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Abstract. In this paper, we study the differential geometry of con-
tact CR-submanifolds of a Kenmotsu manifold. Necessary and sufficient
conditions are given for a submanifold to be a contact CR-submanifold
in Kenmotsu manifolds. Finally, the induced structures on submanifolds
are investigated, these structures are categorized and we discuss these
results.

1 Introduction

In [4], K. Kenmotsu defined and studied a new class of almost contact
manifolds called Kenmotsu manifolds. The study of the differential geome-
try of a contact CR-submanifolds, as a generalization of invariant and anti-
invariant submanifolds, of an almost contact metric manifold was initiated by
A. Bejancu [3] and was followed by several geometers. Several authors studied
contact CR-submanifolds of different classes of almost contact metric mani-
folds given in the references of this paper.

The contact CR-submanifolds are rich and interesting subject. Therefore we
continue to work in this subject matter.
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The purpose of this paper is to study the differential geometric theory of
submanifolds immersed in Kenmotsu manifold. We obtain the new integrabil-
ity conditions of the distributions of contact CR-submanifolds and prove some
characterizations for the induced structure to be parallel.

2 Preliminaries

In this section, we give some notations used throughout this paper. We recall
some necessary facts and formulas from the Kenmotsu manifolds. A (2m+1)-
dimensional Riemannian manifold (M, g) is said to be a Kenmotsu manifold
if there exist on M a (1, 1) tensor field @, a vector field &(called the structure
vector field) and 1-form n such that

P’ =—14+M®E& nE) =1, e&=0, noe =0, (1)

g(eX,9Y) =g(X,Y) —=n(Xn(Y), n(X)=g(X&)

and
(Vx@)Y = g(@X,Y)E —n(Y)eX, Vx&=X-—n(X)E, (2)

for any X,Y € T(TM), where V is a Levi-Civita connection on M and I'(TM)
denotes the set of all differentiable vectors on M [5].

A plane section 7t in TyM is called a @-section if it is spanned by X and @X,
where X is a unit tangent vector orthogonal to &. The sectional curvature of a
p-section is called a @-holomorphic sectional curvature. A Kenmotsu manifold
with constant @-holomorphic sectional curvature c is said to be a Kenmotsu
space form and it is denoted by M(c). The curvature tensor R of a M(c) is
also given by

) tetnzx—ax, 2+ (S5 ) mixni2)y

— n(YIMZ)X+n(Y)g(X,Z2)E —n(X)g(V, Z2)E + g(X, @Z) @Y
g(Y,eZ)eX +2g(X, @Y)@Z}, (3)

for any X,Y,Z € T(TM) [1].

Now, let M be an isometrically immersed submanifold in M. In the rest of
this paper, we assume the submanifold M of M is tangent to the structure
vector field &. Then the formulas of Gauss and Weingarten for M in M are
given, respectively, by

R(X,Y)Z = <

VxY = VxY + h(X,Y) (4)
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and
VxV = —AyX + V¥V (5)

for any X,Y € T(TM) and V € I'(T+M), where V and V denote the Rieman-

nian connections on M and M, respectively, h is the second fundamental form,
V= is the normal connection on the normal bundle T*M and Ay is the shape
operator of M in M. It is well known that the second fundamental form and
the shape operator are related by formulae

where, g denotes the Riemannian metric on M as well as M. For any subman-
ifold M of a Riemannian manifold M, the equation of Gauss is given by

R(X,Y)Z = R(X,Y)Z+ Anx,2)Y — Any )X + (Vxh)(Y, Z)

for any X,Y,Z € T'(TM), where R and R denote the Riemannian curvature
tensors of M and M, respectively. The covariant derivative Vh of h is defined
by

(Vxh) (Y, Z) = Vxh(Y, Z) — h(VxY, Z) — h(VXZ,Y), (8)

and the covariant derivative VA is defined by
(VXAWY = Vx(AVY) — AgyY — AvVxY, (9)

for any X,Y,Z € I'(TM) and V € I'(TtM).
The normal component of (7) is said to be the Codazzi equation and it is
given by
(R(X,Y)Z)* = (Vxh)(Y, Z) — (Vyh)(X, Z), (10)

where (R(X,Y)Z)+ denotes the normal part of R(X,Y)Z. If (R(X,Y)Z)+ =0,
then M is said to be curvature-invariant submanifold of M.
The Ricci equation is given by

gRX V)V U) = g(RT(X, V)V, U) + g([Au, AVIX, Y), (11)

