. [4], [6, 7] ). By using a unified method based on mono-
tonicity or convexity of certain functions, we shall obtain new Cusa-
Huygens type inequalities. Hyperbolic versions will be pointed out, too.

1 Introduction

In recent years the trigonometric inequality

sin x

x
<

cos x+ 2

3
, 0 < x <

π

2
(1)

among with other inequalities, has attracted attention of several researchers.
This inequality is due to N. Cusa and C. Huygens (see [6] for more details
regarding this result).
Recently, E. Neuman and J. Sándor [4] have shown that inequality (1) im-

plies a result due to S. Wu and H. Srivastava [10], namely

( x

sin x

)2
+

x

tan x
> 2, 0 < x <

π

2
(2)
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called as “the second Wilker inequality”. Relation (2) implies in turn the
classical and famous Wilker inequality (see [9]):

(

sin x

x

)2

+
tan x

x
> 2. (3)

For many papers, and refinements of (2) and (3), see [4] and the references
therein.
A hyperbolic counterpart of (1) has been obtained in [4]:

sinh x

x
<

cosh x+ 2

3
, x > 0. (4)

We will call (4) as the hyperbolic Cusa-Huygens inequality, and remark that
if (4) is true, then holds clearly also for x < 0.
In what follows, we will obtain new proofs of (1) and (4), as well as new

inequalities or counterparts of these relations.

2 Main results

Theorem 1 Let f(x) =
x(2+ cos x)

sin x
, 0 < x <

π

2
. Then f is a strictly increas-

ing function. Particularly, one has

2+ cos x

π
<

sin x

x
<

2+ cos x

3
, 0 < x <

π

2
. (5)

Theorem 2 Let g(x) =

x

(

4

π
+ cos x

)

sin x
, 0 < x <

π

2
. Then g is a strictly

decreasing function. Particularly, one has

1+ cos x

2
<

4

π
+ cos x

4

π
+ 1

<
sin x

x
<

4

π
+ cos x

2
. (6)

Proof. We shall give a common proofs of Theorems 1 and 2. Let us define the
application

fa(x) =
x(a+ cos x)

sin x
, 0 < x <

π

2
.

Then, easy computations yield that

sin2 x · f ′a(x) = a sin x+ sin x cos x− ax cos x− x = h(x). (7)
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The function h is defined on
[

0,
π

2

]

. We get

h ′(x) = (sin x)(ax− 2 sin x).

Therefore, one obtains that
(i) If

sin x

x
<

a

2
,

then h ′(x) > 0. Thus by (7) one has h(x) > h(0) = 0, implying f ′a(x) > 0, i.e.
fa is strictly increasing.
(ii) If

sin x

x
>

a

2
,

then h ′(x) < 0, implying as above that fa is strictly decreasing.
Select now a = 2 in (i). Then fa(x) = f(x), and the function f in Theorem

1 will be strictly increasing. Selecting a =
4

π
in (ii), by the famous Jordan

inequality (see e.g. [3], [7], [8], [2])

sin x

x
>

2

π
, (8)

so fa(x) = g(x) of Theorem 2 will be strictly decreasing.

Now remarking that f(0) < f(x) < f
(π

2

)

and g(0) > g(x) > g
(π

2

)

, after

some elementary transformations, we obtain relations (5) and (6). �

Remarks. 1. The right side of (5) is the Cusa-Huygens inequality (1), while
the left side seems to be new.
2. The first inequality of (6) follows by an easy computation, based on

0 < cos x < 1. The inequality

1+ cos x

2
<

sin x

x
(9)

appeared in paper [5], and rediscovered by other authors (see e.g. [2]).
3. It is easy to see that inequalities (5) and (6) are not comparable, i.e. none

of these inequalities implies the other one for all 0 < x < π/2.
Before turning to the hyperbolic case, the following auxiliary result will be

proved:
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Lemma 1 For all x ≥ 0 one has the inequalities

cos x cosh x ≤ 1 (10)

and
sin x sinh x ≤ x2. (11)

Proof. Let m(x) = cos x cosh x− 1, x ≥ 0. Then

m ′(x) = − sin x cosh x+ cosh x sinh x,

m ′′(x) = −2 sin x sinh x < 0.

