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Abstract. In this paper, we study the differential geometry of con-
tact CR-submanifolds of a Kenmotsu manifold. Necessary and sufficient
conditions are given for a submanifold to be a contact CR-submanifold
in Kenmotsu manifolds. Finally, the induced structures on submanifolds
are investigated, these structures are categorized and we discuss these
results.

1 Introduction

In [4], K. Kenmotsu defined and studied a new class of almost contact
manifolds called Kenmotsu manifolds. The study of the differential geome-
try of a contact CR-submanifolds, as a generalization of invariant and anti-
invariant submanifolds, of an almost contact metric manifold was initiated by
A. Bejancu [3] and was followed by several geometers. Several authors studied
contact CR-submanifolds of different classes of almost contact metric mani-
folds given in the references of this paper.
The contact CR-submanifolds are rich and interesting subject. Therefore we

continue to work in this subject matter.
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The purpose of this paper is to study the differential geometric theory of
submanifolds immersed in Kenmotsu manifold. We obtain the new integrabil-
ity conditions of the distributions of contact CR-submanifolds and prove some
characterizations for the induced structure to be parallel.

2 Preliminaries

In this section, we give some notations used throughout this paper. We recall
some necessary facts and formulas from the Kenmotsu manifolds. A (2m+1)-
dimensional Riemannian manifold (M̄, g) is said to be a Kenmotsu manifold
if there exist on M̄ a (1, 1) tensor field ϕ, a vector field ξ(called the structure
vector field) and 1-form η such that

ϕ2 = −I+ η⊗ ξ, η(ξ) = 1, ϕξ = 0, η◦ϕ = 0, (1)

g(ϕX,ϕY) = g(X, Y) − η(X)η(Y), η(X) = g(X, ξ)

and
(∇̄Xϕ)Y = g(ϕX, Y)ξ− η(Y)ϕX, ∇̄Xξ = X− η(X)ξ, (2)

for any X, Y ∈ Γ(TM̄), where ∇̄ is a Levi-Civita connection on M̄ and Γ(TM̄)

denotes the set of all differentiable vectors on M̄ [5].
A plane section π in TxM̄ is called a ϕ-section if it is spanned by X and ϕX,

where X is a unit tangent vector orthogonal to ξ. The sectional curvature of a
ϕ-section is called a ϕ-holomorphic sectional curvature. A Kenmotsu manifold
with constant ϕ-holomorphic sectional curvature c is said to be a Kenmotsu
space form and it is denoted by M̄(c). The curvature tensor R̄ of a M̄(c) is
also given by

R̄(X, Y)Z =

(

c− 3

4

)

{g(Y, Z)X− g(X,Z)Y}+

(

c+ 1

4

)

{η(X)η(Z)Y

− η(Y)η(Z)X+ η(Y)g(X,Z)ξ− η(X)g(Y, Z)ξ+ g(X,ϕZ)ϕY

− g(Y,ϕZ)ϕX+ 2g(X,ϕY)ϕZ}, (3)

for any X, Y, Z ∈ Γ(TM̄) [1].
Now, let M be an isometrically immersed submanifold in M̄. In the rest of

this paper, we assume the submanifold M of M̄ is tangent to the structure
vector field ξ. Then the formulas of Gauss and Weingarten for M in M̄ are
given, respectively, by

∇̄XY = ∇XY + h(X, Y) (4)
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and

∇̄XV = −AVX+∇⊥

XV (5)

for any X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where ∇̄ and ∇ denote the Rieman-
nian connections on M̄ and M, respectively, h is the second fundamental form,
∇⊥ is the normal connection on the normal bundle T⊥M and AV is the shape
operator of M in M̄. It is well known that the second fundamental form and
the shape operator are related by formulae

g(AVX, Y) = g((h(X, Y), V), (6)

where, g denotes the Riemannian metric on M̄ as well as M. For any subman-
ifold M of a Riemannian manifold M̄, the equation of Gauss is given by

R̄(X, Y)Z = R(X, Y)Z+Ah(X,Z)Y −Ah(Y,Z)X+ (∇̄Xh)(Y, Z)

− (∇̄Yh)(X,Z), (7)

for any X, Y, Z ∈ Γ(TM), where R̄ and R denote the Riemannian curvature
tensors of M̄ and M, respectively. The covariant derivative ∇̄h of h is defined
by