for any X,Y € '(TM) and U,V € I'(T+M), where R+ denotes the Riemannian
curvature tensor of the normal vector bundle T*M and if R+=0, then the
normal connection of M is called flat [6].
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Taking into account (3) and (11), we have

c+1

gREX, VIV U) = ( >{g(x,<pw9(u,cpv)—g(v,ch)g(cpx,u)
+ 29(X,0Y)gleV,U) + g([Av, AulX,Y)}, (12)

for any X,Y € I'(TM) and W,V € T'(TtM).
By using (3) and (7), the Riemannian curvature tensor R of an immersed
submanifold M of a Kenmotsu space form M(c) is given by

c+ 1

RX,Y)Z = (C;3>{9(Y,Z)X—g(x,2)v}+( ){n(X)n(Z)Y

— n(Ym(Z)X+n(Y)g(X, Z2)E —n(X)g(Y, Z)E + g(X, 9Z)PY
— g(Y, @Z)PX +29(X, @Y)PZ} + Apv,z)X — Apx,z) Y- (13)

From (3) and (10), for a submanifold, the Codazzi equation is given by

T2 - (T z) = (S5 ) 60 e2FY - gl p2)Px

+ 29(X, 9Y)FZ}. (14)

3 Contact CR-submanifolds of a Kenmotsu mani-
fold

Now, let M be an isometrically immersed submanifold of a Kenmotsu manifold
M. For any vector X tangent to M, we set

©X = PX + FX, (15)

where PX and FX denote the tangent and normal parts of @X, respectively.
Then P is an endomorphism of the TM and F is a normal-bundle valued 1-form
of TM.

The covariant derivatives of P and F are, respectively, defined by

(VXP)Y = VxPY — PVxY (16)
and
(VxXF)Y = VxFY — FUxY. (17)

In the same way, for any vector field V normal to M, @V can be written in

the following way;
oV =BV + CV, (18)
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where BV and CV denote the tangent and normal parts of @V, respectively.
Also, B is an endomorphism of the normal bundle T*M of TM and C is an
endomorphism of the subbundle of the normal bundle T*M.

The covariant derivatives of B and C are also, respectively, defined by

(VxB)V = VxBV — BVxV (19)

and
(VxC)V = VxCV — CVx V. (20)

Furthermore, for any X;Y € T'(TM), we have g(PX,Y) = —g(X,PY) and
U,V e I'(T+M), we get g(U,CV) = —g(CU, V). These show that P and C
are also skew-symmetric tensor fields. Moreover, for any X € I'(TM) and V €
I'(T+M) we have
which gives the relation between F and B.
Definition 1 Let M be an isometrically immersed submanifold of a Kenmotsu
manifold M. Then M s called a contact CR-submanifold of M if there is a
differentiable distribution D : p — Dy C T,(M) on M satisfying the following
conditions:

i) £ €D,

i) D is invariant with respect to @, i.e., @Dy C T,(M) for each p € M,

and

i) the orthogonal complementary distribution D+ : p — D# c T,(M)
satisfies (pD# C TS‘M for each p € M.

For a contact CR-submanifold M of a Kenmotsu manifold, for the structure
vector field & € T(D) C I'(TM), from (1), we have

(PEZPE,‘FFE,:O)

which is equivalent to
PE =FE =0. (22)

Furthermore, applying ¢ to (15), by using (1), (18), we conclude that
P24+ BF=—I14+n®§& and FP + CF = 0. (23)
Similarly, applying ¢ to (18), making use of (1), (15), we have

C?+FB =—I and PB + BC = 0. (24)
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Proposition 1 Let M be a contact CR-submanifold of a Kenmotsu manifold
M. Then the invariant distribution D has an almost contact metric structure
(P,&m,9) and so dim (Dp) = odd for each p € M.

Now, we denote the orthogonal distribution of @(D*) in T*M by v. Then we
have the direct decomposition

T*M = @(D*) @ v and @(D*) Lv. (25)

Here we note that v is an invariant subbundle with respect to ¢ and so
dim(v) = even.

Theorem 1 Let M be an isometrically immersed submanifold of a Kenmotsu
manifold M. Then M is a contact CR-submanifold if and only if FP = 0.