Thus m ′(x) < m ′(0) = 0 and m(x) < m(0) = 0 for x > 0, implying (10), with
equality only for x = 0.
For the proof of (11), let

n(x) = x2 − sin x sinh x.

Then
n ′(x) = 2x− cos x sinh x− sin x cosh x,

n ′′(x) = 2(1− cos x cosh x) < 0

by (10), for x > 0. This easily implies (11). �

Theorem 3 Let

F(x) =
x(2+ cosh x)

sinh x
, x > 0.

Then F is a strictly increasing function. Particularly, one has inequality (4).
On the other hand,

2+ cosh x

k∗
<

sinh x

x
<

2+ cosh x

3
, 0 < x <

π

2
(12)

where k∗ =
π

2
(2+ coshπ/2)/ sinh(π/2).

Theorem 4 Let

G(x) =
x(π+ cosh x)

sinh x
, x > 0.

Then G is a strictly decreasing function for 0 < x < π/2. Particularly, one
has

π+ cosh x

π+ 1
<

sinh x

x
<

π+ cosh x

k
, 0 < x <

π

2
(13)

where k =
π

2
(π+ coshπ/2)/ sinh(π/2).
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Proof. We shall deduce common proofs to Theorem 3 and 4. Put

Fa(x) =
x(a+ cosh x)

sinh x
, x > 0.

An easy computation gives

(sinh x)2F ′

a(x) = ga(x) = a sinh x+ cosh x sinh x− ax cosh x− x.

The function ga is defined for x ≥ 0. As

g ′

a(x) = (sinh x)(2 sinh x− ax),

we get that:
(i) If

sinh x

x
>

a

2
,

then g ′

a(x) > 0. This in turn will imply F ′

a(x) > 0 for x > 0.
(ii) If

sinh x

x
<

a

2
,

then F ′

a(x) < 0 for x > 0.
By letting a = 2, by the known inequality sinh x > x, we obtain the mono-

tonicity if F2(x) = F(x) of Theorem 3. Since F(0) = lim
x→0+

F(x) = 3, inequality

(4), and the right side of (12) follows. Now, the left side of (12) follows by
F(x) < F(π/2) for x < π/2.
By letting a = π in (ii) we can deduce the results of Theorem 4. Indeed, by

relation (11) of the Lemma 1 one can write
sinh x

x
<

x

sin x
and by Jordan’s

inequality (8), we get
sinh x

x
<

π

2
thus a = π may be selected. Remarking that

g(0) > g(x) > g
(π

2

)

, inequalities (13) will follow. �

Remark. By combining (12) and (13), we can deduce that:

3 < k∗ < k < π+ 1. (14)

Now, the following convexity result will be used:

Lemma 2 Let k(x) =
1

tanh x
−

1

x
, x > 0. Then k is a strictly increasing,

concave function.
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Proof. Simple computations give

k ′(x) =
1

x2
−

1

(sinh x)2
> 0

and

k ′′(x) =
2[x3 cosh x− (sinh x)3]

x3(sinh x)3
< 0,

since by a result of I. Lazarević (see e.g. [3], [4]) one has

sinh x

x
> (cosh x)1/3. (15)

This proves Lemma 2. �

Theorem 5 Let the function k(x) be defined as in Lemma 2. Then one has

1+ x2 ·
k(r)

r
cosh x

≤
x

sinh x
for any 0 < x ≤ r (16)

and
x

sinh x
≤

1+ k(r)x+ k ′(r)x(x− r)

cosh x
for any 0 < x, r. (17)

In both inequalities (16) and (17) there is equality only for x = r.

Proof. Remark that k(0+) = lim
x→0+

k(x) = 0, and that by the concavity of k,

the graph of function k is above the line segment joining the points A(0, 0)

and B(r, k(r)). Thus k(x) ≥
k(r)

r
· x for any x ∈ (0, r]. By multiplying with x

this inequality, after some transformations, we obtain (16).
For the proof of (17), write the tangent line to the graph of function k at the

point B(r, k(r)). Since the equation of this line is y = k(r) + k ′(r)(x − r) and
writing that y ≤ k(x) for any x > 0, r > 0, after elementary transformations,
we get relation (17).