(∇̄Xh)(Y, Z) = ∇⊥

Xh(Y, Z) − h(∇XY, Z) − h(∇XZ, Y), (8)

and the covariant derivative ∇̄A is defined by

(∇̄XA)VY = ∇X(AVY) −A
∇⊥

X
VY −AV∇XY, (9)

for any X, Y, Z ∈ Γ(TM) and V ∈ Γ(T⊥M).
The normal component of (7) is said to be the Codazzi equation and it is

given by

(R̄(X, Y)Z)⊥ = (∇̄Xh)(Y, Z) − (∇̄Yh)(X,Z), (10)

where (R̄(X, Y)Z)⊥ denotes the normal part of R̄(X, Y)Z. If (R̄(X, Y)Z)⊥ = 0,
then M is said to be curvature-invariant submanifold of M̄.
The Ricci equation is given by

g(R̄(X, Y)V,U) = g(R⊥(X, Y)V,U) + g([AU, AV ]X, Y), (11)

for any X, Y ∈ Γ(TM) and U,V ∈ Γ(T⊥M), where R⊥ denotes the Riemannian
curvature tensor of the normal vector bundle T⊥M and if R⊥=0, then the
normal connection of M is called flat [6].
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Taking into account (3) and (11), we have

g(R⊥(X, Y)V,U) =

(

c+ 1

4

)

{g(X,ϕV)g(U,ϕY) − g(Y,ϕV)g(ϕX,U)

+ 2g(X,ϕY)g(ϕV,U) + g([AV , AU]X, Y)}, (12)

for any X, Y ∈ Γ(TM) and U,V ∈ Γ(T⊥M).
By using (3) and (7), the Riemannian curvature tensor R of an immersed

submanifold M of a Kenmotsu space form M̄(c) is given by

R(X, Y)Z =

(

c− 3

4

)

{g(Y, Z)X− g(X,Z)Y}+

(

c+ 1

4

)

{η(X)η(Z)Y

− η(Y)η(Z)X+ η(Y)g(X,Z)ξ− η(X)g(Y, Z)ξ+ g(X,ϕZ)PY

− g(Y,ϕZ)PX+ 2g(X,ϕY)PZ}+Ah(Y,Z)X−Ah(X,Z)Y. (13)

From (3) and (10), for a submanifold, the Codazzi equation is given by

(∇̄Xh)(Y, Z) − (∇̄Yh)(X,Z) =

(

c+ 1

4

)

{g(X,ϕZ)FY − g(Y,ϕZ)FX

+ 2g(X,ϕY)FZ}. (14)

3 Contact CR-submanifolds of a Kenmotsu mani-

fold

Now, let M be an isometrically immersed submanifold of a Kenmotsu manifold
M̄. For any vector X tangent to M, we set

ϕX = PX+ FX, (15)

where PX and FX denote the tangent and normal parts of ϕX, respectively.
Then P is an endomorphism of the TM and F is a normal-bundle valued 1-form
of TM.
The covariant derivatives of P and F are, respectively, defined by

(∇XP)Y = ∇XPY − P∇XY (16)

and
(∇XF)Y = ∇⊥

X FY − F∇XY. (17)

In the same way, for any vector field V normal to M, ϕV can be written in
the following way;

ϕV = BV + CV, (18)
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where BV and CV denote the tangent and normal parts of ϕV , respectively.
Also, B is an endomorphism of the normal bundle T⊥M of TM and C is an
endomorphism of the subbundle of the normal bundle T⊥M.
The covariant derivatives of B and C are also, respectively, defined by

(∇XB)V = ∇XBV − B∇⊥

XV (19)

and
(∇XC)V = ∇⊥

XCV − C∇⊥

XV. (20)

Furthermore, for any X, Y ∈ Γ(TM), we have g(PX, Y) = −g(X, PY) and
U,V ∈ Γ(T⊥M), we get g(U,CV) = −g(CU,V). These show that P and C

are also skew-symmetric tensor fields. Moreover, for any X ∈ Γ(TM) and V ∈

Γ(T⊥M) we have
g(FX, V) = −g(X,BV), (21)

which gives the relation between F and B.

Definition 1 Let M be an isometrically immersed submanifold of a Kenmotsu
manifold M̄. Then M is called a contact CR-submanifold of M̄ if there is a
differentiable distribution D : p −→ Dp ⊆ Tp(M) on M satisfying the following
conditions:
i) ξ ∈ D,
ii) D is invariant with respect to ϕ, i.e., ϕDx ⊂ Tp(M) for each p ∈ M,
and
iii) the orthogonal complementary distribution D⊥ : p −→ D⊥

p ⊆ Tp(M)

satisfies ϕD⊥
p ⊆ T⊥

p M for each p ∈ M.