Proof_. We assume that M is a contact CR-submanifold of a Kenmotsu man-
ifold M. We denote the orthogonal projections on D and D+ by R and S,
respectively. Then we have

R+S=1I R?=R, S*=Sand RS =SR=0. (26)
For any X € T(TM), we can write
X =RX+ SX and X = @RX + @SX = PRX + FRX + PSX + FSX. (27)
Since D is invariant distribution, it is clear that
FR =0 and SPR =0. (28)
On the other hand, we can easily verify that
RP =P =PR.
From the second side of (23), we reach
FPR+ CFR =0. (29)

Since FR =0, (29) reduces to
FP = 0. (30)

By virtue of (23) and (30), we arrive at

CF =0. (31)
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Conversely, let M be a submanifold of a Kenmotsu manifold M such that
(30) is satisfied. For any X € I'(TM) and V € T(T+M), by direct calculations,
we have

g(X) (pZV) = 9((92X) V)
g(X,PBV) = ¢(CFX,V)=0.

Thus we get
PB =0. (32)

Making use of the equations (23), (24) and (32), we have P> + P = 0 and
C3 + C = 0 which show that P and C are f-structures on TM and T+M,
respectively. Here if we put R=—P?4+1n® & and S =1+ P> —n ® &, then we
can easily see that

R+S=1I R*=R, $*=Sand RS=SR=0, (33)

that is, R and S are orthogonal projections and they define orthogonal comple-
mentary distributions such as D and D*. Since R = —P24n®§& and P34+P = 0,
we get PR =P and PS = 0. Taking account of P being skew-symmetric and S
being symmetric, we have
g(SPX,Y) = g¢(PX,SY)
= _9(X> PSY) =0,

for any X, Y € I'(TM). Thus we have
SP =0.

It implies that
SPR =0.

Since R = —P? 4+ ® &, PE = FE = 0 and from (30), it is clear that
FR = 0. (34)

(33) and (34) tell us that D and D™ are invariant and anti-invariant distri-
butions on M, respectively. Furthermore, from the definitions of R and S, we
have

RE = & and SE =0,
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that is, the distribution D contains &. On the other hand, setting
R=—P? and S=1+P?

we can easily see that projections R and S define orthogonal distributions such
as D and D™, respectively. Thus we have

PR=P, SP=0, FR=0 and PS =0,
that is, D is an invariant distribution, D' is an anti-invariant distribution and
RE =0 and S& =E&.

This tell us that & belongs to D+. Hence the proof is complete. O
Now, let M be a contact CR-submanifold of a Kenmotsu manifold M. Then

for any X,Y € I'(TM), by using (2), (4), (5), (15) and (18), we have
(Vx@)Y = VxoY—@VxY
g(eX, Y)E =n(Y)eX = VxPY+ VxFY — @VxY — oh(X,Y).

From the tangent and normal components of this last equations, respectively,
we have

(VxP)Y = ApyX + Bh(X,Y) + g(¢X, Y)E —=n(Y)PX (35)

and
(VxF)Y = Ch(X,Y) — h(X,PY) —n(Y)FX. (36)

In the same way, for any X € I'(TM) and V € I'(T+M), we have
(Vx@)V = VxeV—@VxV
gleX, V)& = (VxB)V+ (VxC)V+h(X,BV)—AcyX + PAyX
+ FAyX. (37)

From the normal and tangent components of (37), respectively, we have
(VxC)V = —h(X,BV) — FAVX, (38)
and
(VxB)V = g(FX, V)& + AcyX — PAYX. (39)

On the other hand, since M is tangent to &, making use of (2) and (6) we
obtain
AvE=h(X,£) =0 (40)
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for all V € T(T+*M) and X € T'(TM). It is well-known that Bh = 0 plays an
important role in the geometry of submanifolds. This means that the induced
structure P is a Kenmotsu structure on M. Then (35) reduces to

(VxP)Y = g(PX, Y)& —n(Y)PX, (41)

for any X,Y € I'(D). This means that the induced structure P is a Kenmotsu
structure on M. Moreover, for any Z,W € I'(D+) and U € I'(TM), also by
using (2) and (6), we have

g(ArpzW — ApwZ,U) = g(h(W,U),FZ) — g(h(Z,U),FW)
= g(VuW, ¢Z) — g(VuZ, ¢W)
= g(eVuzZ, W) —g(VueZ,W) = —g((Vue)Z,W)
= g(eZ,Un(W) —g(eW,Umn(Z) =0.

It follows that
ApzW = ApwZ, (42)

for any Z, W € I'(D1).
Hence we have the following theorem.

Theorem 2 Let M be a contact CR-submanifold of a Kenmotsu manifold
M. Then the anti-invariant distribution D+ is completely integrable and its
mazimal integral submanifold is an anti-invariant submanifold of M.