�

For example, when r = 1 we get:

[

x2
(

2

e2 − 1

)

+ 1

]

/ cosh x ≤
x

sinh x
for all 0 < x ≤ 1 (18)
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and

x

sinh x
≤

[

1+

(

2

e2 − 1

)

x+

(

e4 − 6e2 + 1

e4 − 2e2 + 1

)

x(x− 1)

]

/ cosh x (19)

for any x > 0.

In both inequalities (18) and (19) there is equality only for x = 1.
In what follows a convexity result will be proved:

Lemma 3 Let j(x) = 3x − 2 sinh x − sinh x cos x, 0 < x <
π

2
. Then j is a

strictly convex function.

Proof. Since j ′′(x) = 2(cosh x sin x− sinh x) > 0 is equivalent to

sin x > tanh x, 0 < x <
π

2
(20)

we will show that inequality (20) holds true for any x ∈

(

0,
π

2

)

. We note that

in [2] it is shown that (20) holds for x ∈ (0, 1), but here we shall prove with
another method the stronger result (20).
Inequality (20) may be written also as

p(x) = (ex + e−x) sin x− (ex − e−x) > 0.

Since p ′′(x) = (ex − e−x)(2 cos x − 1) and ex − e−x > 0, the sign of p ′′(x)

depends on the sign of 2 cos x− 1. Let x0 ∈
(

0,
π

2

)

be the unique number such

that 2 cos x0 − 1 = 0. Here x0 = arccos

(

1

2

)

≈ 1.0471. Thus, cos x being a

decreasing function, for all x < x0 one has cos x >
1

2
, i.e. p ′′(x) > 0 in (0, x0).

This implies p ′(x) > p ′(0) = 0, where

p ′(x) = (ex − e−x) sin x+ (ex + e−x) cos x− (ex + e−x).

This in turn gives p(x) > p(0) = 0.

Let now x0 < x < π/2. Then, as p ′(x0) > 0 and p ′

(π

2

)

< 0 and p ′ being

continuous and decreasing, there exists a single x0 < x1 < π/2 such that

p ′(x1) = 0. Then p ′ will be positive on (x0, x1) and negative on
(

x1,
π

2

)

. Thus

p will be strictly decreasing on
(

x1,
π

2

)

, i.e. p(x) > p
(π

2

)

> 0. This means

that, for any x ∈

(

0,
π

2

)

one has p(x) > 0, completing the proof of (20).
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�

Now, via inequality (1), the following improvement of relation (11) will be
proved:

Theorem 6 For any x ∈

(

0,
π

2

)

one has

sin x

x
<

cos x+ 2

3
<

x

sinh x
. (21)

Proof. The first inequality of (21) is the Cusa-Huygens inequality (1). The
second inequality of (21) may be written as j(x) > 0, where j is the function
defined in Lemma 3. As j ′(0) = 0 and j ′(x) is strictly increasing, j ′(x) > 0,
implying j(x) > j(0) = 0. This finishes the proof of (21).

�

Finally, we will prove a counterpart of inequality (20):

Theorem 7 For any x ∈

(

0,
π

2

)

one has

sin x cos x <
(sin x) (1+ cos x)

2
<

(x+ sin x cos x)

2
< tanh x < sin x. (22)

Proof. The first two inequalities are consequences of 0 < cos x < 1 and 0 <

sin x < x, respectively. The last relation is inequality (20), so we have to prove
the third inequality. For this purpose, consider the application

u(x) = tanh x−
(x+ sin x cos x)

2
,

where x ∈

[

0,
π

2

]

. An easy computation implies (cosh x)2 . (u ′(x)) = 1 −

(cos x cosh x)2 ≤ 0 by relation (10) of Lemma 1. Therefore, since u(0) = 0,
and u(x) ≤ u(0), the inequality follows.

�

Remark. As a corollary, we get the following nontrivial relations: For all

x ∈

(

0,
π

2

)

, we have:

x+ sin x cos x < 2 sin x (23)

and

sin x cos x < tanh x < sin x. (24)
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