For a contact CR-submanifold M of a Kenmotsu manifold, for the structure
vector field ξ ∈ Γ(D) ⊆ Γ(TM), from (1), we have

ϕξ = Pξ+ Fξ = 0,

which is equivalent to
Pξ = Fξ = 0. (22)

Furthermore, applying ϕ to (15), by using (1), (18), we conclude that

P2 + BF = −I+ η⊗ ξ and FP + CF = 0. (23)

Similarly, applying ϕ to (18), making use of (1), (15), we have

C2 + FB = −I and PB+ BC = 0. (24)
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Proposition 1 Let M be a contact CR-submanifold of a Kenmotsu manifold
M̄. Then the invariant distribution D has an almost contact metric structure
(P, ξ, η, g) and so dim (Dp) = odd for each p ∈ M.

Now, we denote the orthogonal distribution of ϕ(D⊥) in T⊥M by ν. Then we
have the direct decomposition

T⊥M = ϕ(D⊥)⊕ ν and ϕ(D⊥)⊥ν. (25)

Here we note that ν is an invariant subbundle with respect to ϕ and so
dim(ν) = even.

Theorem 1 Let M be an isometrically immersed submanifold of a Kenmotsu
manifold M̄. Then M is a contact CR-submanifold if and only if FP = 0.

Proof. We assume that M is a contact CR-submanifold of a Kenmotsu man-
ifold M̄. We denote the orthogonal projections on D and D⊥ by R and S,
respectively. Then we have

R+ S = I, R2 = R, S2 = S and RS = SR = 0. (26)

For any X ∈ Γ(TM), we can write

X = RX+ SX and ϕX = ϕRX+ϕSX = PRX+ FRX+ PSX+ FSX. (27)

Since D is invariant distribution, it is clear that

FR = 0 and SPR = 0. (28)

On the other hand, we can easily verify that

RP = P = PR.

From the second side of (23), we reach

FPR+ CFR = 0. (29)

Since FR = 0, (29) reduces to
FP = 0. (30)

By virtue of (23) and (30), we arrive at

CF = 0. (31)
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Conversely, let M be a submanifold of a Kenmotsu manifold M̄ such that
(30) is satisfied. For any X ∈ Γ(TM) and V ∈ Γ(T⊥M), by direct calculations,
we have

g(X,ϕ2V) = g(ϕ2X,V)

g(X,ϕBV) = g(ϕFX,V),

g(X, PBV) = g(CFX, V) = 0.

Thus we get

PB = 0. (32)

Making use of the equations (23), (24) and (32), we have P3 + P = 0 and
C3 + C = 0 which show that P and C are f-structures on TM and T⊥M,
respectively. Here if we put R = −P2 + η⊗ ξ and S = I+ P2 − η⊗ ξ, then we
can easily see that

R+ S = I, R2 = R, S2 = S and RS = SR = 0, (33)

that is, R and S are orthogonal projections and they define orthogonal comple-
mentary distributions such as D and D⊥. Since R = −P2+η⊗ξ and P3+P = 0,
we get PR = P and PS = 0. Taking account of P being skew-symmetric and S

being symmetric, we have

g(SPX, Y) = g(PX, SY)

= −g(X, PSY) = 0,

for any X, Y ∈ Γ(TM). Thus we have

SP = 0.

It implies that

SPR = 0.

Since R = −P2 + η⊗ ξ, Pξ = Fξ = 0 and from (30), it is clear that

FR = 0. (34)

(33) and (34) tell us that D and D⊥ are invariant and anti-invariant distri-
butions on M, respectively. Furthermore, from the definitions of R and S, we
have

Rξ = ξ and Sξ = 0,
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that is, the distribution D contains ξ. On the other hand, setting

R = −P2 and S = I+ P2,

we can easily see that projections R and S define orthogonal distributions such
as D and D⊥, respectively. Thus we have

PR = P, SP = 0, FR = 0 and PS = 0,

that is, D is an invariant distribution, D⊥ is an anti-invariant distribution and

Rξ = 0 and Sξ = ξ.