Proof. For any Z,W € I'(D*) and X € I'(D), by using (2) and (42) we have

9(lZ,W,X) = g(VzW,X) —g(VwZ,X)

= g(VwX, Z) —9(VzX, W) = g(eVwX, 9Z) — g(@VzX, oW)
— (Vwo)X,9Z) — g(VzoX — (Vz@)X, @W)
(ch,W),cpZ) —g(h(eX, Z), oW) — g(g(eW, X)&
JoW, 0Z) + g(g(9@Z,X)& —n(X) @ Z, W)
q,zW — A@WZ, (pX) =0.

\%
Vw

I
@« @

(
(
(
(h
- nX
= g(A

Thus [Z,W] € I'(D*) for any Z, W € I'(D%1), that is, D+ is integrable. Thus
the proof is complete. O

Theorem 3 Let M be a contact CR-submanifold of a Kenmotsu manifold
M. Then the invariant distribution D is completely integrable and its mazximal



On contact CR-submanifolds of Kenmotsu manifolds 191

integral submanifold is an invariant submanifold of M if and only if the shape
operator Ay of M satisfies

AyP +PAy =0, (43)
for any V € T(T+M).

Proof. In [1], it was proved that D is integrable if and only if the second
fundamental form h of M satisfies the condition h(X, PY) = h(PX,Y), for any
X,Y € T(D). We can easily verify that this condition is equivalent to (43). So
we omit the proof. O

Theorem 4 Let M be a contact CR-submanifold of a Kenmotsu manifold M.
If the invariant distribution D is integrable, then M is D-minimal submanifold
in M.

Proof. Let {e1,e,...,ep, per, ey, ..., @ep, & be an orthonormal frame of
I'(D) and we denote the second fundamental form of M in M by h. Then the
mean curvature tensor H of M can be written as

]
C2p+1

P

{Z{h(ehei) + higei, pei)} + h(E, 5)}- (44)
i=1

By using (2) we mean that h(&, &) = 0. Since D is integrable, we have

1 P

H = PR {;{h(eu ei) + h(P%e;, ei)}

1
N 2p—|—1{

B 1
- 2p+1 4

This proves our assertion. O

{h(ei,ei) + h(—ei +n(ei)E, ei)}

M= TS

{h(ei, e;) — h(ei, ei)} =0.

1

Theorem 5 Let M be a contact CR-submanifold of a Kenmotsu manifold M.
If the second fundamental form of the contact CR-submanifold M is parallel,
then M is a totally geodesic submanifold.
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Proof. If the second fundamental form h of M is parallel, then by using (8),
we have

Vxh(Y,Z) —h(VxY,Z) —h(VxZ,Y) =0,

for any X,Y, Z € I'(TM). Here, choosing Y = & and taking into account (2) and
(40), we conclude that h(X,Z) = 0. This proves our assertion. O

Theorem 6 Let M be a submanifold of a Kenmotsu manifold M. Then M
18 a contact CR-submanifold if and only if the endomorphism C defines an
f-structure on v, that is, C3 +C =0.

Proof. If M is a contact CR-submanifold, then from Theorem 1, we know
that C is an f-structure on v.

Conversely, if C is an f-structure on v, from (24) we can derive CFB = 0.
So for any V € I'(T+M), by using (21), we have

g(BCV,BCV) = g(@CV,BCV)=—g(CV,FBCV)
= g(V,CFBCV) = 0.

This implies that BC = 0 which is equivalent to PB = 0. Also, from Theorem
3.1 we conclude that M is a contact CR-submanifold. O

Theorem 7 Let M be a submanifold of a Kenmotsu manifold M. If the en-
domorphism P on M is parallel, then M is anti-invariant submanifold in M.

Proof. If P is parallel, from (35) and (40), we have

0 = g(eX,Y)+ g(AryX, &) + g(Bh(X,Y), &)
= g(eX,Y) +g(h(X, &), FY)
= gleX,Y),
for any X, Y € I'(TM). This implies that M is anti-invariant submanifold. [

Theorem 8 Let M be a submanifold of a Kenmotsu manifold M. If the en-
domorphism F is parallel, then M is invariant submanifold in M.

Proof. If F is parallel, then from (36), we have
Ch(X,Y) — h(X, PY) —n(Y)FX = 0,

for any X,Y € T'(TM). Here, choosing Y = & and taking into account that
h(X, &) = 0, we conclude that FX = 0. This proves our assertion. O
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Theorem 9 Let M be a submanifold of a Kenmotsu manifold M. Then the
structure F is parallel if and only if the structure B is parallel.