This tell us that ξ belongs to D⊥. Hence the proof is complete. �

Now, let M be a contact CR-submanifold of a Kenmotsu manifold M̄. Then
for any X, Y ∈ Γ(TM), by using (2), (4), (5), (15) and (18), we have

(∇̄Xϕ)Y = ∇̄XϕY −ϕ∇̄XY

g(ϕX, Y)ξ− η(Y)ϕX = ∇̄XPY + ∇̄XFY −ϕ∇XY −ϕh(X, Y).

From the tangent and normal components of this last equations, respectively,
we have

(∇XP)Y = AFYX+ Bh(X, Y) + g(ϕX, Y)ξ− η(Y)PX (35)

and
(∇XF)Y = Ch(X, Y) − h(X, PY) − η(Y)FX. (36)

In the same way, for any X ∈ Γ(TM) and V ∈ Γ(T⊥M), we have

(∇̄Xϕ)V = ∇̄XϕV −ϕ∇̄XV

g(ϕX,V)ξ = (∇XB)V + (∇XC)V + h(X,BV) −ACVX+ PAVX

+ FAVX. (37)

From the normal and tangent components of (37), respectively, we have

(∇XC)V = −h(X,BV) − FAVX, (38)

and

(∇XB)V = g(FX, V)ξ+ACVX− PAVX. (39)

On the other hand, since M is tangent to ξ, making use of (2) and (6) we
obtain

AVξ = h(X, ξ) = 0 (40)
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for all V ∈ Γ(T⊥M) and X ∈ Γ(TM). It is well-known that Bh = 0 plays an
important role in the geometry of submanifolds. This means that the induced
structure P is a Kenmotsu structure on M. Then (35) reduces to

(∇XP)Y = g(PX, Y)ξ− η(Y)PX, (41)

for any X, Y ∈ Γ(D). This means that the induced structure P is a Kenmotsu
structure on M. Moreover, for any Z,W ∈ Γ(D⊥) and U ∈ Γ(TM), also by
using (2) and (6), we have

g(AFZW −AFWZ,U) = g(h(W,U), FZ) − g(h(Z,U), FW)

= g(∇̄UW,ϕZ) − g(∇̄UZ,ϕW)

= g(ϕ∇̄UZ,W) − g(∇̄UϕZ,W) = −g((∇̄Uϕ)Z,W)

= g(ϕZ,U)η(W) − g(ϕW,U)η(Z) = 0.

It follows that

AFZW = AFWZ, (42)

for any Z,W ∈ Γ(D⊥).
Hence we have the following theorem.

Theorem 2 Let M be a contact CR-submanifold of a Kenmotsu manifold
M̄. Then the anti-invariant distribution D⊥ is completely integrable and its
maximal integral submanifold is an anti-invariant submanifold of M̄.

Proof. For any Z,W ∈ Γ(D⊥) and X ∈ Γ(D), by using (2) and (42) we have

g([Z,W], X) = g(∇̄ZW,X) − g(∇̄WZ,X)

= g(∇̄WX,Z) − g(∇̄ZX,W) = g(ϕ∇̄WX,ϕZ) − g(ϕ∇̄ZX,ϕW)

= g(∇̄WϕX− (∇̄Wϕ)X,ϕZ) − g(∇̄ZϕX− (∇̄Zϕ)X,ϕW)

= g(h(ϕX,W), ϕZ) − g(h(ϕX,Z), ϕW) − g(g(ϕW,X)ξ

− η(X)ϕW,ϕZ) + g(g(ϕZ,X)ξ− η(X)ϕZ,ϕW)

= g(AϕZW −AϕWZ,ϕX) = 0.

Thus [Z,W] ∈ Γ(D⊥) for any Z,W ∈ Γ(D⊥), that is, D⊥ is integrable. Thus
the proof is complete. �

Theorem 3 Let M be a contact CR-submanifold of a Kenmotsu manifold
M̄. Then the invariant distribution D is completely integrable and its maximal



On contact CR-submanifolds of Kenmotsu manifolds 191

integral submanifold is an invariant submanifold of M̄ if and only if the shape
operator AV of M satisfies

AVP + PAV = 0, (43)

for any V ∈ Γ(T⊥M).

Proof. In [1], it was proved that D is integrable if and only if the second
fundamental form h of M satisfies the condition h(X, PY) = h(PX, Y), for any
X, Y ∈ Γ(D). We can easily verify that this condition is equivalent to (43). So
we omit the proof. �

Theorem 4 Let M be a contact CR-submanifold of a Kenmotsu manifold M̄.
If the invariant distribution D is integrable, then M is D-minimal submanifold
in M̄.