Proof. Making use of (36) and (39), we have
9((VxP)Y,V) = g(Ch(X,Y), V) —g(h(X,PY),V) —n(Y)g(FX, V)
= —g(h(X,Y),CV) —g(AvX, PY) — g(FX, V)n(Y)
= —g(AcvY, X) + g(PAVX,Y) — g(FX, V)n(Y)
= —g((VxB)VY),
for any X,Y € T(TM) and V € I'(T+M). This proves our assertion. O
From Theorem 8 and Theorem 9, we have the following corollary.

Corollary 1 Let M be a submanifold of a Kenmotsu manifold M. If the struc-
ture B is parallel, then M is invariant submanifold.

For a contact CR-submanifold M, if the invariant distribution D and anti-
invariant distribution D+ are totally geodesic in M, then M is called con-
tact CR-product. The following theorems characterize contact CR-products
in Kenmotsu manifolds.

Theorem 10 Let M be a contact CR-submanifold of a Kenmotsu manifold
M. Then M is a contact CR-product if and only if the shape operator A of M
satisfies the condition

A(pW(PX +n(X)W =0, (45)
for all X € T(D) and W € (D).

Proof. Let us assume that M is a contact CR-submanifold of M. Then by
using (2) and (4), we obtain

g AeweX+n(XIW,Y) = g(h(eX,Y), eW) = g(VyeX, oW)
= g((Vy@)X+ @VyX, oW)
= g(gleY; X)& —n(X) @Y, W) + g(VyX, W)
= g(VyX;W)
and
g(AeweX +n(X)W,Z) = g(h(¢X,Z), oW) +n(X)g(Z, W)

(
9(VzeX, eW) +n(X)g(Z,W)
9((Vze)X+ @VzX, W)
(
(

(V
= 9(9(¢Z,X)E —n(X)@Z, W) + g(VzX, W)
+ n(X)g(Z, W) = —g(VzW, X),
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for all X,Y € T(D) and Z,W € I'(D*+). So VxY € I'(D) and V;W € I'(D*) if
and only if (45) is satisfied. This proves our assertion. O

Theorem 11 Let M be a contact CR-submantfold of a Kenmotsu manifold
M. Then M is contact CR-product if and only if

Bh(X,U) =0, (46)
for allU e T(TM) and X € T(D).

Proof. For a contact CR-product M in [1], it was proved that A,wX = 0, for
all X € T(D) and W € T(D%). This condition implies (46).
Conversely, we suppose that (46) is satisfied. Then we have

g(VxY,W) = g(eVxY,eW) = g(VxeY, W) — g((Vx9)Y, W)
= g(h(X,PY),@W) —g(g(eX,Y)E —n(Y)@X, @W)

and
g(VzW,0X) = —g(VzoX,W) =—g((Vz@)X+ @VzX,W)
—9(9(9Z,X)E =n(X)9Z, W) + g(VzX, W)
= —g(Bh(X,Z),W),
for all X,Y € (D) and Z,W € I'(D+). This proves our assertion O

Theorem 12 Let M be a contact CR-submanifold of a Kenmotsu manifold
M. The structure C is parallel if and only if the shape operator Ay of M
satisfies the condition

AvBU = AyBY, (47)
for all U,V € T(TtM).
Proof. From (21) and (38), we have

g((VxC)V,U) = —g(h(X,BV),U) — g(FAyX,U) = —g(AuBV) + g(AvX, BU)
— g(AvBU — AyBV,X),

for all X € T'(TM). The proof is complete. O
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Theorem 13 Let M be a contact CR-submanifold of a Kenmotsu manifold
M. If C is parallel, then M is totally geodesic submanifold of M.

Proof. If C is parallel, from (38), we have
@eAvX+h(X,BV) =0, (48)

for any X € T(TM) and V € T'(T*M). Applying ¢ to (48) and taking into
account (2) and (40), we obtain

“AvX + Bh(X, BV) = 0. (49)
On the other hand, also by using (24) and (47), we conclude that
g(BR(X,BV), Z) = —g(h(X, BV), FZ) = —g(ArzBV,X) = —g(AVBFZ,X) =0,

for all Z € T(D1). So arrive at Ay = 0, that is, M is totally geodesic in M. OJ

4 Contact CR-submanifolds in Kenmotsu space
forms

Theorem 14 Let M be a contact CR-submanifold of a Kenmotsu space form
M(c) such that c # —1. If M is a curvature-invariant contact CR-submanifold,
then M is invariant or anti-invariant submanifold.