Proof. Let {e1, e2, . . . , ep, ϕe1, ϕe2, . . . , ϕep, ξ} be an orthonormal frame of
Γ(D) and we denote the second fundamental form of M in M̄ by h. Then the
mean curvature tensor H of M can be written as

H =
1

2p+ 1

{
p∑

i=1

{h(ei, ei) + h(ϕei, ϕei)}+ h(ξ, ξ)

}

. (44)

By using (2) we mean that h(ξ, ξ) = 0. Since D is integrable, we have

H =
1

2p+ 1

{
p∑

i=1

{h(ei, ei) + h(P2ei, ei)

}

=
1

2p+ 1

{
p∑

i=1

{h(ei, ei) + h(−ei + η(ei)ξ, ei)

}

=
1

2p+ 1

{
p∑

i=1

{h(ei, ei) − h(ei, ei)

}

= 0.

This proves our assertion. �

Theorem 5 Let M be a contact CR-submanifold of a Kenmotsu manifold M̄.
If the second fundamental form of the contact CR-submanifold M is parallel,
then M is a totally geodesic submanifold.
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Proof. If the second fundamental form h of M is parallel, then by using (8),
we have

∇⊥

Xh(Y, Z) − h(∇XY, Z) − h(∇XZ, Y) = 0,

for any X, Y, Z ∈ Γ(TM). Here, choosing Y = ξ and taking into account (2) and
(40), we conclude that h(X,Z) = 0. This proves our assertion. �

Theorem 6 Let M be a submanifold of a Kenmotsu manifold M̄. Then M

is a contact CR-submanifold if and only if the endomorphism C defines an
f-structure on ν, that is, C3 + C = 0.

Proof. If M is a contact CR-submanifold, then from Theorem 1, we know
that C is an f-structure on ν.

Conversely, if C is an f-structure on ν, from (24) we can derive CFB = 0.
So for any V ∈ Γ(T⊥M), by using (21), we have

g(BCV,BCV) = g(ϕCV,BCV) = −g(CV, FBCV)

= g(V,CFBCV) = 0.

This implies that BC = 0 which is equivalent to PB = 0. Also, from Theorem
3.1 we conclude that M is a contact CR-submanifold. �

Theorem 7 Let M be a submanifold of a Kenmotsu manifold M̄. If the en-
domorphism P on M is parallel, then M is anti-invariant submanifold in M̄.

Proof. If P is parallel, from (35) and (40), we have

0 = g(ϕX, Y) + g(AFYX, ξ) + g(Bh(X, Y), ξ)

= g(ϕX, Y) + g(h(X, ξ), FY)

= g(ϕX, Y),

for any X, Y ∈ Γ(TM). This implies that M is anti-invariant submanifold. �

Theorem 8 Let M be a submanifold of a Kenmotsu manifold M̄. If the en-
domorphism F is parallel, then M is invariant submanifold in M̄.

Proof. If F is parallel, then from (36), we have

Ch(X, Y) − h(X, PY) − η(Y)FX = 0,

for any X, Y ∈ Γ(TM). Here, choosing Y = ξ and taking into account that
h(X, ξ) = 0, we conclude that FX = 0. This proves our assertion. �
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Theorem 9 Let M be a submanifold of a Kenmotsu manifold M̄. Then the
structure F is parallel if and only if the structure B is parallel.

Proof. Making use of (36) and (39), we have

g((∇XF)Y, V) = g(Ch(X, Y), V) − g(h(X, PY), V) − η(Y)g(FX, V)

= −g(h(X, Y), CV) − g(AVX, PY) − g(FX, V)η(Y)

= −g(ACVY, X) + g(PAVX, Y) − g(FX, V)η(Y)

= −g((∇XB)V, Y),

for any X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M). This proves our assertion. �

From Theorem 8 and Theorem 9, we have the following corollary.

Corollary 1 Let M be a submanifold of a Kenmotsu manifold M̄. If the struc-
ture B is parallel, then M is invariant submanifold.

For a contact CR-submanifold M, if the invariant distribution D and anti-
invariant distribution D⊥ are totally geodesic in M, then M is called con-
tact CR-product. The following theorems characterize contact CR-products
in Kenmotsu manifolds.

Theorem 10 Let M be a contact CR-submanifold of a Kenmotsu manifold
M̄. Then M is a contact CR-product if and only if the shape operator A of M
satisfies the condition

AϕWϕX+ η(X)W = 0, (45)

for all X ∈ Γ(D) and W ∈ (D⊥).

Proof. Let us assume that M is a contact CR-submanifold of M̄. Then by
using (2) and (4), we obtain

g(AϕWϕX+ η(X)W,Y) = g(h(ϕX, Y), ϕW) = g(∇̄YϕX,ϕW)

= g((∇̄Yϕ)X+ϕ∇̄YX,ϕW)

= g(g(ϕY,X)ξ− η(X)ϕY,ϕW) + g(∇YX,W)

= g(∇YX,W)

and

g(AϕWϕX+ η(X)W,Z) = g(h(ϕX,Z), ϕW) + η(X)g(Z,W)

= g(∇̄ZϕX,ϕW) + η(X)g(Z,W)

= g((∇̄Zϕ)X+ϕ∇̄ZX,ϕW)

= g(g(ϕZ,X)ξ− η(X)ϕZ,ϕW) + g(∇̄ZX,W)

+ η(X)g(Z,W) = −g(∇ZW,X),
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for all X, Y ∈ Γ(D) and Z,W ∈ Γ(D⊥). So ∇XY ∈ Γ(D) and ∇ZW ∈ Γ(D⊥) if
and only if (45) is satisfied. This proves our assertion. �

Theorem 11 Let M be a contact CR-submanifold of a Kenmotsu manifold
M̄. Then M is contact CR-product if and only if

Bh(X,U) = 0, (46)

for all U ∈ Γ(TM) and X ∈ Γ(D).

Proof. For a contact CR-product M in [1], it was proved that AϕWX = 0, for
all X ∈ Γ(D) and W ∈ Γ(D⊥). This condition implies (46).
Conversely, we suppose that (46) is satisfied. Then we have

g(∇XY,W) = g(ϕ∇̄XY,ϕW) = g(∇̄XϕY,ϕW) − g((∇̄Xϕ)Y,ϕW)

= g(h(X, PY), ϕW) − g(g(ϕX, Y)ξ− η(Y)ϕX,ϕW)

= −g(Bh(X, PY),W)

and

g(∇ZW,ϕX) = −g(∇̄ZϕX,W) = −g((∇̄Zϕ)X+ϕ∇̄ZX,W)

= −g(g(ϕZ,X)ξ− η(X)ϕZ,W) + g(∇̄ZX,ϕW)

= −g(Bh(X,Z),W),

for all X, Y ∈ Γ(D) and Z,W ∈ Γ(D⊥). This proves our assertion �

Theorem 12 Let M be a contact CR-submanifold of a Kenmotsu manifold
M̄. The structure C is parallel if and only if the shape operator AV of M

satisfies the condition

AVBU = AUBV, (47)

for all U,V ∈ Γ(T⊥M).

Proof. From (21) and (38), we have

g((∇XC)V,U) = −g(h(X,BV), U) − g(FAVX,U) = −g(AUBV) + g(AVX,BU)

= g(AVBU−AUBV,X),

for all X ∈ Γ(TM). The proof is complete. �
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Theorem 13 Let M be a contact CR-submanifold of a Kenmotsu manifold
M̄. If C is parallel, then M is totally geodesic submanifold of M̄.

Proof. If C is parallel, from (38), we have

ϕAVX+ h(X,BV) = 0, (48)

for any X ∈ Γ(TM) and V ∈ Γ(T⊥M). Applying ϕ to (48) and taking into
account (2) and (40), we obtain

−AVX+ Bh(X,BV) = 0. (49)

On the other hand, also by using (24) and (47), we conclude that

g(Bh(X,BV), Z) = −g(h(X,BV), FZ) = −g(AFZBV,X) = −g(AVBFZ,X) = 0,

for all Z ∈ Γ(D⊥). So arrive at AV = 0, that is, M is totally geodesic in M̄. �

4 Contact CR-submanifolds in Kenmotsu space

forms

Theorem 14 Let M be a contact CR-submanifold of a Kenmotsu space form
M̄(c) such that c ̸= −1. If M is a curvature-invariant contact CR-submanifold,
then M is invariant or anti-invariant submanifold.