Proof. We suppose that M is a curvature-invariant contact CR-submanifold
of a Kenmotsu space form M(c) such that ¢ # —1. Then from (14) we have

g(X,PZ)FY — g(Y,PZ)FX + 2g(X,PY)FZ = 0, (50)
for any X, Y, Z € T(TM). Taking Z = X in equation (50), we have
3g(PY, X)FX = 0.

This implies that F = 0 or P = 0, that is, M is invariant or anti-invariant
submanifold. Thus the proof is complete. O

Thus we have the following corollary.

Corollary 2 There isn’t any curvature-invariant proper contact CR- subman-
ifold of a Kenmotsu space form M(c) such that ¢ # —1.
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Theorem 15 Let M be a contact CR-submanifold of a Kenmotsu space form
M(c) with flat normal connection such that ¢ # —1. If PAy = AyP for any
vector V normal to M, then M is an anti-invariant or generic submanifold of

M(c).
Proof. If the normal connection of M is flat, then from (12) we have

allAu A Y) = (S5 ) GX oVIgle¥ L)~ g% oV)gleX,U)

+ 29X, 0Y)gleV, U},

for any X,Y € I(TM) and U,V &€ I'(T+M). Here, choosing X = PY and V =
CU, by direct calculations, we conclude that

c+1

5 Hg(PTY,V)g(CU, CU)}.

g(AuAcuPY — AcuAuPY,Y) = (

If PAy = AuP, then we can easily see that (c + 1)Tr(P?)g(CU, CU) = 0. This
tells us that P = 0 (that is, M is anti-invariant submanifold) or CU = O(that
is, M is generic submanifold). O

Theorem 16 Let M be a proper contact CR-submanifold of a Kenmotsu space
form M(c). If the invariant distribution D is integrable, then ¢ < —1.

Proof. If the invariant distribution D is integrable, the from (43), we have
PAVY + AyPY = 0. (51)
It follows that
g(AvPY,BU) = 0, (52)

for any Y € T(TM) and W,V € T'(T+M). By differentiating the covariant
derivative in the direction of X € T(TM) of (52), and by using (9), (19), we
get

0 = g(VxAvPY,BU) + g(AyPY, VxBU)
g((VXAWPY + Agi\PY + Av(VxPY), BU)
+ g((VxB)U + BVxU, AyPY).
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Again, by using (35), (39) and taking into account (51), we obtain
—((VxA)VPY,BU) = —g((Vxh)(PY,BU),V)
= 9(AV{AryX+ Bh(X,Y) + g(@X, Y)E —n(Y)PX}, BU)
g(g(FX, W& + AcuX — PAUX, AyPY)
g(AvAryX + AyBh(X,Y),BU) + g(AcuX, AyPY)
(
(

_l’_

+

g AuPX AvPY)
g(AryX, AyBU) 4 g(AyBU, Bh(X,Y))

—g((Vxh)(PY,BU), V)
+g(AcuX, AyPY)
+ g(AuPX, AyPY).
Here, if PX is taken instead of X in this last equation, we have
—g((Vexh)(PY,BU),V) = g(ArPX,AyvBU) + g(AyBU, Bh(PX,Y))
+ g(AcuPX,AvPY) + g(AyP*X, AyPY).

Also, by using (51) and taking into account that M is a contact CR-submanifold
in M(c), by direct calculations we have

g((Veyh)(PX,BU) — (Vpxh)(PY,BU), V) = g(AcuAvPY,PX)
— g(AcuAvPX,PY) — g(AuP>X,AvY)
g(AuY, AvP?X)
= g(AuPX,AvY) + g(AyY, AyPX)
4+ g(AcuPX,AvPY) — g(AcuPY,AvPX).  (53)

Also, from (14), we get

<CJ£]>9(PY’X)9(BU»BV) = g((Veyh)(PX,BU)

— (Vexh)(PY,BU), V). (54)
Substituting (53) into (54), we obtain
c+1
< 1 ) g(PY,X)g(BU,BV) = g(AuPX,AvY)+ g(AuY, AvPX)

+  g(AcuPX, AuPY) — g(AcuPY, AyPX),
which implies that

<CI ]> 9(PY, PY)g(UL, L) = —g(AuPY, AuPY).

This proves our assertion. O
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