Proof. We suppose that M is a curvature-invariant contact CR-submanifold
of a Kenmotsu space form M̄(c) such that c ̸= −1. Then from (14) we have

g(X, PZ)FY − g(Y, PZ)FX+ 2g(X, PY)FZ = 0, (50)

for any X, Y, Z ∈ Γ(TM). Taking Z = X in equation (50), we have

3g(PY, X)FX = 0.

This implies that F = 0 or P = 0, that is, M is invariant or anti-invariant
submanifold. Thus the proof is complete. �

Thus we have the following corollary.

Corollary 2 There isn’t any curvature-invariant proper contact CR- subman-
ifold of a Kenmotsu space form M̄(c) such that c ̸= −1.
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Theorem 15 Let M be a contact CR-submanifold of a Kenmotsu space form
M̄(c) with flat normal connection such that c ̸= −1. If PAV = AVP for any
vector V normal to M, then M is an anti-invariant or generic submanifold of
M̄(c).

Proof. If the normal connection of M is flat, then from (12) we have

g([AU, AV ]X, Y) =

(

c+ 1

4

)

{g(X,ϕV)g(ϕY,U) − g(Y,ϕV)g(ϕX,U)

+ 2g(X,ϕY)g(ϕV,U)},

for any X, Y ∈ Γ(TM) and U,V ∈ Γ(T⊥M). Here, choosing X = PY and V =

CU, by direct calculations, we conclude that

g(AUACUPY −ACUAUPY, Y) = (
c+ 1

2
){g(P2Y, Y)g(CU,CU)}.

If PAU = AUP, then we can easily see that (c+ 1)Tr(P2)g(CU,CU) = 0. This
tells us that P = 0 (that is, M is anti-invariant submanifold) or CU = 0(that
is, M is generic submanifold). �

Theorem 16 Let M be a proper contact CR-submanifold of a Kenmotsu space
form M̄(c). If the invariant distribution D is integrable, then c < −1.

Proof. If the invariant distribution D is integrable, the from (43), we have

PAVY +AVPY = 0. (51)

It follows that

g(AVPY, BU) = 0, (52)

for any Y ∈ Γ(TM) and U,V ∈ Γ(T⊥M). By differentiating the covariant
derivative in the direction of X ∈ Γ(TM̄) of (52), and by using (9), (19), we
get

0 = g(∇̄XAVPY, BU) + g(AVPY, ∇̄XBU)

= g((∇XA)VPY +A
∇⊥

X
VPY +AV(∇XPY), BU)

+ g((∇XB)U+ B∇⊥

XU,AVPY).
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Again, by using (35), (39) and taking into account (51), we obtain

−((∇XA)VPY, BU) = −g((∇Xh)(PY, BU), V)

= g(AV {AFYX+ Bh(X, Y) + g(ϕX, Y)ξ− η(Y)PX}, BU)

+ g(g(FX,U)ξ+ACUX− PAUX,AVPY)

= g(AVAFYX+AVBh(X, Y), BU) + g(ACUX,AVPY)

+ g(AUPX,AVPY)

−g((∇Xh)(PY, BU), V) = g(AFYX,AVBU) + g(AVBU,Bh(X, Y))

+g(ACUX,AVPY)

+ g(AUPX,AVPY).

Here, if PX is taken instead of X in this last equation, we have

−g((∇̄PXh)(PY, BU), V) = g(AFYPX,AVBU) + g(AVBU,Bh(PX, Y))

+ g(ACUPX,AVPY) + g(AUP
2X,AVPY).

Also, by using (51) and taking into account thatM is a contact CR-submanifold
in M̄(c), by direct calculations we have

g((∇̄PYh)(PX, BU) − (∇̄PXh)(PY, BU), V) = g(ACUAVPY, PX)

− g(ACUAVPX, PY) − g(AUP
3X,AVY)

− g(AUY,AVP
3X)

= g(AUPX,AVY) + g(AUY,AVPX)

+ g(ACUPX,AVPY) − g(ACUPY,AVPX). (53)

Also, from (14), we get
(

c+ 1

2

)

g(PY, X)g(BU,BV) = g((∇̄PYh)(PX, BU)

− (∇̄PXh)(PY, BU), V). (54)

Substituting (53) into (54), we obtain
(

c+ 1

4

)

g(PY, X)g(BU,BV) = g(AUPX,AVY) + g(AUY,AVPX)

+ g(ACUPX,AUPY) − g(ACUPY,AVPX),

which implies that
(

c+ 1

4

)

g(PY, PY)g(U,U) = −g(AUPY,AUPY).

This proves our assertion. �
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